Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioimpacts ; 14(5): 30153, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296798

RESUMEN

Introduction: Exosomes, a subset of extracellular vesicles (EVs), are crucial for intercellular communication in various contexts. Despite their small size, they carry diverse cargo, including RNA, proteins, and lipids. Internalization by recipient cells raises concerns about potential disruptions to cellular functions. Notably, the ability of exosomes to traverse the blood-brain barrier (BBB) has significant implications. Methods: To conduct a thorough investigation into the existing academic literature on exosomes within the framework of neuron-glia communication, a comprehensive search strategy was implemented across the PubMed, Google Scholar, and Science Direct databases. Multiple iterations of the keywords "exosome," "neuron-glia communication," and "neurological disorders" were employed to systematically identify relevant publications. Furthermore, an exploration of the Clinicaltrials.gov database was undertaken to identify clinical trials related to cellular signaling, utilizing analogous terminology. Results: Although the immediate practical applications of exosomes are somewhat limited, their potential as carriers of pathogenic attributes offers promising opportunities for the development of precisely targeted therapeutic strategies for neurological disorders. This review presents a comprehensive overview of contemporary insights into the pivotal roles played by exosomes as agents mediating communication between neurons and glial cells within the central nervous system (CNS). Conclusion: By delving into the intricate dynamics of exosomal communication in the CNS, this review contributes to a deeper understanding of the roles of exosomes in both physiological and pathological processes, thereby paving the way for potential therapeutic advancements in the field of neurological disorders.

2.
Glia ; 71(8): 1791-1803, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36866453

RESUMEN

Zika virus (ZIKV) is a strongly neurotropic flavivirus whose infection has been associated with microcephaly in neonates. However, clinical and experimental evidence indicate that ZIKV also affects the adult nervous system. In this regard, in vitro and in vivo studies have shown the ability of ZIKV to infect glial cells. In the central nervous system (CNS), glial cells are represented by astrocytes, microglia, and oligodendrocytes. In contrast, the peripheral nervous system (PNS) constitutes a highly heterogeneous group of cells (Schwann cells, satellite glial cells, and enteric glial cells) spread through the body. These cells are critical in both physiological and pathological conditions; as such, ZIKV-induced glial dysfunctions can be associated with the development and progression of neurological complications, including those related to the adult and aging brain. This review will address the effects of ZIKV infection on CNS and PNS glial cells, focusing on cellular and molecular mechanisms, including changes in the inflammatory response, oxidative stress, mitochondrial dysfunction, Ca2+ and glutamate homeostasis, neural metabolism, and neuron-glia communication. Of note, preventive and therapeutic strategies that focus on glial cells may emerge to delay and/or prevent the development of ZIKV-induced neurodegeneration and its consequences.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Virus Zika/fisiología , Infección por el Virus Zika/complicaciones , Infección por el Virus Zika/tratamiento farmacológico , Infección por el Virus Zika/patología , Neuroglía/metabolismo , Sistema Nervioso Central/metabolismo , Encéfalo/metabolismo
3.
Front Mol Neurosci ; 16: 1117065, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36818656

RESUMEN

Satellite glial cells (SGCs) play an important role in regulating the function of trigeminal ganglion (TG) neurons. Multiple mediators are involved in the bidirectional communication between SGCs and neurons in different physiological and pathological states. However, molecular insights into the transcript characteristics of SGCs are limited. Moreover, little is known about the heterogeneity of SGCs in TG, and a more in-depth understanding of the interactions between SGCs and neuron subtypes is needed. Here we show the single-cell RNA sequencing (scRNA-seq) profile of SGCs in TG under physiological conditions. Our results demonstrate TG includes nine types of cell clusters, such as neurons, SGCs, myeloid Schwann cells (mSCs), non-myeloid Schwann cells (nmSCs), immune cells, etc., and the corresponding markers are also presented. We reveal the signature gene expression of SGCs, mSCs and nmSCs in the TG, and analyze the ligand-receptor pairs between neuron subtypes and SGCs in the TG. In the heterogeneity analysis of SGCs, four SGCs subtypes are identified, including subtypes enriched for genes associated with extracellular matrix organization, immediate early genes, interferon beta, and cell adhesion molecules, respectively. Our data suggest the molecular characteristics, heterogeneity of SGCs, and bidirectional interactions between SGCs and neurons, providing a valuable resource for studying SGCs in the TG.

4.
Front Cell Neurosci ; 16: 1041853, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36451655

RESUMEN

Myelination is critical for fast saltatory conduction of action potentials. Recent studies have revealed that myelin is not a static structure as previously considered but continues to be made and remodeled throughout adulthood in tune with the network requirement. Synthesis of new myelin requires turning on the switch in oligodendrocytes (OL) to initiate the myelination program that includes synthesis and transport of macromolecules needed for myelin production as well as the metabolic and other cellular functions needed to support this process. A significant amount of information is available regarding the individual intrinsic and extrinsic signals that promote OL commitment, expansion, terminal differentiation, and myelination. However, it is less clear how these signals are made available to OL lineage cells when needed, and how multiple signals are integrated to generate the correct amount of myelin that is needed in a given neural network state. Here we review the pleiotropic effects of some of the extracellular signals that affect myelination and discuss the cellular processes used by the source cells that contribute to the variation in the temporal and spatial availability of the signals, and how the recipient OL lineage cells might integrate the multiple signals presented to them in a manner dialed to the strength of the input.

5.
J Neurosci ; 42(46): 8694-8708, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36319118

RESUMEN

Enteric glia are a unique population of peripheral neuroglia that regulate homeostasis in the enteric nervous system (ENS) and intestinal functions. Despite existing in functionally diverse regions of the gastrointestinal tract, enteric glia have been approached scientifically as a homogeneous group of cells. This assumption is at odds with the functional specializations of gastrointestinal organs and recent data suggesting glial heterogeneity in the brain and ENS. Here, we used calcium imaging in transgenic mice of both sexes expressing genetically encoded calcium sensors in enteric glia and conducted contractility studies to investigate functional diversity among myenteric glia in two functionally distinct intestinal organs: the duodenum and the colon. Our data show that myenteric glia exhibit regionally distinct responses to neuromodulators that require intercellular communication with neurons to differing extents in the duodenum and colon. Glia regulate intestinal contractility in a region-specific and pathway-specific manner, which suggests regionally diverse engagement of enteric glia in local motor patterns through discrete signaling pathways. Further, functional response profiles delineate four unique subpopulations among myenteric glia that are differentially distributed between the colon and duodenum. Our findings support the conclusion that myenteric glia exhibit both intraregional and interregional heterogeneity that contributes to region-specific mechanisms that regulate digestive functions. Glial heterogeneity adds an unexpected layer of complexity in peripheral neurocircuits, and understanding the specific functions of specialized glial subtypes will provide new insight into ENS physiology and pathophysiology.SIGNIFICANCE STATEMENT Enteric glia modulate gastrointestinal functions through intercellular communication with enteric neurons. Whether heterogeneity exists among neuron-glia interactions in the digestive tract is not understood. Here, we show that myenteric glia display regional heterogeneity in their responses to neuromodulators in the duodenum and the colon, which are functionally distinct organs. Glial-mediated control of intestinal motility is region and pathway specific. Four myenteric glial subtypes are present within a given gut region that are differently distributed between gut regions. These data provide functional and regional insights into enteric circuit specificity in the adult enteric nervous system.


Asunto(s)
Calcio , Sistema Nervioso Entérico , Masculino , Femenino , Ratones , Animales , Calcio/metabolismo , Neuroglía/metabolismo , Sistema Nervioso Entérico/metabolismo , Colon/fisiología , Duodeno/metabolismo , Neurotransmisores/metabolismo , Ratones Transgénicos , Plexo Mientérico/metabolismo
6.
Neural Regen Res ; 17(9): 1898-1906, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35142665

RESUMEN

Inflammatory responses, including glial cell activation and peripheral immune cell infiltration, are involved in the pathogenesis of Parkinson's disease (PD). These inflammatory responses appear to be closely related to the release of extracellular vesicles, such as exosomes. However, the relationships among different forms of glial cell activation, synuclein dysregulation, mitochondrial dysfunction, and exosomes are complicated. This review discusses the multiple roles played by exosomes in PD-associated inflammation and concludes that exosomes can transport toxic α-synuclein oligomers to immature neurons and into the extracellular environment, inducing the oligomerization of α-synuclein in normal neurons. Misfolded α-synuclein causes microglia and astrocytes to activate and secrete exosomes. Glial cell-derived exosomes participate in communications between glial cells and neurons, triggering anti-stress and anti-inflammatory responses, in addition to axon growth. The production and release of mitochondrial vesicles and exosomes establish a new mechanism for linking mitochondrial dysfunction to systemic inflammation associated with PD. Given the relevance of exosomes as mediators of neuron-glia communication in neuroinflammation and neuropathogenesis, new targeted treatment strategies are currently being developed that use these types of extracellular vesicles as drug carriers. Exosome-mediated inflammation may be a promising target for intervention in PD patients.

7.
ASN Neuro ; 13: 17590914211044359, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34618621

RESUMEN

Glial cells perform important supporting functions for neurons through a dynamic crosstalk. Neuron-glia communication is the major phenomenon to sustain homeostatic functioning of the brain. Several interactive pathways between neurons and astrocytes are critical for the optimal functioning of neurons, and one such pathway is the ephrinA3-ephA4 signaling. The role of this pathway is essential in maintaining the levels of extracellular glutamate by regulating the excitatory amino acid transporters, EAAT1 and EAAT2 on astrocytes. Human immunodeficiency virus-1 (HIV-1) and its proteins cause glutamate excitotoxicity due to excess glutamate levels at sites of high synaptic activity. This study unravels the effects of HIV-1 transactivator of transcription (Tat) from clade B on ephrinA3 and its role in regulating glutamate levels in astrocyte-neuron co-cultures of human origin. It was observed that the expression of ephrinA3 increases in the presence of HIV-1 Tat B, while the expression of EAAT1 and EAAT2 was attenuated. This led to reduced glutamate uptake and therefore high neuronal death due to glutamate excitotoxicity. Knockdown of ephrinA3 using small interfering RNA, in the presence of HIV-1 Tat B reversed the neurotoxic effects of HIV-1 Tat B via increased expression of glutamate transporters that reduced the levels of extracellular glutamate. The in vitro findings were validated in autopsy brain sections from acquired immunodeficiency syndrome patients and we found ephrinA3 to be upregulated in the case of HIV-1-infected patients. This study offers valuable insights into astrocyte-mediated neuronal damage in HIV-1 neuropathogenesis.


Asunto(s)
Efrina-A3 , VIH-1 , Astrocitos/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico , VIH-1/metabolismo , Humanos , Neuronas/metabolismo , Transducción de Señal
8.
Front Mol Neurosci ; 14: 796070, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35058748

RESUMEN

Among most prevalent deficits in individuals with Fragile X syndrome (FXS) is hypersensitivity to sensory stimuli and somatosensory alterations. Whether dysfunction in peripheral sensory system contributes to these deficits remains poorly understood. Satellite glial cells (SGCs), which envelop sensory neuron soma, play critical roles in regulating neuronal function and excitability. The potential contributions of SGCs to sensory deficits in FXS remain unexplored. Here we found major structural defects in sensory neuron-SGC association in the dorsal root ganglia (DRG), manifested by aberrant covering of the neuron and gaps between SGCs and the neuron along their contact surface. Single-cell RNAseq analyses demonstrated transcriptional changes in both neurons and SGCs, indicative of defects in neuronal maturation and altered SGC vesicular secretion. We validated these changes using fluorescence microscopy, qPCR, and high-resolution transmission electron microscopy (TEM) in combination with computational analyses using deep learning networks. These results revealed a disrupted neuron-glia association at the structural and functional levels. Given the well-established role for SGCs in regulating sensory neuron function, altered neuron-glia association may contribute to sensory deficits in FXS.

9.
Neuroscience ; 439: 230-240, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31376422

RESUMEN

In the CNS, chemokines and chemokine receptors are involved in pleiotropic physiological and pathological activities. Several evidences demonstrated that chemokine signaling in the CNS plays key homeostatic roles and, being expressed on neurons, glia and endothelial cells, chemokines mediate the bidirectional cross-talk among parenchymal cells. An efficient communication between neurons and glia is crucial to establish and maintain a healthy brain environment which ensures normal functionality. Glial cells behave as active sensors of environmental changes induced by neuronal activity or detrimental insults, supporting and exerting neuroprotective activities. In this review we summarize the evidence that chemokines (CXCL12, CX3CL1, CXCL16 and CCL2) modulate neuroprotective processes upon different noxious stimuli and participate to orchestrate neurons-microglia-astrocytes action to preserve and limit brain damage. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.


Asunto(s)
Astrocitos , Microglía , Encéfalo , Quimiocinas , Células Endoteliales , Humanos , Neuronas
10.
Mol Neurobiol ; 55(5): 4207-4224, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28612258

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of unknown cause. Absence of specific targets and biomarkers compromise the development of new therapeutic strategies and of innovative tools to stratify patients and assess their responses to treatment. Here, we investigate changes in neuroprotective-neuroinflammatory actions in the spinal cord of SOD1 G93A mice, at presymptomatic and symptomatic stages to identify stage-specific biomarkers and potential targets. Results showed that in the presymptomatic stage, there are alterations in both astrocytes and microglia, which comprise decreased expression of GFAP and S100B and upregulation of GLT-1, as well as reduced expression of CD11b, M2-phenotype markers, and a set of inflammatory mediators. Reduced levels of Connexin-43, Pannexin-1, CCL21, and CX3CL1 further indicate the existence of a compromised intercellular communication. In contrast, in the symptomatic stage, increased markers of inflammation became evident, such as NF-κB/Nlrp3-inflammasome, Iba1, pro-inflammatory cytokines, and M1-polarizion markers, together with a decreased expression of M2-phenotypic markers. We also observed upregulation of the CX3CL1-CX3CR1 axis, Connexin-43, Pannexin-1, and of microRNAs (miR)-124, miR-125b, miR-146a and miR-21. Reduced motor neuron number and presence of reactive astrocytes with decreased GFAP, GLT-1, and GLAST further characterized this inflammatory stage. Interestingly, upregulation of miR-155 and downregulation of MFG-E8 appear as consistent biomarkers of both presymptomatic and symptomatic stages. We hypothesize that downregulated cellular interplay at the early stages may represent neuroprotective mechanisms against inflammation, SOD1 aggregation, and ALS onset. The present study identified a set of inflamma-miRNAs, NLRP3-inflammasome, HMGB1, CX3CL1-CX3CR1, Connexin-43, and Pannexin-1 as emerging candidates and promising pharmacological targets that may represent potential neuroprotective strategies in ALS therapy.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Regulación hacia Abajo , MicroARNs/metabolismo , Neuroglía/patología , Animales , Astrocitos/metabolismo , Biomarcadores/metabolismo , Comunicación Celular , Recuento de Células , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Proteína HMGB1/metabolismo , Homeostasis , Humanos , Inflamasomas/metabolismo , Inflamación/patología , Interleucina-6/metabolismo , Ratones Transgénicos , MicroARNs/genética , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neuroglía/metabolismo , Fenotipo , Transducción de Señal , Superóxido Dismutasa-1/genética , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba/genética
11.
Front Cell Neurosci ; 11: 129, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28522962

RESUMEN

In the brain of patients with multiple sclerosis, activated microglia/macrophages appear in active lesions and in normal appearing white matter. However, whether they play a beneficial or a detrimental role in the development of the pathology remains a controversial issue. The production of pro-inflammatory molecules by chronically activated microglial cells is suggested to contribute to the progression of neurodegenerative processes in neurological disease. In the healthy brain, neurons control glial activation through several inhibitory mechanisms, such as the CD200-CD200R1 interaction. Therefore, we studied whether alterations in the CD200-CD200R1 system might underlie the neuroinflammation in an experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. We determined the time course of CD200 and CD200R1 expression in the brain and spinal cord of an EAE mouse model from presymptomatic to late symptomatic stages. We also assessed the correlation with associated glial activation, inflammatory response and EAE severity. Alterations in CD200 and CD200R1 expression were mainly observed in spinal cord regions in the EAE model, mostly a decrease in CD200 and an increase in CD200R1 expression. A decrease in the expression of the mRNA encoding a full CD200 protein was detected before the onset of clinical signs, and remained thereafter. A decrease in CD200 protein expression was observed from the onset of clinical signs. By contrast, CD200R1 expression increased at EAE onset, when a glial reaction associated with the production of pro- and anti-inflammatory markers occurred, and continued to be elevated during the pathology. Moreover, the magnitude of the alterations correlated with severity of the EAE mainly in spinal cord. These results suggest that neuronal-microglial communication through CD200-CD200R1 interaction is compromised in EAE. The early decreases in CD200 expression in EAE suggest that this downregulation might also occur in the initial phases of multiple sclerosis, and that this early neuronal dysfunction might facilitate the development of neuroinflammation. The increased CD200R1 expression in the EAE model highlights the potential use of targeted agonist molecules as therapeutic tools to control neuroinflammation. In summary, the CD200-CD200R1 system is a potential therapeutic target in multiple sclerosis, and CD200R1 agonists are molecules that may be worth developing in this context.

13.
Philos Trans R Soc Lond B Biol Sci ; 370(1672)2015 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-26009760

RESUMEN

Papers in this issue concern extrasynaptic transmission, namely release of signalling molecules by exocytosis or diffusion from neuronal cell bodies, dendrites, axons and glia. Problems discussed concern the molecules, their secretion and importance for normal function and disease. Molecules secreted extrasynaptically include transmitters, peptides, hormones and nitric oxide. For extrasynaptic secretion, trains of action potentials are required, and the time course of release is slower than at synapses. Questions arise concerning the mechanism of extrasynaptic secretion: how does it differ from the release observed at synaptic terminals and gland cells? What kinds of vesicles take part? Is release accomplished through calcium entry, SNAP and SNARE proteins? A clear difference is in the role of molecules released synaptically and extrasynaptically. After extrasynaptic release, molecules reach distant as well as nearby cells, and thereby produce long-lasting changes over large volumes of brain. Such changes can affect circuits for motor performance and mood states. An example with clinical relevance is dyskinesia of patients treated with l-DOPA for Parkinson's disease. Extrasynaptically released transmitters also evoke responses in glial cells, which in turn release molecules that cause local vasodilatation and enhanced circulation in regions of the brain that are active.


Asunto(s)
Cuerpo Celular/metabolismo , Dendritas/metabolismo , Exocitosis/fisiología , Neuronas/metabolismo , Neurotransmisores/metabolismo , Neuronas/citología
14.
Philos Trans R Soc Lond B Biol Sci ; 370(1672)2015 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-26009775

RESUMEN

Serotonin, a modulator of multiple functions in the nervous system, is released predominantly extrasynaptically from neuronal cell bodies, axons and dendrites. This paper describes how serotonin is released from cell bodies of Retzius neurons in the central nervous system (CNS) of the leech, and how it affects neighbouring glia and neurons. The large Retzius neurons contain serotonin packed in electrodense vesicles. Electrical stimulation with 10 impulses at 1 Hz fails to evoke exocytosis from the cell body, but the same number of impulses at 20 Hz promotes exocytosis via a multistep process. Calcium entry into the neuron triggers calcium-induced calcium release, which activates the transport of vesicle clusters to the plasma membrane. Exocytosis occurs there for several minutes. Serotonin that has been released activates autoreceptors that induce an inositol trisphosphate-dependent calcium increase, which produces further exocytosis. This positive feedback loop subsides when the last vesicles in the cluster fuse and calcium returns to basal levels. Serotonin released from the cell body is taken up by glia and released elsewhere in the CNS. Synchronous bursts of neuronal electrical activity appear minutes later and continue for hours. In this way, a brief train of impulses is translated into a long-term modulation in the nervous system.


Asunto(s)
Cuerpo Celular/metabolismo , Sistema Nervioso Central/fisiología , Exocitosis/fisiología , Sanguijuelas/fisiología , Modelos Neurológicos , Neuronas/metabolismo , Serotonina/metabolismo , Animales , Transporte Biológico Activo/fisiología , Calcio/metabolismo , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Estimulación Eléctrica , Retroalimentación Fisiológica/fisiología , Vesículas Transportadoras/metabolismo
15.
Mol Cell Neurosci ; 67: 1-12, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25979201

RESUMEN

Perineuronal satellite cells have an intimate anatomical relationship with sensory neurons that suggests close functional collaboration and mutual support. We examined several facets of this relationship in adult sensory dorsal root ganglia (DRG). Collaboration included the support of process outgrowth by clustering of satellite cells, induction of distal branching behavior by soma signaling, the capacity of satellite cells to respond to distal axon injury of its neighboring neurons, and evidence of direct neuron-satellite cell exchange. In vitro, closely adherent coharvested satellite cells routinely clustered around new outgrowing processes and groups of satellite cells attracted neurite processes. Similar clustering was encountered in the pseudounipolar processes of intact sensory neurons within intact DRG in vivo. While short term exposure of distal growth cones of unselected adult sensory neurons to transient gradients of a PTEN inhibitor had negligible impacts on their behavior, exposure of the soma induced early and substantial growth of their distant neurites and branches, an example of local soma signaling. In turn, satellite cells sensed when distal neuronal axons were injured by enlarging and proliferating. We also observed that satellite cells were capable of internalizing and expressing a neuron fluorochrome label, diamidino yellow, applied remotely to distal injured axons of the neuron and retrogradely transported to dorsal root ganglia sensory neurons. The findings illustrate a robust interaction between intranganglionic neurons and glial cells that involve two way signals, features that may be critical for both regenerative responses and ongoing maintenance.


Asunto(s)
Células Satélites Perineuronales/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Transporte Axonal , Axones/metabolismo , Axones/fisiología , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/fisiología , Conos de Crecimiento/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/metabolismo
16.
Front Neuroanat ; 8: 33, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24904302

RESUMEN

Cajal is widely recognized by the scientific community for his important contributions to our knowledge of the neuronal organization of the nervous system. His studies on neuroglial cells are less recognized, yet they are no less relevant to our current understanding of the cellular bases of brain structure. Two pioneering studies published a century ago -"Something about the physiological significance of neuroglia" (Ramón y Cajal, 1897) and "A contribution to the understanding of neuroglia in the human brain" (Ramón y Cajal, 1913)-focused on glial cells and their role in brain physiology. Novel findings obtained using state-of-the-art and sophisticated technologies largely confirm many of the groundbreaking hypotheses proposed by Cajal related to the structural-functional properties of neuroglia. Here we propose to the reader a journey guided by the ideas of Cajal through the recent findings on the functional significance of astrocytes, the most abundant neuroglial cell type in the nervous system. Astrocyte-neuron interaction, which represents an emerging field in current neuroscience with important implications for our understanding of the cellular processes underlying brain function, has its roots in many of the original concepts proposed by Cajal.

17.
Front Cell Neurosci ; 7: 182, 2013 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-24194697

RESUMEN

In the nervous system, glia cells maintain homeostasis, synthesize myelin, provide metabolic support, and participate in immune defense. The communication between glia and neurons is essential to synchronize these diverse functions with brain activity. Evidence is accumulating that secreted extracellular vesicles (EVs), such as exosomes and shedding microvesicles, are key players in intercellular signaling. The cells of the nervous system secrete EVs, which potentially carry protein and RNA cargo from one cell to another. After delivery, the cargo has the ability to modify the target cell phenotype. Here, we review the recent advances in understanding the role of EV secretion by astrocytes, microglia, and oligodendrocytes in the central nervous system. Current work has demonstrated that oligodendrocytes transfer exosomes to neurons as a result of neurotransmitter signaling suggesting that these vesicles may mediate glial support of neurons.

18.
Front Physiol ; 3: 119, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22557979

RESUMEN

Brain function depends on coordinated interactions between neurons and glial cells. Recent evidence indicates that these cells release endosome-derived microvesicles termed exosomes, which are 50-100 nm in size and carry specific protein and RNA cargo. Exosomes can interact with neighboring cells raising the concept that exosomes may mediate signaling between brain cells and facilitate the delivery of bioactive molecules. Oligodendrocytes myelinate axons and furthermore maintain axonal integrity by an yet uncharacterized pathway of trophic support. Here, we highlight the role of exosomes in nervous system cell communication with particular focus on exosomes released by oligodendrocytes and their potential implications in axon-glia interaction and myelin disease, such as multiple sclerosis. These secreted vesicles may contribute to eliminate overproduced myelin membrane or to transfer antigens facilitating immune surveillance of the brain. Furthermore, there is emerging evidence that exosomes participate in axon-glia communication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA