Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
BMC Vet Res ; 20(1): 372, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39160565

RESUMEN

BACKGROUND: Neural stem and progenitor cells (NSPCs) from extra-neural origin represent a valuable tool for autologous cell therapy and research in neurogenesis. Identification of proneurogenic biomolecules on NSPCs would improve the success of cell therapies for neurodegenerative diseases. Preliminary data suggested that follicle-stimulating hormone (FSH) might act in this fashion. This study was aimed to elucidate whether FSH promotes development, self-renewal, and is proneurogenic on neurospheres (NS) derived from sheep ovarian cortical cells (OCCs). Two culture strategies were carried out: (a) long-term, 21-days NS culture (control vs. FSH group) with NS morphometric evaluation, gene expression analyses of stemness and lineage markers, and immunolocalization of NSPCs antigens; (b) NS assay to demonstrate FSH actions on self-renewal and differentiation capacity of NS cultured with one of three defined media: M1: positive control with EGF/FGF2; M2: control; and M3: M2 supplemented with FSH. RESULTS: In long-term cultures, FSH increased NS diameters with respect to control group (302.90 ± 25.20 µm vs. 183.20 ± 7.63 on day 9, respectively), upregulated nestin (days 15/21), Sox2 (day 21) and Pax6 (days 15/21) and increased the percentages of cells immunolocalizing these proteins. During NS assays, FSH stimulated NSCPs proliferation, and self-renewal, increasing NS diameters during the two expansion periods and the expression of the neuron precursor transcript DCX during the second one. In the FSH-group there were more frequent cell-bridges among neighbouring NS. CONCLUSIONS: FSH is a proneurogenic hormone that promotes OCC-NSPCs self-renewal and NS development. Future studies will be necessary to support the proneurogenic actions of FSH and its potential use in basic and applied research related to cell therapy.


Asunto(s)
Hormona Folículo Estimulante , Animales , Hormona Folículo Estimulante/farmacología , Femenino , Ovinos , Ovario/citología , Células-Madre Neurales/efectos de los fármacos , Células Cultivadas , Diferenciación Celular/efectos de los fármacos
2.
Methods Mol Biol ; 2824: 409-424, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39039427

RESUMEN

Three-dimensional culture models of the brain enable the study of neuroinfection in the context of a complex interconnected cell matrix. Depending on the differentiation status of the neural cells, two models exist: 3D spheroids also called neurospheres and cerebral organoids. Here, we describe the preparation of 3D spheroids and cerebral organoids and give an outlook on their usage to study Rift Valley fever virus and other neurotropic viruses.


Asunto(s)
Organoides , Esferoides Celulares , Organoides/virología , Organoides/citología , Esferoides Celulares/virología , Humanos , Animales , Virus ARN/fisiología , Encéfalo/virología , Encéfalo/citología , Infecciones por Virus ARN/virología , Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo Tridimensional de Células/métodos
3.
Biol Methods Protoc ; 9(1): bpae022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628556

RESUMEN

Cell replacement in aganglionic intestines is a promising, yet merely experimental tool for the therapy of congenital dysganglionosis of the enteric nervous system like Hirschsprung disease. While the injection of single cells or neurospheres to a defined and very restricted location is trivial, the translation to the clinical application, where large aganglionic or hypoganglionic areas need to be colonized (hundreds of square centimetres), afford a homogeneous distribution of multiple neurospheres all over the affected tissue areas. Reaching the entire aganglionic area in vivo is critical for the restoration of peristaltic function. The latter mainly depends on an intact nervous system that extends throughout the organ. Intra-arterial injection is a common method in cell therapy and may be the key to delivering cells or neurospheres into the capillary bed of the colon with area-wide distribution. We describe an experimental method for monitoring the distribution of a defined number of neurospheres into porcine recta ex vivo, immediately after intra-arterial injection. We designed this method to localize grafting sites of single neurospheres in precise biopsies which can further be examined in explant cultures. The isolated perfused porcine rectum allowed us to continuously monitor the perfusion pressure. A blockage of too many capillaries would lead to an ischaemic situation and an increase of perfusion pressure. Since we could demonstrate that the area-wide delivery of neurospheres did not alter the overall vascular resistance, we showed that the delivery does not significantly impair the local circulation.

4.
Biochimie ; 223: 147-157, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38640996

RESUMEN

Stem cell therapies hold promise in addressing the burden of neurodegenerative diseases with human embryonic neural stem cells (hNSC-H9s) and bone marrow-derived human mesenchymal stem cells (hMSCs) as viable candidates. The induction of hMSC neurospheres (hMSC-IN) generate a more lineage-restricted common neural progenitor-like cell population, potentially tunable by heparan sulfate proteoglycans (HSPGs). We examined CpG (5 mC) site methylation patterns using Illumina Infinium 850 K EPIC arrays in hNSC-H9, hMSCs and hMSC-IN cultures with HSPG agonist heparin at early and late phases of growth. We identified key regulatory CpG sites in syndecans (SDC2; SDC4) that potentially regulate gene expression in monolayers. Unique hMSC-IN hypomethylation in glypicans (GPC3; GPC4) underscore their significance in neural lineages with Sulfatase 1 and 2 (SULF1 &2) CpG methylation changes potentially driving the neurogenic shift. hMSC-INs methylation levels at SULF1 CpG sites and SULF2:cg25401628 were more closely aligned with hNSC-H9 cells than with hMSCs. We further suggest SOX2 regulation governed by lncSOX2-Overall Transcript (lncSOX2-OT) methylation changes with preferential activation of ENO2 over other neuronal markers within hMSC-INs. Our findings illuminate epigenetic dynamics governing neural lineage commitment of hMSC-INs offering insights for targeted mechanisms for regenerative medicine and therapeutic strategies.


Asunto(s)
Islas de CpG , Metilación de ADN , Células Madre Mesenquimatosas , Células-Madre Neurales , Humanos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Diferenciación Celular , Nicho de Células Madre
5.
J Neurosci Methods ; 407: 110144, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38670535

RESUMEN

BACKGROUND: The enteric nervous system (ENS) is comprised of neurons, glia, and neural progenitor cells that regulate essential gastrointestinal functions. Advances in high-efficiency enteric neuron culture would facilitate discoveries surrounding ENS regulatory processes, pathophysiology, and therapeutics. NEW METHOD: Development of a simple, robust, one-step method to culture murine enteric neurospheres in a 3D matrix that supports neural growth and differentiation. RESULTS: Myenteric plexus cells isolated from the entire length of adult murine small intestine formed ≥3000 neurospheres within 7 days. Matrigel-embedded neurospheres exhibited abundant neural stem and progenitor cells expressing Sox2, Sox10 and Msi1 by day 4. By day 5, neural progenitor cell marker Nestin appeared in the periphery of neurospheres prior to differentiation. Neurospheres produced extensive neurons and neurites, confirmed by Tubulin beta III, PGP9.5, HuD/C, and NeuN immunofluorescence, including neural subtypes Calretinin, ChAT, and nNOS following 8 days of differentiation. Individual neurons within and external to neurospheres generated depolarization induced action potentials which were inhibited in the presence of sodium channel blocker, Tetrodotoxin. Differentiated neurospheres also contained a limited number of glia and endothelial cells. COMPARISON WITH EXISTING METHODS: This novel one-step neurosphere growth and differentiation culture system, in 3D format (in the presence of GDNF, EGF, and FGF2), allows for ∼2-fold increase in neurosphere count in the derivation of enteric neurons with measurable action potentials. CONCLUSION: Our method describes a novel, robust 3D culture of electrophysiologically active enteric neurons from adult myenteric neural stem and progenitor cells.


Asunto(s)
Plexo Mientérico , Neuronas , Animales , Plexo Mientérico/citología , Plexo Mientérico/fisiología , Neuronas/fisiología , Neuronas/citología , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Células-Madre Neurales/efectos de los fármacos , Diferenciación Celular/fisiología , Diferenciación Celular/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Células Cultivadas , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de los fármacos , Laminina/farmacología , Combinación de Medicamentos , Proteoglicanos/farmacología , Masculino , Neurogénesis/fisiología , Neurogénesis/efectos de los fármacos , Colágeno
6.
Cancer Med ; 13(9): e7207, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38686627

RESUMEN

BACKGROUND: Most high-risk neuroblastoma patients who relapse succumb to disease despite the existing therapy. We recently reported increased event-free and overall survival in neuroblastoma patients receiving difluoromethylornithine (DFMO) during maintenance therapy. The effect of DFMO on cellular processes associated with neuroblastoma tumorigenesis needs further elucidation. Previous studies have shown cytotoxicity with IC50 values >5-15 mM, these doses are physiologically unattainable in patients, prompting further mechanistic studies at therapeutic doses. METHODS: We characterized the effect of DFMO on cell viability, cell cycle, apoptosis, neurosphere formation, and protein expression in vitro using five established neuroblastoma cell lines (BE2C, CHLA-90, SHSY5Y, SMS-KCNR, and NGP) at clinically relevant doses of 0, 50, 100, 500, 1000, and 2500 µM. Limiting Dilution studies of tumor formation in murine models were performed. Statistical analysis was done using GraphPad and the level of significance set at p = 0.05. RESULTS: There was not a significant loss of cell viability or gain of apoptotic activity in the in vitro assays (p > 0.05). DFMO treatment initiated G1 to S phase cell cycle arrest. There was a dose-dependent decrease in frequency and size of neurospheres and a dose-dependent increase in beta-galactosidase activity in all cell lines. Tumor formation was decreased in xenografts both with DFMO-pretreated cells and in mice treated with DFMO. CONCLUSION: DFMO treatment is cytostatic at physiologically relevant doses and inhibits tumor initiation and progression in mice. This study suggests that DFMO, inhibits neuroblastoma by targeting cellular processes integral to neuroblastoma tumorigenesis at clinically relevant doses.


Asunto(s)
Apoptosis , Supervivencia Celular , Eflornitina , Neuroblastoma , Ensayos Antitumor por Modelo de Xenoinjerto , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Neuroblastoma/metabolismo , Humanos , Animales , Línea Celular Tumoral , Ratones , Apoptosis/efectos de los fármacos , Eflornitina/farmacología , Eflornitina/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Femenino
7.
Regen Ther ; 27: 83-91, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38525239

RESUMEN

Introduction: Recent advances in induced pluripotent stem (iPS) technology and regenerative medicine require effective cryopreservation of iPSC-derived differentiated cells and three-dimensional cell aggregates (eg. Spheroids and organoids). Moreover, innovative freezing technologies for keeping food fresh over the long-term rapidly developed in the food industry. Therefore, we examined whether one of such freezing technologies, called "Dynamic Effect Powerful Antioxidation Keeping (DEPAK)," could be effective for the cryopreservation of biological materials. Methods: We evaluated the efficiency of cryopreservation using DEPAK and Proton freezers, both of which are used in the food industry, compared with conventional slow-freezing methods using a programmable freezer and a cell-freezing vessel. As they are highly susceptible cells to freeze-thaw damage, we selected two suspension cell lines (KHYG-1 derived from human natural killer cell leukemia and THP-1 derived from human acute monocyte leukemia) and two adherent cell lines (OVMANA derived from human ovarian tumors and HuH-7 derived from human hepatocarcinoma). We used two human iPS cell lines, 201B7-Ff and 1231A3, which were either undifferentiated or differentiated into neurospheres. After freezing using the above methods, the frozen cells and neurospheres were immediately transferred to liquid nitrogen. After thawing, we assessed the cryopreservation efficiency of cell viability, proliferation, neurosphere formation, and neurite outgrowth after thawing. Results: Among the four cryopreservation methods, DEPAK freezing resulted in the highest cell proliferation in suspension and adherent cell lines. Similar results were obtained for the cryopreservation of undifferentiated human iPS cells. In addition, we demonstrated that the DEPAK freezing method sustained the neurosphere formation capacity of differentiated iPS cells to the same extent as unfrozen controls. In addition, we observed that DEPAK-frozen neurospheres exhibited higher viability after thawing and underwent neural differentiation more efficiently than slow-freezing methods. Conclusions: Our results suggest that diversifying food-freezing technologies can overcome the difficulties associated with the cryopreservation of various biological materials, including three-dimensional cell aggregates.

8.
Microbiol Spectr ; 12(3): e0323823, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38319106

RESUMEN

Japanese encephalitis virus (JEV) is one of the major neurotropic viral infections that is known to dysregulate the homeostasis of neural stem/progenitor cells (NSPCs) and depletes the stem cell pool. NSPCs are multipotent stem cell population of the central nervous system (CNS) which are known to play an important role in the repair of the CNS during insults/injury caused by several factors such as ischemia, neurological disorders, CNS infections, and so on. Viruses have evolved to utilize host factors for their own benefit and during JEV infection, host factors, including the non-coding RNAs such as miRNAs, are reported to be affected, thereby cellular processes regulated by the miRNAs exhibit perturbed functionality. Previous studies from our laboratory have demonstrated the role of JEV infection in dysregulating the function of neural stem cells (NSCs) by altering the cell fate and depleting the stem cell pool leading to a decline in stem cell function in CNS repair mechanism post-infection. JEV-induced alteration in miRNA expression in the NSCs is one of the major interest to us. In prior studies, we have observed an altered expression pattern of certain miRNAs following JEV infection. In this study, we have validated the role of JEV infection in NSCs in altering the expression of miR-9-5p, which is a known regulator of neurogenesis in NSCs. Furthermore, we have validated the interaction of this miRNA with its target, Onecut2 (OC2), in primary NSCs utilizing miRNA mimic and inhibitor transfection experiments. Our findings indicate a possible role of JEV mediated dysregulated interaction between miR-9-5p and its putative target OC2 in NSPCs. IMPORTANCE: MicroRNAs have emerged as key disease pathogenic markers and potential therapeutic targets. In this study, we solidify this concept by studying a key miRNA, miR-9-5p, in Japanese encephalitis virus infection of neural stem/progenitor cells. miRNA target Onecut2 has a possible role in stem cell pool biology. Here, we show a possible mechanistic axis worth investing in neurotropic viral biology.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , MicroARNs , Células-Madre Neurales , Humanos , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Encefalitis Japonesa/genética , Encefalitis Japonesa/patología , Diferenciación Celular
9.
Mol Neurobiol ; 61(8): 5851-5867, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38240991

RESUMEN

The pleomorphic adenoma gene 1 (Plag1) is a transcription factor involved in the regulation of growth and cellular proliferation. Here, we report the spatial distribution and functional implications of PLAG1 expression in the adult mouse brain. We identified Plag1 promoter-dependent ß-galactosidase expression in various brain structures, including the hippocampus, cortex, choroid plexus, subcommisural organ, ependymal cells lining the third ventricle, medial and lateral habenulae and amygdala. We noted striking spatial-restriction of PLAG1 within the cornu ammonis (CA1) region of the hippocampus and layer-specific cortical expression, with abundant expression noted in all layers except layer 5. Furthermore, our study delved into the role of PLAG1 in neurodevelopment, focusing on its impact on neural stem/progenitor cell proliferation. Loss of Plag1 resulted in reduced proliferation and decreased production of neocortical progenitors in vivo, although ex vivo neurosphere experiments revealed no cell-intrinsic defects in the proliferative or neurogenic capacity of Plag1-deficient neural progenitors. Lastly, we explored potential target genes of PLAG1 in the cortex, identifying that Neurogenin 2 (Ngn2) was significantly downregulated in Plag1-deficient mice. In summary, our study provides novel insights into the spatial distribution of PLAG1 expression in the adult mouse brain and its potential role in neurodevelopment. These findings expand our understanding of the functional significance of PLAG1 within the brain, with potential implications for neurodevelopmental disorders and therapeutic interventions.


Asunto(s)
Encéfalo , Proliferación Celular , Proteínas de Unión al ADN , Células-Madre Neurales , Neurogénesis , Animales , Neurogénesis/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Células-Madre Neurales/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ratones Endogámicos C57BL
10.
J Neurosci Methods ; 404: 110060, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38244848

RESUMEN

BACKGROUND: Isolation of adult Neural Stem/Progenitor Cells (NSPCs) from their neurogenic niches, is a prerequisite for studies involving culturing of NSPCs as neurospheres or attached monolayers in vitro. The currently available protocols involve the use of multiple animals and expensive reagents to establish the NSPCs culture. NEW METHOD: This unit describes a method to isolate and culture NSPCs from the two neurogenic niches in the mouse brain, the Subventricular Zone (SVZ) and Dentate gyrus (DG)/subgranular zone (SGZ), in an easy and cost-effective manner. RESULTS: NSPCs from SVZ and DG regions of adult mouse brains were isolated and cultured up to passage 15 without losing their stem/progenitor characteristics. These NSPCs could be differentiated into neurons, astrocytes, and oligodendrocytes, revealing its trilineage potential. COMPARISON WITH EXISTING METHODS: This protocol eliminates the need for multiple animals as well as the use of many expensive reagents mentioned in previous protocols, adding to the cost-effectiveness of experiments. In addition, we have effectively reduced the number of steps involved in isolation and propagation, thereby minimizing the chances of contamination. CONCLUSION: Our simplified protocol for the isolation and culturing of adult NSPCs from the SVZ and DG demonstrates a cost-effective and efficient alternative to existing methods, reducing the need for sacrificing many animals and the usage of expensive reagents. This method permits the long-term maintenance of NSPCs' stem/progenitor characteristics and their effective differentiation into the major types of cells in the brain, making it a valuable resource for researchers in the field. BASIC PROTOCOL: Isolation and Culturing of Neural Stem/Progenitor cells from the Sub ventricular Zone and the Dentate Gyrus of the adult mouse brain. SUPPORT PROTOCOL 1: Cryopreservation, and revival of frozen NSPCs. SUPPORT PROTOCOL 2: Preparation of adherent monolayer cultures of neural stem/progenitor cells for the differentiation into multiple lineages SUPPORT PROTOCOL 3: Differentiation of NSPCs to neuronal and glial lineages SUPPORT PROTOCOL 4: Characterization of differentiated cells by immunocytochemistry.


Asunto(s)
Ventrículos Laterales , Células-Madre Neurales , Ratones , Animales , Análisis Costo-Beneficio , Diferenciación Celular , Neurogénesis , Encéfalo , Giro Dentado
11.
Basic & Clinical Medicine ; (12): 16-22, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1018566

RESUMEN

Objective To cultivate glioblastoma U87 stem-like cells(SLCs)and to detect the level of stemness bio-markers,mitochondrial respiratory capacity and the capacity of in vivo tumorigenesis.Methods B-27,growth factors EGF and bFGF was added into DMEM/F-12 culture in serum-free stem cell culture medium for U87 SLCs.Suspended culture of U87 SLCs was suspended using the neuro-sphere formation assay,while adherent culture of U87 SLCs was achieved by coating Matrigel matrix on the culture surface.The mRNA and protein level of stemness biomarkers in culture were detected using real-time quantitative PCR and Western blot.The proportion of CD133+cells in culture was detected by flow cytometry.The changes of cell oxygen consumption rate were detected by Seahorse cell metabo-lism analysis.Cell tumorigenesis ability was verified by subcutaneous tumor transplantation in animals.Results U87 SLCs in stem cell culture medium would grow into typical sphere morphology within one week,and the spheres would continue to grow as the culture process prolongs.At the appropriate concentration of adhesive,U87 SLCs adhered to and grow well in stem cell culture medium.The mRNA transcription of stemness biomarkers such as CD133,nes-tin,OLIG2,CD44,CD15,and integrin α6(ITGA6)was significantly increased as found in both culture methods,and the protein levels of CD133 and nestin were also increased under both methods(P<0.05).U87 SLCs showed higher mitochondrial reserve respiratory capacity(P<0.05).U87 SLCs could form larger subcutaneous tumors with fewer inoculated cells(P<0.05),and grew faster in vivo with stronger tumorigenic ability.Conclusions U87 SLCs have typical stemness characteristics and may function as tumor cell model with higher stemness properties.

12.
Methods Mol Biol ; 2746: 109-120, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38070084

RESUMEN

Neural stem-progenitor cells (NSPCs) are multipotent, self-renewing cells that generate radial glial cells (RGC). RGCs then give rise to neurons and glia during neural development. Here, we describe the process of NSPC isolation and culturing to form clonal aggregates termed neurospheres. There are multiple assays outlined in this chapter that allow us to quantify differences in proliferation, self-renewal potential, and differentiation of these cells.


Asunto(s)
Células-Madre Neurales , Neuronas , Neuroglía , Diferenciación Celular/fisiología , Células Madre Multipotentes , Células Cultivadas , Proliferación Celular
13.
Cells ; 12(21)2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37947625

RESUMEN

Glioblastoma multiforme (GBM) is the most deadly brain tumor, effective treatment options for which still remain elusive. The current treatment procedure of maximal resection followed by chemotherapy has proved to be grossly insufficient to prevent disease progression and death. Despite best efforts, the maximum survival post-diagnosis is a mere 1.5 years. Therefore, there is a huge unmet clinical need to find effective therapeutic procedures to prevent the pathogenesis and relapse of GBM. Small-molecule inhibitors of signaling pathways are an attractive option to prevent various types of tumors. However, no effective small-molecule inhibitors have been successful against GBM in clinical trials. Various signaling pathways are altered and an array of signaling molecules, transcription factors (TFs), and epigenetic modifying factors have been implicated in the pathogenesis of GBM. JAK-STAT pathway alteration is an important contributor to GBM pathogenesis and relapse. Many small-molecule inhibitors of JAKs, or STAT TFs, especially JAK2 and STAT3, have been assessed for their anti-tumor activity in GBM. However, no definitive success so far has been achieved. Herein, by using two small-molecule inhibitors of JAK3, we show that they are quite effective in inhibiting GBM cell proliferation and neurosphere formation, downregulating their stemness character, and inducing differentiation into neuronal origin cells. The effect of a single treatment with the drugs, both in a serum-containing differentiation medium and in a proliferation medium containing EGF and FGF, was really strong in limiting GBM cell growth, suggesting a potential therapeutic application for these JAK inhibitors in GBM therapy.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Quinasas Janus , Factores de Transcripción STAT , Transducción de Señal , Recurrencia Local de Neoplasia , Recurrencia , Janus Quinasa 3
14.
Cells ; 12(19)2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37830597

RESUMEN

Glioblastoma (GBM), the most common primary malignant brain tumor, is a highly lethal form of cancer with a very limited set of treatment options. High heterogeneity in the tumor cell population and the invasive nature of these cells decrease the likely efficacy of traditional cancer treatments, thus requiring research into novel treatment options. The use of oncolytic viruses as potential therapeutics has been researched for some time. Zika virus (ZIKV) has demonstrated oncotropism and oncolytic effects on GBM stem cells (GSCs). To address the need for safe and effective GBM treatments, we designed an attenuated ZIKV strain (ZOL-1) that does not cause paralytic or neurological diseases in mouse models compared with unmodified ZIKV. Importantly, we found that patient-derived GBM tumors exhibited susceptibility (responders) and non-susceptibility (non-responders) to ZOL-1-mediated tumor cell killing, as evidenced by differential apoptotic cell death and cell viability upon ZOL-1 treatment. The oncolytic effect observed in responder cells was seen both in vitro in neurosphere models and in vivo upon xenograft. Finally, we observed that the use of ZOL-1 as combination therapy with multiple PI3K-AKT inhibitors in non-responder GBM resulted in enhanced chemotherapeutic efficacy. Altogether, this study establishes ZOL-1 as a safe and effective treatment against GBM and provides a foundation to conduct further studies evaluating its potential as an effective adjuvant with other chemotherapies and kinase inhibitors.


Asunto(s)
Glioblastoma , Viroterapia Oncolítica , Infección por el Virus Zika , Virus Zika , Animales , Ratones , Humanos , Glioblastoma/metabolismo , Virus Zika/fisiología , Viroterapia Oncolítica/métodos , Fosfatidilinositol 3-Quinasas
15.
Stem Cell Res Ther ; 14(1): 290, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798638

RESUMEN

BACKGROUND: Neurosphere medium (NSM) and self-renewal medium (SRM) were widely used to isolate enteric neural stem cells (ENSCs) in the form of neurospheres. ENSCs or their neurosphere forms were neurogenic and gliogenic, but the compelling evidence for their capacity of assembling enteric neural networks remained lacking, raising the question of their aptitude for rebuilding the enteric nervous system (ENS) in ENSC therapeutics. It prompted us to explore an effective culture protocol or strategy for assembling ENS networks, which might also be employed as an in vitro model to simplify the biological complexity of ENS embedded in gut walls. METHODS: NSM and SRM were examined for their capacity to generate neurospheres in mass culture of dispersed murine fetal enterocytes at serially diluted doses and assemble enteric neural networks in two- and three-dimensional cell culture systems and ex vivo on gut explants. Time-lapse microphotography was employed to capture cell activities of assembled neural networks. Neurosphere transplantation was performed via rectal submucosal injection. RESULTS: In mass culture of dispersed enterocytes, NSM generated discrete units of neurospheres, whereas SRM promoted neural network assembly with neurospheres akin to enteric ganglia. Both were highly affected by seeding cell doses. SRM had similar ENSC mitosis-driving capacity to NSM, but was superior in driving ENSC differentiation in company with heightened ENSC apoptosis. Enteric neurospheres were motile, capable of merging together. It argued against their clonal entities. When nurtured in SRM, enteric neurospheres proved competent to assemble neural networks on two-dimensional coverslips, in three-dimensional hydrogels and on gut explants. In the course of neural network assembly from enteric neurospheres, neurite extension was preceded by migratory expansion of gliocytes. Assembled neural networks contained motile ganglia and gliocytes that constantly underwent shapeshift. Neurospheres transplanted into rectal submucosa might reconstitute myenteric plexuses of recipients' rectum. CONCLUSION: Enteric neurospheres mass-produced in NSM might assemble neural networks in SRM-immersed two- or three-dimensional environments and on gut explants, and reconstitute myenteric plexuses of the colon after rectal submucosal transplantation. Our results also shed first light on the dynamic entity of ENS and open the experimental avenues to explore cellular activities of ENS and facilitate ENS demystification.


Asunto(s)
Sistema Nervioso Entérico , Células-Madre Neurales , Ratones , Animales , Intestino Delgado , Neurogénesis , Diferenciación Celular , Ganglios
16.
Bioengineering (Basel) ; 10(7)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37508868

RESUMEN

Despite in vivo malignancy, ependymoma lacks cell culture models, thus limiting therapy development. Here, we used a tunable three-dimensional (3D) culture system to approximate the ependymoma microenvironment for recapitulating a patient's tumor in vitro. Our data showed that the inclusion of VEGF in serum-free, mixed neural and endothelial cell culture media supported the in vitro growth of all four ependymoma patient samples. The growth was driven by Nestin and Ki67 double-positive cells in a putative cancer stem cell niche, which was manifested as rosette-looking clusters in 2D and spheroids in 3D. The effects of extracellular matrix (ECM) such as collagen or Matrigel superseded that of the media conditions, with Matrigel resulting in the greater enrichment of Nestin-positive cells. When mixed with endothelial cells, the 3D co-culture models developed capillary networks resembling the in vivo ependymoma vasculature. The transcriptomic analysis of two patient cases demonstrated the separation of in vitro cultures by individual patients, with one patient's culture samples closely clustered with the primary tumor tissue. While VEGF was found to be necessary for preserving the transcriptomic features of in vitro cultures, the presence of endothelial cells shifted the gene's expression patterns, especially genes associated with ECM remodeling. The homeobox genes were mostly affected in the 3D in vitro models compared to the primary tumor tissue and between different 3D formats. These findings provide a basis for understanding the ependymoma microenvironment and enabling the further development of patient-derived in vitro ependymoma models for personalized medicine.

17.
Front Microbiol ; 14: 1152480, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250062

RESUMEN

Chikungunya virus (CHIKV) is an arthropod-borne virus recently associated with large outbreaks in many parts of the world. Infection is typically manifested as a febrile and self-limited illness, characterized by joint pain and myalgia, albeit severe neurological manifestations are also reported. Although CHIKV is not recognized as a truly neurotropic virus, neurons, astrocytes, and oligodendrocytes are susceptible to infection in vitro. Here we employed a model of 3D cell culture to obtain neurospheres from ATRA/BNDF differentiated human neuroblastoma cells. We demonstrate that CHIKV is able to establish a productive infection, resulting in ultrastructural changes in cell morphology and impaired neuronal differentiation. Ultrastructural analysis of neurospheres infected with CHIKV during neuronal differentiation revealed diminished neuron dendrite formation, accumulation of viral particles associated with the plasma membrane, numerous cell vacuoles, and swollen mitochondria. Apoptotic cells were significantly increased at 72 h post-infection. Compared to Zika virus, a well-characterized neurotropic arbovirus, CHIKV infection resulted in a more discrete, albeit detectable upregulation of IL-6 levels. Finally, we found that CHIKV infection resulted in an altered profile expression, mainly downregulation, of a group of transcription factors named Hox genes. Altogether our findings highlight important features of CHIKV in the CNS, as well as the feasibility of neurospheres as robust experimental models that can support further studies for novel pharmacological interventions.

18.
Life (Basel) ; 13(5)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37240833

RESUMEN

The medial geniculate body (MGB) is a nucleus of the diencephalon representing a relevant segment of the auditory pathway and is part of the metathalamus. It receives afferent information via the inferior brachium of the inferior colliculus and transmits efferent fibers via acoustic radiations to the auditory cortex. Neural stem cells (NSCs) have been detected in certain areas along the auditory pathway. They are of great importance as the induction of an adult stem cell niche might open a regenerative approach to a causal treatment of hearing disorders. Up to now, the existence of NSCs in the MGB has not been determined. Therefore, this study investigated whether the MGB has a neural stem cell potential. For this purpose, cells were extracted from the MGB of PND 8 Sprague-Dawley rats and cultured in a free-floating cell culture assay, which showed mitotic activity and positive staining for stem cell and progenitor markers. In differentiation assays, the markers ß-III-tubulin, GFAP, and MBP demonstrated the capacity of single cells to differentiate into neuronal and glial cells. In conclusion, cells from the MGB exhibited the cardinal features of NSCs: self-renewal, the formation of progenitor cells, and differentiation into all neuronal lineage cells. These findings may contribute to a better understanding of the development of the auditory pathway.

19.
Stem Cell Reports ; 18(4): 869-883, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36963388

RESUMEN

When damaged, restoring the function of the hypothalamus is currently impossible. It is unclear whether neural stem cells exist in the hypothalamus. Studies have reported that adult rodent tanycytes around the third ventricle function as hypothalamic neural stem cell-like cells. However, it is currently impossible to collect periventricular cells from humans. We attempted to generate hypothalamic neural stem cell-like cells from human embryonic stem cells (ESCs). We focused on retina and anterior neural fold homeobox (RAX) because its expression is gradually restricted to tanycytes during the late embryonic stage. We differentiated RAX::VENUS knockin human ESCs (hESCs) into hypothalamic organoids and sorted RAX+ cells from mature organoids. The isolated RAX+ cells formed neurospheres and exhibited self-renewal and multipotency. Neurogenesis was observed when neurospheres were transplanted into the mouse hypothalamus. We isolated RAX+ hypothalamic neural stem cell-like cells from wild-type human ES organoids. This is the first study to differentiate human hypothalamic neural stem cell-like cells from pluripotent stem cells.


Asunto(s)
Células-Madre Neurales , Células Madre Pluripotentes , Ratones , Animales , Humanos , Diferenciación Celular/fisiología , Neurogénesis/fisiología , Hipotálamo/metabolismo
20.
Development ; 150(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36633189

RESUMEN

Adult neurogenesis is supported by multipotent neural stem cells (NSCs) with unique properties and growth requirements. Adult NSCs constitute a reversibly quiescent cell population that can be activated by extracellular signals from the microenvironment in which they reside in vivo. Although genomic imprinting plays a role in adult neurogenesis through dose regulation of some relevant signals, the roles of many imprinted genes in the process remain elusive. Insulin-like growth factor 2 (IGF2) is encoded by an imprinted gene that contributes to NSC maintenance in the adult subventricular zone through a biallelic expression in only the vascular compartment. We show here that IGF2 additionally promotes terminal differentiation of NSCs into astrocytes, neurons and oligodendrocytes by inducing the expression of the maternally expressed gene cyclin-dependent kinase inhibitor 1c (Cdkn1c), encoding the cell cycle inhibitor p57. Using intraventricular infusion of recombinant IGF2 in a conditional mutant strain with Cdkn1c-deficient NSCs, we confirm that p57 partially mediates the differentiation effects of IGF2 in NSCs and that this occurs independently of its role in cell-cycle progression, balancing the relationship between astrogliogenesis, neurogenesis and oligodendrogenesis.


Asunto(s)
Inhibidor p57 de las Quinasas Dependientes de la Ciclina , Impresión Genómica , Factor II del Crecimiento Similar a la Insulina , Células-Madre Neurales , Neurogénesis , Neuronas , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Células-Madre Neurales/citología , Neuronas/citología , Neurogénesis/genética , Factor II del Crecimiento Similar a la Insulina/genética , Animales , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA