Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38950418

RESUMEN

Keratan sulfate (KS) is a proteoglycan secreted in the fetal brain astrocytes and radial glia into extracellular parenchyma as granulofilamentous deposits. KS surrounds neurons except dendritic spines, repelling glutamatergic and facilitating GABAergic axons. The same genes are expressed in both neuroblast migration and axonal growth. This study examines timing of KS during morphogenesis of some normally developing human fetal forebrain structures. Twenty normal human fetal brains from 9-41 weeks gestational age were studied at autopsy. KS was examined by immunoreactivity in formalin-fixed paraffin sections, plus other markers including synaptophysin, S-100ß protein, vimentin and nestin. Radial and tangential neuroblast migratory pathways from subventricular zone to cortical plate were marked by KS deposits as early as 9wk GA, shortly after neuroblast migration initiated. During later gestation this reactivity gradually diminished and disappeared by term. Long axonal fascicles of the internal capsule and short fascicles of intrinsic bundles of globus pallidus and corpus striatum also appeared as early as 9-12wk, as fascicular sleeves before axons even entered. Intense KS occurs in astrocytic cytoplasm and extracellular parenchyma at 9wk in globus pallidus, 15wk thalamus, 18wk corpus striatum, 22wk cortical plate, and hippocampus postnatally. Corpus callosum and anterior commissure do not exhibit KS at any age. Optic chiasm shows reactivity at the periphery but not around intrinsic subfasciculi. We postulate that KS forms a chemical template for many long and short axonal fascicles before axons enter and neuroblast migratory pathways at initiation of migration. Cross-immunoreactivity with aggrecan may render difficult molecular distinction.

2.
Front Bioeng Biotechnol ; 12: 1410717, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933539

RESUMEN

In the brains of most adult mammals, neural precursor cells (NPCs) from the subventricular zone (SVZ) migrate through the rostral migratory stream (RMS) to replace olfactory bulb interneurons. Following brain injury, published studies have shown that NPCs can divert from the SVZ-RMS-OB route and migrate toward injured brain regions, but the quantity of arriving cells, the lack of survival and terminal differentiation of neuroblasts into neurons, and their limited capacity to re-connect into circuitry are insufficient to promote functional recovery in the absence of therapeutic intervention. Our lab has fabricated a biomimetic tissue-engineered rostral migratory stream (TE-RMS) that replicates some notable structural and functional components of the endogenous rat RMS. Based on the design attributes for the TE-RMS platform, it may serve as a regenerative medicine strategy to facilitate sustained neuronal replacement into an injured brain region or an in vitro tool to investigate cell-cell communication and neuroblast migration. Previous work has demonstrated that the TE-RMS replicates the basic structure, unique nuclear shape, cytoskeletal arrangement, and surface protein expression of the endogenous rat RMS. Here, we developed an enhanced TE-RMS fabrication method in hydrogel microchannels that allowed more robust and high-throughput TE-RMS assembly. We report unique astrocyte behavior, including astrocyte bundling into the TE-RMS, the presence of multiple TE-RMS bundles, and observations of discontinuities in TE-RMS bundles, when microtissues are fabricated in agarose microchannels containing different critical curved or straight geometric features. We also demonstrate that we can harvest NPCs from the SVZ of adult rat brains and that EGFP+ cells migrate in chain formation from SVZ neurospheres through the TE-RMS in vitro. Overall, the TE-RMS can be utilized as an in vitro platform to investigate the pivotal cell-cell signaling mechanisms underlying the synergy of molecular cues involved in immature neuronal migration and differentiation.

3.
Elife ; 132024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905123

RESUMEN

The brain is consisted of diverse neurons arising from a limited number of neural stem cells. Drosophila neural stem cells called neuroblasts (NBs) produces specific neural lineages of various lineage sizes depending on their location in the brain. In the Drosophila visual processing centre - the optic lobes (OLs), medulla NBs derived from the neuroepithelium (NE) give rise to neurons and glia cells of the medulla cortex. The timing and the mechanisms responsible for the cessation of medulla NBs are so far not known. In this study, we show that the termination of medulla NBs during early pupal development is determined by the exhaustion of the NE stem cell pool. Hence, altering NE-NB transition during larval neurogenesis disrupts the timely termination of medulla NBs. Medulla NBs terminate neurogenesis via a combination of apoptosis, terminal symmetric division via Prospero, and a switch to gliogenesis via Glial Cell Missing (Gcm); however, these processes occur independently of each other. We also show that temporal progression of the medulla NBs is mostly not required for their termination. As the Drosophila OL shares a similar mode of division with mammalian neurogenesis, understanding when and how these progenitors cease proliferation during development can have important implications for mammalian brain size determination and regulation of its overall function.


Every cell in the body can be traced back to a stem cell. For instance, most cells in the adult brains of fruit flies come from a type of stem cell known as a neuroblast. This includes neurons and glial cells (which support and protect neurons) in the optic lobe, the part of the brain that processes visual information. The numbers of neurons and glia in the optic lobe are tightly regulated such that when the right numbers are reached, the neuroblasts stop making more and are terminated. But how and when this occurs is poorly understood. To investigate, Nguyen and Cheng studied when neuroblasts disappear in the optic lobe over the course of development. This revealed that the number of neuroblasts dropped drastically 12 to 18 hours after the fruit fly larvae developed in to pupae, and were completely gone by 30 hours in to pupae life. Further experiments revealed that the timing of this decrease is influenced by neuroepithelium cells, the pool of stem cells that generate neuroblasts during the early stages of development. Nguyen and Cheng found that speeding up this transition so that neuroblasts arise from the neuroepithelium earlier, led neuroblasts to disappear faster from the optic lobe; whereas delaying the transition caused neuroblasts to persist for much longer. Thus, the time at which neuroblasts are born determines when they are terminated. Furthermore, Nguyen and Cheng showed that the neuroblasts were lost through a combination of means. This includes dying via a process called apoptosis, dividing to form two mature neurons, or switching to a glial cell fate. These findings provide a deeper understanding of the mechanisms regulating stem cell pools and their conversion to different cell types, a process that is crucial to the proper development of the brain. How cells divide to form the optic lobe of fruit flies is similar to how new neurons arise in the mammalian brain. Understanding how and when stem cells in the fruit fly brain stop proliferating could therefore provide new insights in to the development of the human brain.


Asunto(s)
Apoptosis , Diferenciación Celular , Proteínas de Drosophila , Células-Madre Neurales , Células Neuroepiteliales , Neurogénesis , Animales , Células-Madre Neurales/fisiología , Células-Madre Neurales/citología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Neurogénesis/fisiología , Células Neuroepiteliales/fisiología , Células Neuroepiteliales/citología , Neuroglía/fisiología , Neuroglía/citología , Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología , Drosophila melanogaster/citología , Lóbulo Óptico de Animales no Mamíferos/citología , Lóbulo Óptico de Animales no Mamíferos/crecimiento & desarrollo , Pupa/crecimiento & desarrollo , Proteínas de Unión al ADN , Factores de Transcripción
4.
FEBS J ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924469

RESUMEN

The arrest of neural crest-derived sympathoadrenal neuroblast differentiation contributes to neuroblastoma formation, and overriding this blocked differentiation is a clear strategy for treating high-risk neuroblastoma. A better understanding of neuroblast or neuroblastoma differentiation is essential for developing new therapeutic approaches. It has been proposed that Krueppel-like factor 7 (KLF7) is a neuroblastoma super-enhancer-associated transcription factor gene. Moreover, KLF7 was found to be intensely active in postmitotic neuroblasts of the developing nervous system during embryogenesis. However, the role of KLF7 in the differentiation of neuroblast or neuroblastoma is unknown. Here, we find a strong association between high KLF7 expression and favorable clinical outcomes in neuroblastoma. KLF7 induces differentiation of neuroblastoma cells independently of the retinoic acid (RA) pathway and acts cooperatively with RA to induce neuroblastoma differentiation. KLF7 alters the GTPase activity and multiple differentiation-related genes by binding directly to the promoters of neuroblast differentiation-associated protein (AHNAK and AHNAK2) and glycerophosphodiester phosphodiesterase domain-containing protein 5 (GDPD5) and regulating their expression. Furthermore, we also observe that silencing KLF7 in neuroblastoma cells promotes the adrenergic-to-mesenchymal transition accompanied by changes in enhancer-mediated gene expression. Our results reveal that KLF7 is an inducer of neuroblast or neuroblastoma differentiation with prognostic significance and potential therapeutic value.

5.
BMC Med ; 22(1): 158, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38616269

RESUMEN

ANKRD11 (ankyrin repeat domain 11) is a chromatin regulator and the only gene associated with KBG syndrome, a rare neurodevelopmental disorder. We have previously shown that Ankrd11 regulates murine embryonic cortical neurogenesis. Here, we show a novel olfactory bulb phenotype in a KBG syndrome mouse model and two diagnosed patients. Conditional knockout of Ankrd11 in murine embryonic neural stem cells leads to aberrant postnatal olfactory bulb development and reduced size due to reduction of the olfactory bulb granule cell layer. We further show that the rostral migratory stream has incomplete migration of neuroblasts, reduced cell proliferation as well as aberrant differentiation of neurons. This leads to reduced neuroblasts and neurons in the olfactory bulb granule cell layer. In vitro, Ankrd11-deficient neural stem cells from the postnatal subventricular zone display reduced migration, proliferation, and neurogenesis. Finally, we describe two clinically and molecularly confirmed KBG syndrome patients with anosmia and olfactory bulb and groove hypo-dysgenesis/agenesis. Our report provides evidence that Ankrd11 is a novel regulator of olfactory bulb development and neuroblast migration. Moreover, our study highlights a novel clinical sign of KBG syndrome linked to ANKRD11 perturbations in mice and humans.


Asunto(s)
Anomalías Múltiples , Enfermedades del Desarrollo Óseo , Discapacidad Intelectual , Anomalías Dentarias , Humanos , Animales , Ratones , Facies , Bulbo Olfatorio , Modelos Animales de Enfermedad
6.
Trends Neurosci ; 47(5): 322-323, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38664110

RESUMEN

In a recent study, Shvedov and colleagues used live two-photon imaging in transgenic zebra finches to reveal migration patterns of neuroblasts through the complex environment of the postembryonic brain. This study highlights the value of ubiquitin C/green fluorescent protein (UBC-GFP) transgenic zebra finches in studying adult neurogenesis and advances our understanding of dispersed long-distance neuronal migration in the adult brain, shedding light on this understudied phenomenon.


Asunto(s)
Encéfalo , Movimiento Celular , Neurogénesis , Neuronas , Pájaros Cantores , Animales , Animales Modificados Genéticamente , Encéfalo/fisiología , Encéfalo/citología , Movimiento Celular/fisiología , Pinzones/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Pájaros Cantores/fisiología
7.
Genetics ; 227(2)2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38652773

RESUMEN

Neurogenesis involves the precisely coordinated action of genetic programs controlling large-scale neuronal fate specification down to terminal events of neuronal differentiation. The Q neuroblasts in Caenorhabditis elegans, QL on the left and QR on the right, divide, differentiate, and migrate in a similar pattern to produce three neurons each. However, QL on the left migrates posteriorly, and QR on the right migrates anteriorly. The MAB-5/Hox transcription factor is necessary and sufficient for posterior Q lineage migration and is normally expressed only in the QL lineage. To define genes controlled by MAB-5 in the Q cells, fluorescence-activated cell sorting was utilized to isolate populations of Q cells at a time in early L1 larvae when MAB-5 first becomes active. Sorted Q cells from wild-type, mab-5 loss-of-function (lof), and mab-5 gain-of-function (gof) mutants were subject to RNA-seq and differential expression analysis. Genes enriched in Q cells included those involved in cell division, DNA replication, and DNA repair, consist with the neuroblast stem cell identity of the Q cells at this stage. Genes affected by mab-5 included those involved in neurogenesis, neural development, and interaction with the extracellular matrix. cwn-1, which encodes a Wnt signaling molecule, showed a paired response to mab-5 in the Q cells: cwn-1 expression was reduced in mab-5(lof) and increased in mab-5(gof), suggesting that MAB-5 is required for cwn-1 expression in Q cells. MAB-5 is required to prevent anterior migration of the Q lineage while it transcriptionally reprograms the Q lineage for posterior migration. Functional genetic analysis revealed that CWN-1 is required downstream of MAB-5 to inhibit anterior migration of the QL lineage, likely in parallel to EGL-20/Wnt in a noncanonical Wnt pathway. In sum, work here describes a Q cell transcriptome, and a set of genes regulated by MAB-5 in the QL lineage. One of these genes, cwn-1, acts downstream of mab-5 in QL migration, indicating that this gene set includes other genes utilized by MAB-5 to facilitate posterior neuroblast migration.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Movimiento Celular , Células-Madre Neurales , Transcriptoma , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Neurogénesis , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Regulación del Desarrollo de la Expresión Génica , Vía de Señalización Wnt , Proteínas de Homeodominio
8.
J Cell Sci ; 137(5)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38465513

RESUMEN

Drosophila neural stem cells, or neuroblasts, rapidly proliferate during embryonic and larval development to populate the central nervous system. Neuroblasts divide asymmetrically to create cellular diversity, with each division producing one sibling cell that retains the neuroblast fate and another that differentiates into glia or neurons. This asymmetric outcome is mediated by the transient polarization of numerous factors to the cell cortex during mitosis. The powerful genetics and outstanding imaging tractability of the neuroblast make it an excellent model system for studying the mechanisms of cell polarity. This Cell Science at a Glance article and the accompanying poster explore the phases of the neuroblast polarity cycle and the regulatory circuits that control them. We discuss the key features of the cycle - the targeted recruitment of proteins to specific regions of the plasma membrane and multiple phases of highly dynamic actomyosin-dependent cortical flows that pattern both protein distribution and membrane structure.


Asunto(s)
Proteínas de Drosophila , Células-Madre Neurales , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Mitosis , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular/fisiología
9.
Auris Nasus Larynx ; 51(3): 517-524, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522356

RESUMEN

OBJECTIVE: Periglomerular and granule cells in the adult mammalian olfactory bulb modulate olfactory signal transmission. These cells originate from the subventricular zone, migrate to the olfactory bulb via the Rostral Migratory Stream (RMS), and differentiate into mature cells within the olfactory bulb throughout postnatal life. While the regulation of neuroblast development is known to be affected by external stimuli, there is a lack of information concerning changes that occur during the recovery process after injury caused by external stimuli. To address this gap in research, the present study conducted histological observations to investigate changes in the olfactory bulb and RMS occurring after the degeneration and regeneration of olfactory neurons. METHODS: To create a model of olfactory neurodegeneration, adult mice were administered methimazole intraperitoneally. Nasal tissue and whole brains were removed 3, 7, 14 and 28 days after methimazole administration, and EdU was administered 2 and 4 h before removal of these tissues to monitor dividing cells in the RMS. Methimazole-untreated mice were used as controls. Olfactory nerve fibers entering the olfactory glomerulus were observed immunohistochemically using anti-olfactory marker protein. In the brain tissue, the entire RMS was observed and the volume and total number of cells in the RMS were measured. In addition, the number of neuroblasts and dividing neuroblasts passing through the RMS were measured using anti-doublecortin and anti-EdU antibodies, respectively. Statistical analysis was performed using the Tukey test. RESULTS: Olfactory epithelium degenerated was observed after methimazole administration, and recovered after 28 days. In the olfactory glomeruli, degeneration of OMP fibers began after methimazole administration, and after day 14, OMP fibers were reduced or absent by day 28, and overall OMP positive fibers were less than 20%. Glomerular volume tended to decrease after methimazole administration and did not appear to recover, even 28 days after recovery of the olfactory epithelium. In the RMS, EdU-positive cells decreased on day 3 and began to increase on day 7. However, they did not recover to the same levels as the control methimazole-untreated mice even after 28 days. CONCLUSION: These results suggest that the division and maturation of neuroblasts migrating from the RMS was suppressed by olfactory nerve degeneration or the disruption of olfactory input.


Asunto(s)
Movimiento Celular , Metimazol , Bulbo Olfatorio , Animales , Bulbo Olfatorio/patología , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/citología , Metimazol/farmacología , Ratones , Antitiroideos/farmacología , Nervio Olfatorio/patología , Proteína Marcadora Olfativa/metabolismo , Modelos Animales de Enfermedad , Masculino
10.
Mol Neurobiol ; 61(10): 1-13, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38507029

RESUMEN

Neuroblasts were first derived from the adult mammalian brains in the 1990s by Reynolds et al. Since then, persistent neurogenesis in the subgranular zone (SGZ) of the hippocampus and subventricular zone (SVZ) has gradually been recognized. To date, reviews on neuroblast migration have largely investigated glial cells and molecular signaling mechanisms, while the relationship between vasculature and cell migration remains a mystery. Thus, this paper underlines the partial biological features of neuroblast migration and unravels the significance and mechanisms of the vasculature in the process to further clarify theoretically the neural repair mechanism after brain injury. Neuroblast migration presents three modes according to the characteristics of cells that act as scaffolds during the migration process: gliophilic migration, neurophilic migration, and vasophilic migration. Many signaling molecules, including brain-derived neurotrophic factor (BDNF), stromal cell-derived factor 1 (SDF-1), vascular endothelial growth factor (VEGF), and angiopoietin-1 (Ang-1), affect vasophilic migration, synergistically regulating the migration of neuroblasts to target areas along blood vessels. However, the precise role of blood vessels in the migration of neuroblasts needs to be further explored. The in-depth study of neuroblast migration will most probably provide theoretical basis and breakthrough for the clinical treatment of brain injury diseases.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Movimiento Celular , Células-Madre Neurales , Humanos , Animales , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología
11.
Cell Rep ; 43(3): 113823, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38386552

RESUMEN

During asymmetric division of Drosophila larval neuroblasts, the fate determinant Prospero (Pros) and its adaptor Miranda (Mira) are segregated to the basal cortex through atypical protein kinase C (aPKC) phosphorylation of Mira and displacement from the apical cortex, but Mira localization after aPKC phosphorylation is not well understood. We identify Kin17, a DNA replication and repair protein, as a regulator of Mira localization during asymmetric cell division. Loss of Kin17 leads to aberrant localization of Mira and Pros to the centrosome, cytoplasm, and nucleus. We provide evidence to show that the mislocalization of Mira and Pros is likely due to reduced expression of Falafel (Flfl), a component of protein phosphatase 4 (PP4), and defects in dephosphorylation of serine-96 of Mira. Our work reveals that Mira is likely dephosphorylated by PP4 at the centrosome to ensure proper basal localization of Mira after aPKC phosphorylation and that Kin17 regulates PP4 activity by regulating Flfl expression.


Asunto(s)
Proteínas de Drosophila , Células-Madre Neurales , Animales , División Celular Asimétrica , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células-Madre Neurales/metabolismo
12.
Elife ; 122024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38391176

RESUMEN

Neuroblasts in Drosophila divide asymmetrically, sequentially expressing a series of intrinsic factors to generate a diversity of neuron types. These intrinsic factors known as temporal factors dictate timing of neuroblast transitions in response to steroid hormone signaling and specify early versus late temporal fates in neuroblast neuron progeny. After completing their temporal programs, neuroblasts differentiate or die, finalizing both neuron number and type within each neuroblast lineage. From a screen aimed at identifying genes required to terminate neuroblast divisions, we identified Notch and Notch pathway components. When Notch is knocked down, neuroblasts maintain early temporal factor expression longer, delay late temporal factor expression, and continue dividing into adulthood. We find that Delta, expressed in cortex glia, neuroblasts, and after division, their GMC progeny, regulates neuroblast Notch activity. We also find that Delta in neuroblasts is expressed high early, low late, and is controlled by the intrinsic temporal program: early factor Imp promotes Delta, late factors Syp/E93 reduce Delta. Thus, in addition to systemic steroid hormone cues, forward lineage progression is controlled by local cell-cell signaling between neuroblasts and their cortex glia/GMC neighbors: Delta transactivates Notch in neuroblasts bringing the early temporal program and early temporal factor expression to a close.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Proteínas de Drosophila/metabolismo , Neurogénesis/genética , Hormonas/metabolismo , Esteroides/metabolismo , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica
13.
J Appl Toxicol ; 44(3): 355-370, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37735745

RESUMEN

Agriculture commonly utilizes crop protection products to tackle infestations from fungi, parasites, insects, and weeds. Validamycin A, an inhibitor of trehalase, possesses antibiotic and antifungal attributes. Epidemiological evidence has led to concerns regarding a potential link between pesticide usage and neurodegenerative diseases. The fruit fly, Drosophila melanogaster, has been recognized as a reliable model for genetic research due to its significant genetic similarities with mammals. Here, we propose to use D. melanogaster as an effective in vivo model system to investigate the genotoxic risks associated with exposure to validamycin A. In this study, we performed a neurotoxic evaluation of validamycin A in D. melanogaster larvae. Several endpoints were evaluated, including toxicity, intracellular oxidative stress (reactive oxygen species), intestinal damage, larval behavior (crawling behavior, light/dark sensitivity assay, and temperature sensitivity assay), locomotor (climbing) behavior, and neurogenotoxic effects (impaired DNA via Comet assay, enhanced by Endo III and formamidopyrimidine DNA glycosylase [FPG]). The results showed that exposure to validamycin A, especially at higher doses (1 and 2.5 mM), induced DNA impairment in neuroblasts as observed by Comet assay. Both larvae and adults exhibited behavioral changes and produced reactive oxygen species. Most importantly, this research represents a pioneering effort to report neurogenotoxicity data specifically in Drosophila larval neuroblasts, thus underscoring the importance of this species as a testing model in exploring the biological impacts of validamycin A. The in vivo findings from the experiments are a valuable and novel addition to the existing validamycin A neurogenotoxicity database.


Asunto(s)
Encéfalo , Drosophila melanogaster , Inositol/análogos & derivados , Animales , Drosophila melanogaster/genética , Especies Reactivas de Oxígeno , Larva , ADN , Mamíferos
14.
J Transl Med ; 21(1): 867, 2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037126

RESUMEN

BACKGROUND: Neurogenesis is stimulated in the subventricular zone (SVZ) of mice with cortical brain injuries. In most of these injuries, newly generated neuroblasts attempt to migrate toward the injury, accumulating within the corpus callosum not reaching the perilesional area. METHODS: We use a murine model of mechanical cortical brain injury, in which we perform unilateral cortical injuries in the primary motor cortex of adult male mice. We study neurogenesis in the SVZ and perilesional area at 7 and 14 dpi as well as the expression and concentration of the signaling molecule transforming growth factor alpha (TGF-α) and its receptor the epidermal growth factor (EGFR). We use the EGFR inhibitor Afatinib to promote neurogenesis in brain injuries. RESULTS: We show that microglial cells that emerge within the injured area and the SVZ in response to the injury express high levels of TGF-α leading to elevated concentrations of TGF-α in the cerebrospinal fluid. Thus, the number of neuroblasts in the SVZ increases in response to the injury, a large number of these neuroblasts remain immature and proliferate expressing the epidermal growth factor receptor (EGFR) and the proliferation marker Ki67. Restraining TGF-α release with a classical protein kinase C inhibitor reduces the number of these proliferative EGFR+ immature neuroblasts in the SVZ. In accordance, the inhibition of the TGF-α receptor, EGFR promotes migration of neuroblasts toward the injury leading to an elevated number of neuroblasts within the perilesional area. CONCLUSIONS: Our results indicate that in response to an injury, microglial cells activated within the injury and the SVZ release TGF-α, activating the EGFR present in the neuroblasts membrane inducing their proliferation, delaying maturation and negatively regulating migration. The inactivation of this signaling pathway stimulates neuroblast migration toward the injury and enhances the quantity of neuroblasts within the injured area. These results suggest that these proteins may be used as target molecules to regenerate brain injuries.


Asunto(s)
Lesiones Encefálicas , Células-Madre Neurales , Animales , Masculino , Ratones , Lesiones Encefálicas/metabolismo , Movimiento Celular , Receptores ErbB/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Factor de Crecimiento Transformador alfa
15.
Adv Pharm Bull ; 13(4): 806-816, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38022812

RESUMEN

Purpose: Spinal cord injury (SCI) is damage to the spinal cord that resulted in irreversible neuronal loss, glial scar formation and axonal injury. Herein, we used the human amniotic fluid mesenchymal stem cells (hAF-MSCs) and their conditioned medium (CM), to investigate their ability in neuroblast and astrocyte production as well as functional recovery following SCI. Methods: Fifty-four adult rats were randomly divided into nine groups (n=6), included: Control, SCI, (SCI + DMEM), (SCI + CM), (SCI + MSCs), (SCI + Astrocyte), (SCI + Astrocyte + DMEM), (SCI + Astrocyte + CM) and (SCI + Astrocyte + MSCs). Following laminectomy and SCI induction, DMEM, CM, MSCs, and astrocytes were injected. Western blot was performed to explore the levels of the Sox2 protein in the MSCs-CM. The immunofluorescence staining against doublecortin (DCX) and glial fibrillary acidic protein (GFAP) was done. Finally, Basso-Beattie-Brenham (BBB) locomotor test was conducted to assess the neurological outcomes. Results: Our results showed that the MSCs increased the number of endogenous DCX-positive cells and decreased the number of GFAP-positive cells by mediating juxtacrine and paracrine mechanisms (P<0.001). Transplanted human astrocytes were converted to neuroblasts rather than astrocytes under influence of MSCs and CM in the SCI. Moreover, functional recovery indexes were promoted in those groups that received MSCs and CM. Conclusion: Taken together, our data indicate the MSCs via juxtacrine and paracrine pathways could direct the spinal cord endogenous neural stem cells (NSCs) to the neuroblasts lineage which indicates the capability of the MSCs in the increasing of the number of DCX-positive cells and astrocytes decline.

16.
Genetics ; 225(4)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37831641

RESUMEN

The coordination of cellular behaviors during neurodevelopment is critical for determining the form, function, and size of the central nervous system (CNS). Mutations in the vertebrate Abnormal Spindle-Like, Microcephaly Associated (ASPM) gene and its Drosophila melanogaster ortholog abnormal spindle (asp) lead to microcephaly (MCPH), a reduction in overall brain size whose etiology remains poorly defined. Here, we provide the neurodevelopmental transcriptional landscape for a Drosophila model for autosomal recessive primary microcephaly-5 (MCPH5) and extend our findings into the functional realm to identify the key cellular mechanisms responsible for Asp-dependent brain growth and development. We identify multiple transcriptomic signatures, including new patterns of coexpressed genes in the developing CNS. Defects in optic lobe neurogenesis were detected in larval brains through downregulation of temporal transcription factors (tTFs) and Notch signaling targets, which correlated with a significant reduction in brain size and total cell numbers during the neurogenic window of development. We also found inflammation as a hallmark of asp mutant brains, detectable throughout every stage of CNS development, which also contributes to the brain size phenotype. Finally, we show that apoptosis is not a primary driver of the asp mutant brain phenotypes, further highlighting an intrinsic Asp-dependent neurogenesis promotion mechanism that is independent of cell death. Collectively, our results suggest that the etiology of the asp mutant brain phenotype is complex and that a comprehensive view of the cellular basis of the disorder requires an understanding of how multiple pathway inputs collectively determine tissue size and architecture.


Asunto(s)
Microcefalia , Animales , Encéfalo/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Inmunidad , Microcefalia/genética , Microcefalia/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
J Neuroinflammation ; 20(1): 210, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37715288

RESUMEN

BACKGROUND: The intravenous delivery of adult neural precursor cells (NPC) has shown promising results in enabling cerebroprotection, brain tissue remodeling, and neurological recovery in young, healthy stroke mice. However, the translation of cell-based therapies to clinical settings has encountered challenges. It remained unclear if adult NPCs could induce brain tissue remodeling and recovery in mice with hyperlipidemia, a prevalent vascular risk factor in stroke patients. METHODS: Male mice on a normal (regular) diet or on cholesterol-rich Western diet were exposed to 30 min intraluminal middle cerebral artery occlusion (MCAO). Vehicle or 106 NPCs were intravenously administered immediately after reperfusion, at 3 day and 7 day post-MCAO. Neurological recovery was evaluated using the Clark score, Rotarod and tight rope tests over up to 56 days. Histochemistry and light sheet microscopy were used to examine ischemic injury and brain tissue remodeling. Immunological responses in peripheral blood and brain were analyzed through flow cytometry. RESULTS: NPC administration reduced infarct volume, blood-brain barrier permeability and the brain infiltration of neutrophils, monocytes, T cells and NK cells in the acute stroke phase in both normolipidemic and hyperlipidemic mice, but increased brain hemorrhage formation and neutrophil, monocyte and CD4+ and CD8+ T cell counts and activation in the blood of hyperlipidemic mice. While neurological deficits in hyperlipidemic mice were reduced by NPCs at 3 day post-MCAO, NPCs did not improve neurological deficits at later timepoints. Besides, NPCs did not influence microglia/macrophage abundance and activation (assessed by morphology analysis), astroglial scar formation, microvascular length or branching point density (evaluated using light sheet microscopy), long-term neuronal survival or brain atrophy in hyperlipidemic mice. CONCLUSIONS: Intravenously administered NPCs did not have persistent effects on post-ischemic neurological recovery and brain remodeling in hyperlipidemic mice. These findings highlight the necessity of rigorous investigations in vascular risk factor models to fully assess the long-term restorative effects of cell-based therapies. Without comprehensive studies in such models, the clinical potential of cell-based therapies cannot be definitely determined.


Asunto(s)
Células-Madre Neurales , Accidente Cerebrovascular , Masculino , Animales , Ratones , Neuronas , Hemorragias Intracraneales , Encéfalo
18.
Dev Biol ; 503: 53-67, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37549863

RESUMEN

Growth regulation must be robust to ensure correct final size, but also adaptative to adjust to less favorable environmental conditions. Developmental coordination between whole-organism and the brain is particularly important, as the brain is a critical organ with little adaptability. Brain growth mainly depends on neural stem cell (NSC) proliferation to generate differentiated neural cells, it is however unclear how organism developmental progression is coordinated with NSCs. Here we demonstrate that the steroid hormone ecdysone plays a multi-step, stage specific role in regulating Drosophila NSCs, the neuroblasts. We used animals that are unable to synthesize ecdysone, to show that the developmental milestone called "critical weight peak", the peak that informs the body has reached minimum viable weight to survive metamorphosis, acts a checkpoint necessary to set neuroblast cell cycle pace during larval neurogenesis. The peaks of ecdysone that occur post-critical weight are no longer required to maintain neuroblast division rate. We additionally show that in a second stage, at the onset of pupariation, ecdysone is instead required to trigger neuroblast's proliferation exit and consequently the end of neurogenesis. We demonstrate that, without this signal from ecdysone, neuroblasts lose their ability to exit proliferation. Interestingly, although these neuroblasts proliferate for a longer period, the number of differentiated neurons is smaller compared to wild-type brains, suggesting a role for ecdysone in neuron maintenance. Our study provides insights into how neural stem cells coordinate their division rate with the pace of body growth, identifying a novel coordination mechanism between animal development and NSC proliferation.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Drosophila melanogaster/metabolismo , Ecdisona/metabolismo , Drosophila/metabolismo , División Celular , Neurogénesis , Proteínas de Drosophila/metabolismo , Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Larva/metabolismo
19.
bioRxiv ; 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37398350

RESUMEN

Complex behaviors depend on the precise developmental specification of neuronal circuits, but the relationship between genetic prograssms for neural development, circuit structure, and behavioral output is often unclear. The central complex (CX) is a conserved sensory-motor integration center in insects that governs many higher order behaviors and largely derives from a small number of Type II neural stem cells. Here, we show that Imp, a conserved IGF-II mRNA-binding protein expressed in Type II neural stem cells, specifies components of CX olfactory navigation circuitry. We show: (1) that multiple components of olfactory navigation circuitry arise from Type II neural stem cells and manipulating Imp expression in Type II neural stem cells alters the number and morphology of many of these circuit elements, with the most potent effects on neurons targeting the ventral layers of the fan-shaped body. (2) Imp regulates the specification of Tachykinin expressing ventral fan-shaped body input neurons. (3) Imp in Type II neural stem cells alters the morphology of the CX neuropil structures. (4) Loss of Imp in Type II neural stem cells abolishes upwind orientation to attractive odor while leaving locomotion and odor-evoked regulation of movement intact. Taken together, our work establishes that a single temporally expressed gene can regulate the expression of a complex behavior through the developmental specification of multiple circuit components and provides a first step towards a developmental dissection of the CX and its roles in behavior.

20.
Elife ; 122023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37314324

RESUMEN

Coordinated regulation of gene activity by transcriptional and translational mechanisms poise stem cells for a timely cell-state transition during differentiation. Although important for all stemness-to-differentiation transitions, mechanistic understanding of the fine-tuning of gene transcription is lacking due to the compensatory effect of translational control. We used intermediate neural progenitor (INP) identity commitment to define the mechanisms that fine-tune stemness gene transcription in fly neural stem cells (neuroblasts). We demonstrate that the transcription factor FruitlessC (FruC) binds cis-regulatory elements of most genes uniquely transcribed in neuroblasts. Loss of fruC function alone has no effect on INP commitment but drives INP dedifferentiation when translational control is reduced. FruC negatively regulates gene expression by promoting low-level enrichment of the repressive histone mark H3K27me3 in gene cis-regulatory regions. Identical to fruC loss-of-function, reducing Polycomb Repressive Complex 2 activity increases stemness gene activity. We propose low-level H3K27me3 enrichment fine-tunes gene transcription in stem cells, a mechanism likely conserved from flies to humans.


From neurons to sperm, our bodies are formed of a range of cells tailored to perform a unique role. However, organisms also host small reservoirs of unspecialized 'stem cells' that retain the ability to become different kinds of cells. When these stem cells divide, one daughter cell remains a stem cell while the other undergoes a series of changes that allows it to mature into a specific cell type. This 'differentiation' process involves quickly switching off the stem cell programme, the set of genes that give a cell the ability to keep dividing while maintaining an unspecialized state. Failure to do so can result in the differentiating cell reverting towards its initial state and multiplying uncontrollably, which can lead to tumours and other health problems. While scientists have a good understanding of how the stem cell programme is turned off during differentiation, controlling these genes is a balancing act that starts even before division: if the program is over-active in the 'mother' stem cell, for instance, the systems that switch it off in its daughter can become overwhelmed. The mechanisms presiding over these steps are less well-understood. To address this knowledge gap, Rajan, Anhezini et al. set out to determine how stem cells present in the brains of fruit flies could control the level of activity of their own stem cell programme. RNA sequencing and other genetic analyses revealed that a protein unique to these cells, called Fruitless, was responsible for decreasing the activity of the programme. Biochemical experiments then showed that Fruitless performed this role by attaching a small amount of chemical modifications (called methyl groups) to the proteins that 'package' the DNA near genes involved in the stem cell programme. High levels of methyl groups present near a gene will switch off this sequence completely; however, the amount of methyl groups that Fruitless helped to deposit is multiple folds lower. Consequently, Fruitless 'fine-tunes' the activity of the stem cell programme instead, dampening it just enough to stop it from overpowering the 'off' mechanism that would take place later in the daughter cell. These results shed new light on how stem cells behave ­ and how our bodies stop them from proliferating uncontrollably. In the future, Rajan, Anhezini et al. hope that this work will help to understand and treat diseases caused by defective stem cell differentiation.


Asunto(s)
Proteínas de Drosophila , Células-Madre Neurales , Animales , Humanos , Histonas/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Código de Histonas , Células-Madre Neurales/metabolismo , Transcripción Genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA