Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338933

RESUMEN

Glaucoma is the leading cause of irreversible blindness, and its pathophysiology includes neuroinflammatory changes. The present therapies for glaucoma target pressure-lowering mechanisms with limited success, making neuroinflammation a target for future interventions. This review summarizes the neuroinflammatory pathways seen in glaucoma and their interplay with stress. Glucocorticoids have been shown to activate proinflammatory glial cells, contributing to the neuroinflammation in glaucoma. Glucocorticoids have also been shown to increase the IOP directly. Stress-associated autonomic dysfunction can affect the vascular homeostasis in the retina and create oxidative stress. Diabetes, hyperglycemic-mediated endothelial damage, and vascular inflammation also play important roles in the neuroinflammation in glaucoma and diabetic retinopathy. Psychosocial stress has been implicated in an increased IOP and glaucoma outcomes. People who experience maladaptive chronic stress suffer from a condition known as allostatic load, which describes pathologic neuroendocrine dysregulation. The effects of allostatic load and chronic stress have been studied in patients affected by a lower socioeconomic status (SES) and marginalized racial identities. A lower SES is associated with higher rates of glaucoma and also affects the access to care and screening. Additionally, people of African ancestry are disproportionately affected by glaucoma for reasons that are multifactorial. In conclusion, this review explores neuroinflammation in glaucoma, highlighting opportunities for future investigation.


Asunto(s)
Alostasis , Glaucoma , Humanos , Alostasis/fisiología , Enfermedades Neuroinflamatorias , Estrés Psicológico/complicaciones , Clase Social , Inequidades en Salud
2.
Elife ; 122024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231572

RESUMEN

Animal internal state is modulated by nutrient intake, resulting in behavioral responses to changing food conditions. The neural mechanisms by which internal states are generated and maintained are not well understood. Here, we show that in the nematode Caenorhabditis elegans, distinct cues from bacterial food - interoceptive signals from the ingestion of bacteria and gustatory molecules sensed from nearby bacteria - act antagonistically on the expression of the neuroendocrine TGF-beta ligand DAF-7 from the ASJ pair of sensory neurons to modulate foraging behavior. A positive-feedback loop dependent on the expression of daf-7 from the ASJ neurons acts to promote transitions between roaming and dwelling foraging states and influence the persistence of roaming states. SCD-2, the C. elegans ortholog of mammalian anaplastic lymphoma kinase (ALK), which has been implicated in the central control of metabolism of mammals, functions in the AIA interneurons to regulate foraging behavior and cell-non-autonomously control the expression of DAF-7 from the ASJ neurons. Our data establish how a dynamic neuroendocrine daf-7 expression feedback loop regulated by SCD-2 functions to couple sensing and ingestion of bacterial food to foraging behavior. We further suggest that this neuroendocrine feedback loop underlies previously characterized exploratory behaviors in C. elegans. Our data suggest that the expression of daf-7 from the ASJ neurons contributes to and is correlated with an internal state of 'unmet need' that regulates exploratory foraging behavior in response to bacterial cues in diverse physiological contexts.


Asunto(s)
Caenorhabditis elegans , Señales (Psicología) , Animales , Caenorhabditis elegans/genética , Bacterias , Células Receptoras Sensoriales , Expresión Génica , Mamíferos
3.
Mol Cell Endocrinol ; 584: 112162, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38290646

RESUMEN

Peptides and protein hormones form the largest group of secreted signals that mediate intercellular communication and are central regulators of physiology and behavior in all animals. Phylogenetic analyses and biochemical identifications of peptide-receptor systems reveal a broad evolutionary conservation of these signaling systems at the molecular level. Substantial progress has been made in recent years on characterizing the physiological and putative ancestral roles of many peptide systems through comparative studies in invertebrate models. Several peptides and protein hormones are not only molecularly conserved but also have conserved roles across animal phyla. Here, we focus on functional insights gained in the nematode Caenorhabditis elegans that, with its compact and well-described nervous system, provides a powerful model to dissect neuroendocrine signaling networks involved in the control of physiology and behavior. We summarize recent discoveries on the evolutionary conservation and knowledge on the functions of peptide and protein hormone systems in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans , Neuropéptidos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Filogenia , Péptidos , Glicoproteínas , Sistemas Neurosecretores/metabolismo , Hormonas , Proteínas de Caenorhabditis elegans/genética
5.
Neurosci Res ; 194: 1-6, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37086751

RESUMEN

Acclimation to temperature is one of the survival strategies used by organisms to adapt to changing environmental temperatures. Caenorhabditis elegans' cold tolerance is altered by previous cultivation temperature, and similarly, past low-temperature induces a longer lifespan. Temperature is thought to cause a large shift in homeostasis, lipid metabolism, and reproduction in the organism because it is a direct physiological factor during chemical events. This paper will share and discuss what we know so far about the neural and molecular mechanisms that control cold tolerance and lifespan by altering lipid metabolism and physiological characteristics. We hope that this will contribute to a better understanding of how organisms respond to temperature changes.


Asunto(s)
Caenorhabditis elegans , Frío , Animales , Temperatura , Caenorhabditis elegans/fisiología , Aclimatación/fisiología , Adaptación Fisiológica
6.
Aquat Toxicol ; 244: 106095, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35121565

RESUMEN

The primary focus of environmental toxicological studies is to address the direct effects of chemicals on exposed organisms (parental generation - F0), mostly overlooking effects on subsequent non-exposed generations (F1 and F2 - intergenerational and F3 transgenerational, respectively). Here, we addressed the effects of simvastatin (SIM), one of the most widely prescribed human pharmaceuticals for the primary treatment of hypercholesterolemia, using the keystone crustacean Gammarus locusta. We demonstrate that SIM, at environmentally relevant concentrations, has significant inter and transgenerational (F1 and F3) effects in key signaling pathways involved in crustaceans' neuroendocrine regulation (Ecdysteroids, Catecholamines, NO/cGMP/PKG, GABAergic and Cholinergic signaling pathways), concomitantly with changes in apical endpoints, such as depressed reproduction and growth. These findings are an essential step to improve hazard and risk assessment of biological active compounds, such as SIM, and highlight the importance of studying the transgenerational effects of environmental chemicals in animals' neuroendocrine regulation.


Asunto(s)
Anfípodos , Contaminantes Químicos del Agua , Animales , Reproducción , Simvastatina/toxicidad , Contaminantes Químicos del Agua/toxicidad
7.
Elife ; 102021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34372969

RESUMEN

Brain injuries can interrupt descending neural pathways that convey motor commands from the cortex to spinal motoneurons. Here, we demonstrate that a unilateral injury of the hindlimb sensorimotor cortex of rats with completely transected thoracic spinal cord produces hindlimb postural asymmetry with contralateral flexion and asymmetric hindlimb withdrawal reflexes within 3 hr, as well as asymmetry in gene expression patterns in the lumbar spinal cord. The injury-induced postural effects were abolished by hypophysectomy and were mimicked by transfusion of serum from animals with brain injury. Administration of the pituitary neurohormones ß-endorphin or Arg-vasopressin-induced side-specific hindlimb responses in naive animals, while antagonists of the opioid and vasopressin receptors blocked hindlimb postural asymmetry in rats with brain injury. Thus, in addition to the well-established involvement of motor pathways descending from the brain to spinal circuits, the side-specific humoral signaling may also add to postural and reflex asymmetries seen after brain injury.


Brain trauma or a stroke often lead to severe problems in posture and movement. These injuries frequently occur only on one side, causing asymmetrical motor changes: damage to the left brain hemisphere triggers abnormal contractions of the right limbs, and vice-versa. The injuries can disrupt neural tracts between the brain and the spinal cord, the structure that conveys electric messages to muscles. However, research has also shed light on new actors: the hormones released into the bloodstream by the pituitary gland. Similar to the effects of brain lesions, several of these molecules cause asymmetric posture in healthy rats. In fact, a group of hormones can trigger muscle contraction of the left back leg, and another of the right one. Could pituitary hormones mediate the asymmetric effects of brain injuries? To investigate this question, Lukoyanov, Watanabe, Carvalho, Kononenko, Sarkisyan et al. focused on rats in which the connection between the brain and the spinal cord segments that control the hindlimbs had been surgically removed. This stopped transmission of electric messages from the brain to muscles in the back legs. Strikingly, lesions on one side of the brain in these animals still led to asymmetric posture, with contraction of the leg on the opposite side of the body. These effects were abolished when the pituitary gland was excised. Postural asymmetry also emerged when blood serum from injured rats was injected into healthy animals. The findings suggest that hormones play an essential role in signalling from the brain to the spinal cord. Further experiments identified that two pituitary hormones, ß-endorphin and Arg-vasopressin, induced contraction of the right but not the left hindlimb of healthy animals. In addition, small molecules that inhibit these hormones could block the deficits seen on the right side after an injury on the left hemisphere of the brain. Taken together, these results show that neurons in the spinal cord are not just controlled by the neural tracts that descend from the brain, but also by hormones which have left-right side-specific actions. This unique signalling could be a part of a previously unknown hormonal mechanism that selectively targets either the left or the right side of the body. This knowledge could help to design side-specific treatments for stroke and brain trauma.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Vías Nerviosas/fisiología , Reflejo , Corteza Sensoriomotora/fisiología , Animales , Lesiones Encefálicas/metabolismo , Masculino , Vías Nerviosas/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar
8.
Elife ; 102021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34374646

RESUMEN

Evidence that neurohormones contribute to the contralateral effects of unilateral brain injury challenges a fundamental assumption of basic neuroscience and clinical neurology.


Asunto(s)
Lesiones Encefálicas , Humanos
9.
Reprod Sci ; 28(3): 617-638, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32748224

RESUMEN

Lifestyle factors, which include the practices we adopt in our daily life, have a significant role in shaping our overall health. These lifestyle choices are mainly centered on personal preferences and our surrounding social environment. In addition to lifestyle factors, we continuously interact with our environment, which impacts physiology. Several factors have been claimed to affect women's fertility; lifestyle-related factors, in particular, have received great attention in the last decade. Due to societal and professional pressure, childbearing age in women has gradually shifted to the 30s. Delayed age of childbearing along with modern lifestyle offers a wider window of opportunity for various lifestyle and genetic perturbations to penetrate to affect fertility. While clinical studies have strengthened a direct correlation between lifestyle, environment, and female reproductive health; experimental studies on animal models have investigated their mechanism of action. In most instances, these factors target the neuroendocrine pathways, resulting in metabolic derangements. This review aims to dissect the plausible interconnection of lifestyle and environmental factors with various neuroendocrine pathways and to discuss how it can affect the female physiology in the long-term, resulting in reproductive incompetence.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Fertilidad , Infertilidad Femenina/etiología , Estilo de Vida , Salud Reproductiva , Determinantes Sociales de la Salud , Adulto , Comorbilidad , Femenino , Estado de Salud , Humanos , Infertilidad Femenina/diagnóstico , Infertilidad Femenina/fisiopatología , Medición de Riesgo , Factores de Riesgo
10.
J Neurogenet ; 34(3-4): 482-488, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32619378

RESUMEN

This review article highlights our efforts to decode the role of the nervous system in regulating intestinal lipid metabolism in Caenorhabditis elegans. Capitalizing on the prescient and pioneering work of Sydney Brenner and John Sulston in establishing C. elegans as an immensely valuable model system, we have uncovered critical roles for oxygen sensing, population density sensing and food sensing in orchestrating the balance between storing lipids and utilizing them for energy in the intestine, the major organ for lipid metabolism in this model system. Our long-term goal is to reveal the integrative mechanisms and regulatory logic that underlies the complex relationship between genes, environment and internal state in the regulation of energy and whole-body physiology.


Asunto(s)
Caenorhabditis elegans/fisiología , Metabolismo de los Lípidos/fisiología , Sistemas Neurosecretores/fisiología , Animales , Peso Corporal , Proteínas de Caenorhabditis elegans/fisiología , Metabolismo Energético , Conducta Alimentaria/fisiología , Intestinos/inervación , Oxígeno , Densidad de Población , Serotonina/fisiología , Inanición/metabolismo , Taquicininas/fisiología
11.
Curr Biol ; 30(13): 2602-2607.e2, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32442457

RESUMEN

Population density can modulate the developmental trajectory of Caenorhabditis elegans larvae by promoting entry into dauer diapause, which is characterized by metabolic and anatomical remodeling and stress resistance [1, 2]. Genetic analysis of dauer formation has identified the involvement of evolutionarily conserved endocrine signaling pathways, including the DAF-2/insulin-like receptor signaling pathway [3-7]. Chemical and metabolomic analysis of dauer-inducing pheromone has identified a family of small molecules, ascarosides, which act potently to communicate increased population density and promote dauer formation [1, 8-10]. Here, we show that adult animals respond to ascarosides produced under conditions of increased population density by increasing the duration of reproduction. We observe that the ascarosides that promote dauer entry of larvae also act on adult animals to attenuate expression of the insulin peptide INS-6 from the ASI chemosensory neurons, resulting in diminished neuroendocrine insulin signaling that extends the duration of reproduction. Genetic analysis of ins-6 and corresponding insulin-signaling pathway mutants showed that the effect of increased population density on reproductive span was mimicked by ins-6 loss of function that exerted effects on duration of reproduction through the canonical DAF-2-DAF-16 pathway. We further observed that the effect of population density on reproductive span acted through DAF-16-dependent and DAF-16-independent pathways upstream of DAF-12, paralleling in adults what has been observed for the dauer developmental decision of larvae. Our data suggest that, under conditions of increased population density, C. elegans animals prolong the duration of reproductive egg laying, which may enable the subsequent development of progeny under more favorable conditions.


Asunto(s)
Caenorhabditis elegans/fisiología , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Densidad de Población , Reproducción , Atractivos Sexuales/metabolismo , Transducción de Señal
12.
Mol Reprod Dev ; 87(4): 482-492, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32202015

RESUMEN

We conducted an integrated analysis of gene expression and chromatin structure of mouse uterus to understand the regulation of uterine-expressed genes on gestation day 4 (GD4) during the peri-implantation period. The genes expressed in the uterus showed a significant association (p < .0001) with the presence of the nucleosome-free region (open chromatin) in the 5'-untranslated region of the genes. The majority of these upstream open chromatins harbored a common class of regulatory elements known as upstream open reading frames. We also compared the gene expression profiles between the uterus and brain which showed that specific gene pairs were expressed in a correlated manner, either positively or negatively. In addition, specific ligand/receptor genes showed coordinated patterns of expression between the uterus and brain on GD4, and the level of expression of these ligand/receptors altered significantly in the brain during late pregnancy (GD15) compared with the peri-implantation period (GD4). Collectively, these results suggest that regulation of the uterine genes during the peri-implantation period is likely to have a functional link with the maternal brain in pregnant mice.


Asunto(s)
Encéfalo/metabolismo , Implantación del Embrión/genética , Regulación de la Expresión Génica , Edad Gestacional , Útero/metabolismo , Regiones no Traducidas 5' , Animales , Cromatina/genética , Femenino , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , ARN Mensajero/genética , Transcriptoma
13.
Sci Total Environ ; 723: 138128, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32222513

RESUMEN

To understand the adaptation of Litopenaeus vannamei to high environmental ammonia-N, RNA interference was used to investigate the function of crustacean hyperglycemic hormone (CHH) in the physiological process of neuroendocrine signaling transduction, and ammonia excretion and metabolism. The shrimp were exposed to 25 mg/L NH4Cl and injected with 20 µg/shrimp CHH dsRNA for 72 h. The results showed that hemolymph ammonia content increased under ammonia-N stress and further increased after CHH knockdown, suggesting that CHH can promote ammonia excretion. Moreover, after CHH knockdown, the levels of CHH, DA, and Wnts decreased significantly, the expression of receptor GC, DA1R, Frizzled and LRP 5/6 also decreased, while DA4R increased remarkably. Moreover, PKA and PKG decreased, while PKC markedly increased, and nuclear transcription factors (CREB and TCF) as well as effector proteins (ß-catenin, FXYD2, and 14-3-3) were significantly downregulated. Furthermore, ammonia transporters Na+/K+-ATPase (NKA), K+channel, Rh protein, AQP, V-ATPase, and VAMP decreased significantly, while Na+/H+ exchangers (NHE) and Na+/K+/2Cl- cotransporter (NKCC) increased significantly. These results suggest that CHH regulates ammonia excretion in three ways: 1) by mainly regulating ion channels via PKA, PKC, and PKG signaling pathways; 2) by activating related proteins primarily through Wnt signaling pathway; and 3) by exocytosis, mostly induced by the PKA signaling pathway. In addition, the levels of Gln, uric acid, and urea increased in accordance with the activities of GDH/GS, XDH, and arginase, respectively, suggesting that ammonia excretion was inhibited but ammonia metabolism was slightly enhanced. This study deepens our understanding of the mechanism by which crustaceans respond to high environmental ammonia-N.


Asunto(s)
Hormonas de Invertebrados , Penaeidae , Amoníaco , Animales , Proteínas de Artrópodos , Proteínas del Tejido Nervioso
14.
J Exp Biol ; 221(Pt 19)2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30104305

RESUMEN

Post-reproductive life in the female octopus is characterized by an extreme pattern of maternal care: the mother cares for her clutch of eggs without feeding until her death. These maternal behaviors are eradicated if the optic glands, the octopus analog of the vertebrate pituitary gland, are removed from brooding females. Despite the optic gland's importance in regulating maternal behavior, the molecular features underlying optic gland function are unknown. Here, we identify major signaling systems of the Octopus bimaculoides optic gland. Through behavioral analyses and transcriptome sequencing, we report that the optic gland undergoes remarkable molecular changes that coincide with transitions between behavioral stages. These include the dramatic upregulation and downregulation of catecholamine, steroid, insulin and feeding peptide pathways. Transcriptome analyses in other tissues demonstrate that these molecular changes are not generalized markers of senescence, but instead, specific features of the optic glands. Our study expands the classic optic gland-pituitary gland analogy and more specifically, it indicates that, rather than a single 'self-destruct' hormone, the maternal optic glands employ multiple pathways as systemic hormonal signals of behavioral regulation.


Asunto(s)
Glándulas Exocrinas/fisiología , Octopodiformes/fisiología , Transducción de Señal , Transcriptoma , Animales , Biología Computacional , Muerte , Femenino , Conducta Materna , Octopodiformes/genética
15.
Neurotherapeutics ; 15(1): 135-145, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29340928

RESUMEN

Though seemingly distinct and autonomous, emerging evidence suggests there is a bidirectional interaction between the intestinal microbiota and the brain. This crosstalk may play a substantial role in neurologic diseases, including anxiety, depression, autism, multiple sclerosis, Parkinson's disease, and, potentially, Alzheimer's disease. Long hypothesized by Metchnikoff and others well over 100 years ago, investigations into the mind-microbe axis is now seeing a rapid resurgence of research. If specific pathways and mechanisms of interaction are understood, it could have broad therapeutic potential, as the microbiome is environmentally acquired and can be modified to promote health. This review will discuss immune, endocrine, and neural system pathways that interconnect the gut microbiota to central nervous system and discuss how these findings might be applied to neurologic disease.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/microbiología , Microbioma Gastrointestinal , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/microbiología , Animales , Encéfalo/inmunología , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/microbiología , Microglía/metabolismo , Microglía/microbiología , Enfermedades del Sistema Nervioso/inmunología , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipófiso-Suprarrenal/microbiología , Transducción de Señal
16.
Cell Stress ; 2(12): 340-361, 2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31225459

RESUMEN

Symmetric growth and the origins of fluctuating asymmetry are unresolved phenomena of biology. Small, and sometimes noticeable, deviations from perfect bilateral symmetry reflect the vulnerability of development to perturbations. The degree of asymmetry is related to the magnitude of the perturbations and the ability of an individual to cope with them. As the left and right sides of an individual were presumed to be genetically identical, deviations of symmetry were traditionally attributed to non-genetic effects such as environmental and developmental noise. In this review, we draw attention to other possible sources of variability, especially to somatic mutations and transposons. Mutations are a major source of phenotypic variability and recent genomic data have highlighted somatic mutations as ubiquitous, even in phenotypically normal individuals. We discuss the importance of factors that are responsible for buffering and stabilizing the genome and for maintaining size robustness and quality through elimination of less-fit or damaged cells. However, the important question that arises from these studies is whether this self-correcting capacity and intrinsic organ size controls are sufficient to explain how symmetric structures can reach an identical size and shape. Indeed, recent discoveries in the fruit fly have uncovered a conserved hormone of the insulin/IGF/relaxin family, Dilp8, that is responsible for stabilizing body size and symmetry in the face of growth perturbations. Dilp8 alarm signals periphery growth status to the brain, where it acts on its receptor Lgr3. Loss of Dilp8-Lgr3 signaling renders flies incapable of detecting growth perturbations and thus maintaining a stable size and symmetry. These findings help to understand how size and symmetry of somatic tissues remain undeterred in noisy environments, after injury or illnesses, and in the presence of accumulated somatic mutations.

17.
Artículo en Inglés | MEDLINE | ID: mdl-23781199

RESUMEN

We review the role of neuroglial compartmentation and transcellular neurotransmitter cycling during hypothalamic appetite regulation as detected by Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) methods. We address first the neurochemical basis of neuroendocrine regulation in the hypothalamus and the orexigenic and anorexigenic feed-back loops that control appetite. Then we examine the main MRI and MRS strategies that have been used to investigate appetite regulation. Manganese-enhanced magnetic resonance imaging (MEMRI), Blood oxygenation level-dependent contrast (BOLD), and Diffusion-weighted magnetic resonance imaging (DWI) have revealed Mn(2+) accumulations, augmented oxygen consumptions, and astrocytic swelling in the hypothalamus under fasting conditions, respectively. High field (1)H magnetic resonance in vivo, showed increased hypothalamic myo-inositol concentrations as compared to other cerebral structures. (1)H and (13)C high resolution magic angle spinning (HRMAS) revealed increased neuroglial oxidative and glycolytic metabolism, as well as increased hypothalamic glutamatergic and GABAergic neurotransmissions under orexigenic stimulation. We propose here an integrative interpretation of all these findings suggesting that the neuroendocrine regulation of appetite is supported by important ionic and metabolic transcellular fluxes which begin at the tripartite orexigenic clefts and become extended spatially in the hypothalamus through astrocytic networks becoming eventually MRI and MRS detectable.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA