Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Antioxidants (Basel) ; 13(8)2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39199242

RESUMEN

Brain alpha-tocopherol (αT) concentration was previously reported to be inversely associated with neurofibrillary tangle (NFT) counts in specific brain structures from centenarians. However, the contribution of natural or synthetic αT stereoisomers to this relationship is unknown. In this study, αT stereoisomers were quantified in the temporal cortex (TC) of 47 centenarians in the Georgia Centenarian Study (age: 102.2 ± 2.5 years, BMI: 22.1 ± 3.9 kg/m2) and then correlated with amyloid plaques (diffuse and neuritic plaques; DPs, NPs) and NFTs in seven brain regions. The natural stereoisomer, RRR-αT, was the primary stereoisomer in all subjects, accounting for >50% of total αT in all but five subjects. %RRR was inversely correlated with DPs in the frontal cortex (FC) (ρ = -0.35, p = 0.032) and TC (ρ = -0.34, p = 0.038). %RSS (a synthetic αT stereoisomer) was positively correlated with DPs in the TC (ρ = 0.39, p = 0.017) and with NFTs in the FC (ρ = 0.37, p = 0.024), TC (ρ = 0.42, p = 0.009), and amygdala (ρ = 0.43, p = 0.008) after controlling for covariates. Neither RRR- nor RSS-αT were associated with premortem global cognition. Even with the narrow and normal range of BMIs, BMI was correlated with %RRR-αT (ρ = 0.34, p = 0.021) and %RSS-αT (ρ = -0.45, p = 0.002). These results providing the first characterization of TC αT stereoisomer profiles in centenarians suggest that DP and NFT counts, but not premortem global cognition, are influenced by the brain accumulation of specific αT stereoisomers. Further study is needed to confirm these findings and to determine the potential role of BMI in mediating this relationship.

2.
J Neuropathol Exp Neurol ; 83(10): 808-821, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38900184

RESUMEN

This cross-sectional study addressed the ABCA7-Alzheimer's disease (AD) association. ABCA7 protein levels were quantified in 3 cerebral regions of brain donors with Braak neurofibrillary tangle (NFT) stages 0-V. Ordinal regression models were implemented to estimate the effect of ABCA7 on stopping in an earlier Braak NFT stage versus progressing to the later stages in 2 prespecified age segments. In the final model, high ABCA7 levels in the parietal cortex increased the odds of remaining cognitively healthy (ie, in stages 0/I) versus experiencing AD onset (ie, progressing to stages II-V) in the 61-80 age segment (OR = 2.87, adj 95% CI = 1.41-7.86, adj P = .007, n = 109), after controlling for APOE and other covariates. No ABCA7-AD association was found in the 81-98 age segment (n = 113). Parietal ABCA7 levels in 61-80-year-old with stages II-V were very low, even significantly lower than in 81-98-year-old with stages II-V. ABCA7 levels in the prefrontal cortex and hippocampus predicted AD onset in the 61-80 age segment after adjustment for APOE. ABCA7 levels were also the lowest in 61-80-year-old with frequent neuritic plaques. Thus, very low ABCA7 levels in the cerebrum are associated with AD onset in the 7th-8th decade of life.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Enfermedad de Alzheimer , Apolipoproteínas E , Humanos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Masculino , Femenino , Anciano , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Anciano de 80 o más Años , Persona de Mediana Edad , Estudios Transversales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Cerebro/metabolismo , Cerebro/patología , Ovillos Neurofibrilares/patología , Ovillos Neurofibrilares/metabolismo , Edad de Inicio
3.
Phys Med ; 123: 103399, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852366

RESUMEN

PURPOSE: The cortical uptake of tau positron emission tomography (PET) tracers corresponds to the Braak stage and reflects the distribution and progression of tau neurofibrillary tangles. The present study aimed to develop and validate the basic performance of a novel tau PET phantom, as well as to establish standard test procedures and analytical methods. METHODS: The tau PET phantom consisted of a brain simulation section simulated medial temporal lobe region and resolution and uniformity sections. The brain simulation section and hot rods and uniformity section contained 4 and 2 kBq/mL of 18F, respectively and images were acquired three times for 20 min with a PET/CT scanner. The resolution section was visually assessed with two sets of hot and cold rods. Recovery coefficients (RCs) as a quantitative value and coefficient of variation (CV) as image noise were determined based on the brain simulation and the uniformity section, respectively. RESULTS: Preparation of activity in the phantom was repeatable among three measurements. The quality of images in the brain simulation and uniformity section with the rods was good. The 5- or 6-mm rods were detected separately. The mean RCs calculated based on the VOI template were between 0.75 and 0.83. The CV at the center slice of uniformity section was 5.54%. CONCLUSIONS: We developed a novel tau PET phantom to assess quantitative value, image noise, and detectability and resolution from brain simulation section, uniformity section, and rods, respectively. This phantom will contribute to the standardization and harmonization of tau PET imaging.


Asunto(s)
Encéfalo , Fantasmas de Imagen , Tomografía de Emisión de Positrones , Proteínas tau , Proteínas tau/metabolismo , Tomografía de Emisión de Positrones/instrumentación , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Humanos
4.
Alzheimers Dement ; 20(7): 4803-4817, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38884346

RESUMEN

INTRODUCTION: Tau aggregation into neurofibrillary tangles in Alzheimer's disease (AD) is a dynamic process involving changes in tau phosphorylation, isoform composition, and morphology. To facilitate studies of tangle maturity, we developed an image analysis pipeline to study antibody labeling signatures that can distinguish tangle maturity levels in AD brain tissue. METHODS: Using fluorescent immunohistochemistry, we co-labeled AD brain tissue with four antibodies that bind different tau epitopes. Mean fluorescence intensity of each antibody was measured, and spectral clustering was used to identify tangle immunophenotypes. RESULTS: Five distinct tangle populations were identified, and different tangle maturity immunophenotypes were identified with increasing Braak stage. Early tangle immunophenotypes were more prevalent in later affected regions and advanced immunophenotypes were associated with ghost morphology. DISCUSSION: Our findings indicate that tangle populations characterized by advanced tau immunophenotypes are associated with higher Braak stage and more mature morphology, providing a new framework for defining tangle maturity levels using tau antibody signatures. HIGHLIGHTS: Populations of neurofibrillary tangles exist in Alzheimer's disease. The immunophenotype of neurofibrillary tangle populations relates to their maturity. The most advanced immunophenotypes are associated with higher Braak stage. The most advanced immunophenotypes are associated with ghost morphology. The most immature immunophenotypes are associated with later affected regions.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Inmunofenotipificación , Ovillos Neurofibrilares , Proteínas tau , Enfermedad de Alzheimer/patología , Humanos , Ovillos Neurofibrilares/patología , Proteínas tau/metabolismo , Masculino , Encéfalo/patología , Femenino , Anciano de 80 o más Años , Anciano , Inmunohistoquímica
5.
Alzheimers Dement ; 20(6): 4147-4158, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38747539

RESUMEN

INTRODUCTION: Typical MRI measures of neurodegeneration have limited sensitivity in early disease stages. Diffusion MRI (dMRI) microstructural measures may allow for detection in preclinical stages. METHODS: Participants had dMRI and either beta-amyloid PET or plasma biomarkers of Alzheimer's pathology within 18 months of MRI. Microstructure was measured in portions of the medial temporal lobe (MTL) with high neurofibrillary tangle (NFT) burden based on a previously developed post mortem 3D-map. Regressions examined relationships between microstructure and markers of Alzheimer's pathology in preclinical disease and then across disease stages. RESULTS: There was higher isometric volume fraction in amyloid-positive compared to amyloid-negative cognitively unimpaired individuals in high tangle MTL regions. Similarly, plasma biomarkers and 18F-flortaucipir were associated with microstructural changes in preclinical disease. Additional microstructural effects were seen across disease stages. DISCUSSION: Combining a post mortem atlas of NFT pathology with microstructural measures allows for detection of neurodegeneration in preclinical Alzheimer's disease. Highlights Typical markers of neurodegeneration are not sensitive in preclinical Alzheimer's. dMRI measured microstructure in regions with high NFT. Microstructural changes occur in medial temporal regions in preclinical disease. Microstructural changes occur in other typical Alzheimer's regions in later stages. Combining post mortem pathology atlases with in vivo MRI is a powerful framework.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Sustancia Gris , Tomografía de Emisión de Positrones , Lóbulo Temporal , Humanos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Lóbulo Temporal/patología , Lóbulo Temporal/diagnóstico por imagen , Masculino , Femenino , Anciano , Sustancia Gris/patología , Sustancia Gris/diagnóstico por imagen , Biomarcadores/sangre , Péptidos beta-Amiloides/metabolismo , Ovillos Neurofibrilares/patología , Imagen de Difusión por Resonancia Magnética
6.
Parkinsonism Relat Disord ; : 106076, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38494398

RESUMEN

INTRODUCTION: Progressive supranuclear palsy (PSP) is characterized by pathology prominently in the basal ganglia, the tegmentum of the brainstem, and the frontal cortex. However, pathology varies according to clinical features. This study aimed to statistically verify the correspondence between the clinical and pathological subtypes of PSP. METHODS: We identified patients with a pathological diagnosis of PSP and classified the eight clinical subtypes of the Movement Disorders Society criteria for the clinical diagnosis of PSP (MDS-PSP criteria) into the Richardson, Akinesia, and Cognitive groups. We used anti-phosphorylated tau antibody immunostaining to semi-quantitatively evaluate neurofibrillary tangles (NFTs) and coiled bodies/threads (CB/Ths) in the globus pallidus, subthalamic nucleus, and midbrain tegmentum. In the frontal cortex, tufted astrocytes (TAs) and CB/Ths were assessed on a 3-point scale. We compared the pathology among the three groups, recorded the phenotypes ranked the second and lower in the multiple allocation extinction rule and examined whether the pathology changed depending on applying each phenotype. RESULTS: The Richardson group exhibited severe NFTs and CB/Ths in the midbrain tegmentum. The Akinesia group showed severe NFTs in the globus pallidus. The Cognitive group had severe TAs and CB/Ths in the frontal cortex. TAs and CB/Ths in the frontal cortex correspond to behavioral variant frontotemporal dementia, and supranuclear vertical oculomotor palsy. CONCLUSION: These clinical symptoms may reflect the distribution of tau pathologies in PSP.

7.
Brain Commun ; 6(1): fcad359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38347945

RESUMEN

Alzheimer's disease is a devastating disease that is accompanied by dementia, and its incidence increases with age. However, no interventions have exhibited clear therapeutic effects. We aimed to develop and characterize behavioural tasks that allow the earlier identification of signs preceding dementia that would facilitate the development of preventative and therapeutic interventions for Alzheimer's disease. To this end, we developed a 3D virtual reality task sensitive to the activity of grid cells in the entorhinal cortex, which is the region that first exhibits neurofibrillary tangles in Alzheimer's disease. We investigated path integration (assessed by error distance) in a spatial navigation task sensitive to grid cells in the entorhinal cortex in 177 volunteers, aged 20-89 years, who did not have self-reported dementia. While place memory was intact even in old age, path integration deteriorated with increasing age. To investigate the relationship between neurofibrillary tangles in the entorhinal cortex and path integration deficit, we examined a mouse model of tauopathy (P301S mutant tau-overexpressing mice; PS19 mice). At 6 months of age, PS19 mice showed a significant accumulation of phosphorylated tau only in the entorhinal cortex, associated with impaired path integration without impairments in spatial cognition. These data are consistent with the idea that path integration deficit is caused by the accumulation of phosphorylated tau in the entorhinal cortex. This method may allow the early identification of individuals likely to develop Alzheimer's disease.

8.
Am J Hum Genet ; 111(3): 473-486, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38354736

RESUMEN

Disease-associated variants identified from genome-wide association studies (GWASs) frequently map to non-coding areas of the genome such as introns and intergenic regions. An exclusive reliance on gene-agnostic methods of genomic investigation could limit the identification of relevant genes associated with polygenic diseases such as Alzheimer disease (AD). To overcome such potential restriction, we developed a gene-constrained analytical method that considers only moderate- and high-risk variants that affect gene coding sequences. We report here the application of this approach to publicly available datasets containing 181,388 individuals without and with AD and the resulting identification of 660 genes potentially linked to the higher AD prevalence among Africans/African Americans. By integration with transcriptome analysis of 23 brain regions from 2,728 AD case-control samples, we concentrated on nine genes that potentially enhance the risk of AD: AACS, GNB5, GNS, HIPK3, MED13, SHC2, SLC22A5, VPS35, and ZNF398. GNB5, the fifth member of the heterotrimeric G protein beta family encoding Gß5, is primarily expressed in neurons and is essential for normal neuronal development in mouse brain. Homozygous or compound heterozygous loss of function of GNB5 in humans has previously been associated with a syndrome of developmental delay, cognitive impairment, and cardiac arrhythmia. In validation experiments, we confirmed that Gnb5 heterozygosity enhanced the formation of both amyloid plaques and neurofibrillary tangles in the brains of AD model mice. These results suggest that gene-constrained analysis can complement the power of GWASs in the identification of AD-associated genes and may be more broadly applicable to other polygenic diseases.


Asunto(s)
Enfermedad de Alzheimer , Subunidades beta de la Proteína de Unión al GTP , Ratones , Humanos , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Estudio de Asociación del Genoma Completo , Ovillos Neurofibrilares/metabolismo , Fenotipo , Genómica , Péptidos beta-Amiloides/genética , Encéfalo/metabolismo , Miembro 5 de la Familia 22 de Transportadores de Solutos/genética , Miembro 5 de la Familia 22 de Transportadores de Solutos/metabolismo , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismo
9.
Alzheimers Dement ; 20(3): 2291-2296, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38215435

RESUMEN

INTRODUCTION: Neuropathological investigation of presymptomatic or early symptomatic presenilin-1 (PSEN1) mutation carriers in familial Alzheimer's disease (AD) is extremely scarce. METHODS: We report the autopsy findings of brothers with familial AD. Case 1 is a 45-year-old man without obvious cognitive impairment, who committed suicide. Case 2 is a 57-year-old older brother of Case 1 with advanced AD symptoms, who died of hypothermia during wondering. RESULTS: In both cases, abundant amyloid plaques positive for amyloid ß (Aß) were found throughout the brain. Progression of neuronal loss and increasing amount and extension of neurofibrillary tangle pathology were evident in Case 2. Genetic investigation revealed a PSEN1_p. L392V mutation in both cases. DISCUSSION: The present study shows a possible neuropathological boundary between symptomatic and preclinical AD with pathogenic PSEN1 mutation. Additional clinicopathological investigation for familial AD-related mutation carriers may be significant to explore the association between familial AD and suicide.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Mutación/genética , Presenilina-1/genética , Hermanos
10.
Brain ; 147(4): 1497-1510, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37988283

RESUMEN

Females are disproportionately affected by dementia due to Alzheimer's disease. Despite a similar amyloid-ß (Aß) load, a higher load of neurofibrillary tangles (NFTs) is seen in females than males. Previous literature has proposed that Aß and phosphorylated-tau (p-tau) synergism accelerates tau tangle formation, yet the effect of biological sex in this process has been overlooked. In this observational study, we examined longitudinal neuroimaging data from the TRIAD and ADNI cohorts from Canada and USA, respectively. We assessed 457 participants across the clinical spectrum of Alzheimer's disease. All participants underwent baseline multimodal imaging assessment, including MRI and PET, with radioligands targeting Aß plaques and tau tangles, respectively. CSF data were also collected. Follow-up imaging assessments were conducted at 1- and 2-year intervals for the TRIAD cohort and 1-, 2- and 4-year intervals for the ADNI cohort. The upstream pathological events contributing to faster tau progression in females were investigated-specifically, whether the contribution of Aß and p-tau synergism to accelerated tau tangle formation is modulated by biological sex. We hypothesized that cortical Aß predisposes tau phosphorylation and tangle accumulation in a sex-specific manner. Findings revealed that Aß-positive females presented higher CSF p-tau181 concentrations compared with Aß-positive males in both the TRIAD (P = 0.04, Cohen's d = 0.51) and ADNI (P = 0.027, Cohen's d = 0.41) cohorts. In addition, Aß-positive females presented faster NFT accumulation compared with their male counterparts (TRIAD: P = 0.026, Cohen's d = 0.52; ADNI: P = 0.049, Cohen's d = 1.14). Finally, the triple interaction between female sex, Aß and CSF p-tau181 was revealed as a significant predictor of accelerated tau accumulation at the 2-year follow-up visit (Braak I: P = 0.0067, t = 2.81; Braak III: P = 0.017, t = 2.45; Braak IV: P = 0.002, t = 3.17; Braak V: P = 0.006, t = 2.88; Braak VI: P = 0.0049, t = 2.93). Overall, we report sex-specific modulation of cortical Aß in tau phosphorylation, consequently facilitating faster NFT progression in female individuals over time. This presents important clinical implications and suggests that early intervention that targets Aß plaques and tau phosphorylation may be a promising therapeutic strategy in females to prevent the further accumulation and spread of tau aggregates.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Masculino , Femenino , Enfermedad de Alzheimer/patología , Fosforilación , Encéfalo/patología , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Ovillos Neurofibrilares/patología , Placa Amiloide/patología , Tomografía de Emisión de Positrones , Biomarcadores/metabolismo
11.
Proteomics Clin Appl ; : e2200112, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37650321

RESUMEN

Alzheimer's disease (AD), one of the most common dementias, is a neurodegenerative disease characterized by cognitive impairment and decreased judgment function. The expected number of AD patient is increasing in the context of the world's advancing medical care and increasing human life expectancy. Since current molecular mechanism studies on AD pathogenesis are incomplete, there is no specific and effective therapeutic agent. Mass spectrometry (MS)-based unbiased proteomics studies provide an effective and comprehensive approach. Many advances have been made in the study of the mechanism, diagnostic markers, and drug targets of AD using proteomics. This paper focus on subcellular level studies, reviews studies using proteomics to study AD-associated mitochondrial dysfunction, synaptic, and myelin damage, the protein composition of amyloid plaques (APs) and neurofibrillary tangles (NFTs), changes in tissue extracellular vehicles (EVs) and exosome proteome, and the protein changes in ribosomes and lysosomes. The methods of sample separation and preparation and proteomic analysis as well as the main findings of these studies are involved. The results of these proteomics studies provide insights into the pathogenesis of AD and provide theoretical resource and direction for future research in AD, helping to identify new biomarkers and drugs targets for AD.

12.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37445917

RESUMEN

The aim of this review is to present evidence of the impact of ischemic changes in the blood-brain barrier on the maturation of post-ischemic brain neurodegeneration with features of Alzheimer's disease. Understanding the processes involved in the permeability of the post-ischemic blood-brain barrier during recirculation will provide clinically relevant knowledge regarding the neuropathological changes that ultimately lead to dementia of the Alzheimer's disease type. In this review, we try to distinguish between primary and secondary neuropathological processes during and after ischemia. Therefore, we can observe two hit stages that contribute to Alzheimer's disease development. The onset of ischemic brain pathology includes primary ischemic neuronal damage and death followed by the ischemic injury of the blood-brain barrier with serum leakage of amyloid into the brain tissue, leading to increased ischemic neuronal susceptibility to amyloid neurotoxicity, culminating in the formation of amyloid plaques and ending in full-blown dementia of the Alzheimer's disease type.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Barrera Hematoencefálica/metabolismo , Plaquetas/metabolismo , Encéfalo/metabolismo , Isquemia/patología , Amiloide , Proteínas Amiloidogénicas , Péptidos beta-Amiloides/metabolismo
13.
J Neuroinflammation ; 20(1): 76, 2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36935511

RESUMEN

Alzheimer's disease (AD) is a chronic neurodegenerative disease, with the characteristics of neurofibrillary tangle (NFT) and senile plaque (SP) formation. Although great progresses have been made in clinical trials based on relevant hypotheses, these studies are also accompanied by the emergence of toxic and side effects, and it is an urgent task to explore the underlying mechanisms for the benefits to prevent and treat AD. Herein, based on animal experiments and a few clinical trials, neuroinflammation in AD is characterized by long-term activation of pro-inflammatory microglia and the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes. Damaged signals from the periphery and within the brain continuously activate microglia, thus resulting in a constant source of inflammatory responses. The long-term chronic inflammatory response also exacerbates endoplasmic reticulum oxidative stress in microglia, which triggers microglia-dependent immune responses, ultimately leading to the occurrence and deterioration of AD. In this review, we systematically summarized and sorted out that exercise ameliorates AD by directly and indirectly regulating immune response of the central nervous system and promoting hippocampal neurogenesis to provide a new direction for exploring the neuroinflammation activity in AD.


Asunto(s)
Enfermedad de Alzheimer , Ejercicio Físico , Enfermedades Neurodegenerativas , Animales , Inflamasomas/metabolismo , Inflamación/metabolismo , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Ovillos Neurofibrilares/metabolismo , Enfermedades Neuroinflamatorias , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Humanos
14.
Res Sq ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36798327

RESUMEN

Background: The apolipoprotein E (APOE, gene; apoE, protein) ε4 allele is the most common identified genetic risk factor for typical late-onset sporadic Alzheimer's disease (AD). Each APOE ε4 allele roughly triples the relative risk for AD compared to that of the reference allele, APOE ε3. Methods: We have employed hyperspectral fluorescence imaging with an amyloidspecific, conformation-sensing probe, p-FTAA, to elucidate protein aggregate structure and morphology in fresh frozen prefrontal cortex samples from human postmortem AD brain tissue samples from patients homozygous for either APOE ε3 or APOE ε4. Results: As expected APOE ε4/ε4 tissues had significantly larger load of CAA than APOE ε3/ε3. APOE isoform-dependent morphological differences in amyloid plaques were also observed. Amyloid plaques in APOE ε3/ε3 tissue had small spherical cores and large corona while amyloid plaques in APOE ε4/ε4 tissues had large irregular and multilobulated plaques with relatively smaller corona. Despite the different morphologies of their cores, the p-FTAA stained APOE ε3/ε3 amyloid plaque cores had spectral properties identical to those of APOE ε4/ε4 plaque cores. Conclusions: These data support the hypothesis that one mechanism by which the APOE ε4 allele affects AD is by modulating the macrostructure of pathological protein deposits in brain. APOE ε4 is associated with a higher density of amyloid plaques (as compared to APOE ε3). We speculate that multilobulated APOE ε4-associated plaques arise from multiple initiation foci that coalesce as the plaques grow.

15.
Neuroscientist ; : 10738584221139761, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36597577

RESUMEN

Alzheimer's disease (AD) is characterized by the accumulation of amyloid ß and phosphorylated τ protein aggregates in the brain, which leads to the loss of neurons. Under the microscope, the function of mitochondria is uniquely primed to play a pivotal role in neuronal cell survival, energy metabolism, and cell death. Research studies indicate that mitochondrial dysfunction, excessive oxidative damage, and defective mitophagy in neurons are early indicators of AD. This review article summarizes the latest development of mitochondria in AD: 1) disease mechanism pathways, 2) the importance of mitochondria in neuronal functions, 3) metabolic pathways and functions, 4) the link between mitochondrial dysfunction and mitophagy mechanisms in AD, and 5) the development of potential mitochondrial-targeted therapeutics and interventions to treat patients with AD.

16.
Annu Rev Med ; 74: 503-514, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36378913

RESUMEN

Alzheimer's disease (AD) was described in 1906 as a dementing disease marked by the presence of two types of fibrillar aggregates in the brain: neurofibrillary tangles and senile plaques. The process of aggregation and formation of the aggregates has been a major focus of investigation ever since the discoveries that the tau protein is the predominant protein in tangles and amyloid ß is the predominant protein in plaques. The idea that smaller, oligomeric species of amyloid may also be bioactive has now been clearly established. This review examines the possibility that soluble, nonfibrillar, bioactive forms of tau-the "tau we cannot see"-comprise a dominant driver of neurodegeneration in AD.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Ovillos Neurofibrilares/metabolismo , Encéfalo
17.
Acta Neuropathol ; 145(1): 1-12, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36469115

RESUMEN

Tuberous sclerosis complex (TSC) is a neurogenetic disorder leading to epilepsy, developmental delay, and neurobehavioral dysfunction. The syndrome is caused by pathogenic variants in TSC1 (coding for hamartin) or TSC2 (coding for tuberin). Recently, we reported a progressive frontotemporal dementia-like clinical syndrome in a patient with a mutation in TSC1, but the neuropathological changes seen in adults with TSC with or without dementia have yet to be systematically explored. Here, we examined neuropathological findings in adults with TSC (n = 11) aged 30-58 years and compared them to age-matched patients with epilepsy unrelated to TSC (n = 9) and non-neurological controls (n = 10). In 3 of 11 subjects with TSC, we observed a neurofibrillary tangle-predominant "TSC tauopathy" not seen in epilepsy or non-neurological controls. This tauopathy was observed in the absence of pathological amyloid beta, TDP-43, or alpha-synuclein deposition. The neurofibrillary tangles in TSC tauopathy showed a unique pattern of post-translational modifications, with apparent differences between TSC1 and TSC2 mutation carriers. Tau acetylation (K274, K343) was prominent in both TSC1 and TSC2, whereas tau phosphorylation at a common phospho-epitope (S202) was observed only in TSC2. TSC tauopathy was observed in selected neocortical, limbic, subcortical, and brainstem sites and showed a 3-repeat greater than 4-repeat tau isoform pattern in both TSC1 and TSC2 mutation carriers, but no tangles were immunolabeled with MC1 or p62 antibodies. The findings suggest that individuals with TSC are at risk for a unique tauopathy in mid-life and that tauopathy pathogenesis may involve TSC1, TSC2, and related molecular pathways.


Asunto(s)
Epilepsia , Tauopatías , Esclerosis Tuberosa , Adulto , Humanos , Proteínas Supresoras de Tumor/genética , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/metabolismo , Péptidos beta-Amiloides/genética , Mutación/genética , Epilepsia/genética , Tauopatías/genética
18.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-969629

RESUMEN

Background A large amount of iron deposition in the brain can cause neuronal damage by inducing oxidative stress, neuroinflammation, and abnormal mitochondrial function. In addition, iron deposition is also reported to be closely related to the pathogenesis of Alzheimer's disease (AD). The neurofibrillary tangles aggregated by tau hyperphosphorylation are one of the important pathological features of AD. Objective To investigate potential effect of exogenous trivalent iron ions on neuronal activity in human neuroblastoma (SH-SY5Y) cells and tau hyperphosphorylation and aggregation. Methods SH-SY5Y cells were treated with ferric chloride (FeCl3) at four concentrations (10, 100, 200, and 400 mg·L−1). Cell survival rate was then detected by CCK8 assay. Intracellular iron content was determined prussian blue (Perl's) by iron staining after 24 h exposure to FeCl3 at 10 or 200 mg·L−1. Transfection of tau-P301L plasmid was conducted to construct an AD-like cell model for tau overexpression. The differences in the expression of the phosphorylated tau (p-tau) protein in SH-SY5Y cells and SH-SY5Y cells with tau overexpression were detected by Western blotting after 24 h exposure to FeCl3 at 10 and 200 mg·L−1. After dilution with phosphate buffered saline (PBS), FeCl3, human tauR3, and FeCl3 + tauR3 were incubated at 37℃, and the fluorescence intensity reflecting tau aggregation level was measured by thioflavin T(ThT) method at 12, 24, 36, 48, 60, 72, 84, and 96 h, respectively. Meanwhile, after 96 h coincubation of FeCl3 and tauR3, the fibers formed by tau aggregation were observed under a transmission electron microscope (TEM). Results After 24 h of FeCl3 exposure, the cell survival rate of SH-SY5Y cells among all groups was statistically different (F=8.63, P<0.01). The cell survival rates in the 200 and 400 mg·L−1 groups were 80.1% and 68.7% of the control group, respectively (P<0.05). Compared with the control group, the nuclei of the 200 mg·L−1 FeCl3 group were mainly yellowish-brown after iron staining and the positive cell rate was up-regulated by 12.9% (P<0.01). After 24 h of FeCl3 exposure , the p-tau (Ser396) protein expression was statistically different among all groups (F=11.6, P<0.01). Compared with the control group, the p-tau protein expression level of SH-SY5Y cells in the 200 mg·L−1 group was up-regulated by 72.7% (P<0.01). After FeCl3-treated SH-SY5Y cells with tau overexpression for 24 h, the p-tau (Ser396) protein expression was statistically different among all groups (F=27.8, P<0.01). Compared with the tau group, the p-tau (Ser396) protein expression level of SH-SY5Y cells in the tau + 200 mg·L−1 group was up-regulated by 44.6% (P<0.05). Compared with the tauR3 group, the fluorescence intensities in the 84 and 96 h tauR3 + FeCl3 groups were up-regulated by 49.9% and 53.7% (P<0.01) respectively. After 96 h of coincubation, compared with the tauR3 group, FeCl3 + tauR3 aggravated tau aggregation and formed fiber deposition under TEM. Conclusion Exogenous trivalent iron ions may inhibit SH-SY5Y cell viability, promote the phosphorylation of tau in SH-SY5Y cells transfected with tau-P301L plasmid, and aggravate tauR3 aggregation and fiber production.

19.
Front Pharmacol ; 13: 952332, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467099

RESUMEN

Ginsenosides are the most important pharmacological active ingredient of ginseng, with multiple biological therapeutic targets, mild action and no side effects. It is having shown beneficial effects in vitro and in vivo models of AD. In this review, we analyze large literature, summarize the inhibition of ginsenosides fibrous extracellular deposition of ß-amyloid (Aß) and neurofibrillary tangles (NFTs) of possible mechanisms, and explain the effects of ginsenosides on AD neuroprotection from the aspects of antioxidant, anti-inflammatory, and anti-apoptosis, prove the potential of ginsenosides as a new class of drugs for the treatment of AD. In addition, according to the current clinical application status of natural drugs, this paper analysis the delivery route and delivery mode of ginsenosides from the perspective of pharmacokinetics, providing a deeper insight into the clinical application of ginsenosides in the treatment of AD.

20.
Acta Neuropathol Commun ; 10(1): 166, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376963

RESUMEN

Neuropathology and neuroimaging studies have identified several subtypes of Alzheimer's disease (AD): hippocampal sparing AD, typical AD, and limbic predominant AD. An unresolved question is whether hippocampal sparing AD cases can present with neurofibrillary tangles (NFT) in association cortices while completely sparing the hippocampus. To address that question, we conducted a systematic review and performed original analyses on tau positron emission tomography (PET) data. We searched EMBASE, PubMed, and Web of Science databases until October 2022. We also implemented several methods for AD subtyping on tau PET to identify hippocampal sparing AD cases. Our findings show that seven out of the eight reviewed neuropathologic studies included cases at Braak stages IV or higher and therefore, could not identify hippocampal sparing cases with NFT completely sparing the hippocampus. In contrast, tau PET did identify AD participants with tracer retention in the association cortex while completely sparing the hippocampus. We conclude that tau PET can identify hippocampal sparing AD cases with NFT completely sparing the hippocampus. Based on the accumulating data, we suggest two possible pathways of tau spread: (1) a canonical pathway with early involvement of transentorhinal cortex and subsequent involvement of limbic regions and association cortices, and (2) a less common pathway that affects association cortices with limbic involvement observed at end stages of the disease or not at all.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Ovillos Neurofibrilares/patología , Tomografía de Emisión de Positrones/métodos , Hipocampo/patología , Neuropatología , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA