Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cereb Cortex ; 34(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39270674

RESUMEN

Brain network hubs are highly connected brain regions serving as important relay stations for information integration. Recent studies have linked mental disorders to impaired hub function. Provincial hubs mainly integrate information within their own brain network, while connector hubs share information between different brain networks. This study used a novel time-varying analysis to investigate whether hubs aberrantly follow the trajectory of other brain networks than their own. The aim was to characterize brain hub functioning in clinically remitted bipolar patients. We analyzed resting-state functional magnetic resonance imaging data from 96 euthymic individuals with bipolar disorder and 61 healthy control individuals. We characterized different hub qualities within the somatomotor network. We found that the somatomotor network comprised mainly provincial hubs in healthy controls. Conversely, in bipolar disorder patients, hubs in the primary somatosensory cortex displayed weaker provincial and stronger connector hub function. Furthermore, hubs in bipolar disorder showed weaker allegiances with their own brain network and followed the trajectories of the limbic, salience, dorsal attention, and frontoparietal network. We suggest that these hub aberrancies contribute to previously shown functional connectivity alterations in bipolar disorder and may thus constitute the neural substrate to persistently impaired sensory integration despite clinical remission.


Asunto(s)
Trastorno Bipolar , Imagen por Resonancia Magnética , Red Nerviosa , Corteza Somatosensorial , Humanos , Trastorno Bipolar/fisiopatología , Trastorno Bipolar/diagnóstico por imagen , Masculino , Femenino , Adulto , Corteza Somatosensorial/diagnóstico por imagen , Corteza Somatosensorial/fisiopatología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Red Nerviosa/fisiología , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Conectoma , Persona de Mediana Edad , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Adulto Joven
2.
Neuroimage ; 297: 120744, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39033791

RESUMEN

The fragmentation of the functional brain network has been identified through the functional connectivity (FC) analysis in studies investigating anesthesia-induced loss of consciousness (LOC). However, it remains unclear whether mild sedation of anesthesia can cause similar effects. This paper aims to explore the changes in local-global brain network topology during mild anesthesia, to better understand the macroscopic neural mechanism underlying anesthesia sedation. We analyzed high-density EEG from 20 participants undergoing mild and moderate sedation of propofol anesthesia. By employing a local-global brain parcellation in EEG source analysis, we established binary functional brain networks for each participant. Furthermore, we investigated the global-scale properties of brain networks by estimating global efficiency and modularity, and examined the changes in meso-scale properties of brain networks by quantifying the distribution of high-degree and high-betweenness hubs and their corresponding rich-club coefficients. It is evident from the results that the mild sedation of anesthesia does not cause a significant change in the global-scale properties of brain networks. However, network components centered on SomMot L show a significant decrease, while those centered on Default L, Vis L and Limbic L exhibit a significant increase during the transition from wakefulness to mild sedation (p<0.05). Compared to the baseline state, mild sedation almost doubled the number of high-degree hubs in Vis L, DorsAttn L, Limbic L, Cont L, and reduced by half the number of high-degree hubs in SomMot R, DorsAttn R, SalVentAttn R. Further, mild sedation almost doubled the number of high-betweenness hubs in Vis L, Vis R, Limbic R, Cont R, and reduced by half the number of high-betweenness hubs in SomMot L, SalVentAttn L, Default L, and SomMot R. Our results indicate that mild anesthesia cannot affect the global integration and segregation of brain networks, but influence meso-scale function for integrating different resting-state systems involved in various segregation processes. Our findings suggest that the meso-scale brain network reorganization, situated between global integration and local segregation, could reflect the autonomic compensation of the brain for drug effects. As a direct response and adjustment of the brain network system to drug administration, this spontaneous reorganization of the brain network aims at maintaining consciousness in the case of sedation.


Asunto(s)
Encéfalo , Electroencefalografía , Hipnóticos y Sedantes , Red Nerviosa , Propofol , Humanos , Propofol/administración & dosificación , Adulto , Masculino , Red Nerviosa/efectos de los fármacos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Femenino , Encéfalo/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Electroencefalografía/métodos , Electroencefalografía/efectos de los fármacos , Hipnóticos y Sedantes/administración & dosificación , Hipnóticos y Sedantes/farmacología , Adulto Joven , Anestésicos Intravenosos/administración & dosificación , Conectoma/métodos
3.
Eur J Neurosci ; 60(3): 4169-4181, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38779858

RESUMEN

Alzheimer's disease (AD) is characterized by significant cerebral dysfunction, including increased amyloid deposition, gray matter atrophy, and changes in brain function. The involvement of highly connected network hubs, known as the "rich club," in the pathology of the disease remains inconclusive despite previous research efforts. In this study, we aimed to systematically assess the link between the rich club and AD using a multimodal neuroimaging approach. We employed network analyses of diffusion magnetic resonance imaging (MRI), longitudinal assessments of gray matter atrophy, amyloid deposition measurements using positron emission tomography (PET) imaging, and meta-analytic data on functional activation differences. Our study focused on evaluating the role of both the structural brain network's core and extended rich club regions in individuals with mild cognitive impairment (MCI) and those diagnosed with AD. Our findings revealed that structural rich club regions exhibited accelerated gray matter atrophy and increased amyloid deposition in both MCI and AD. Importantly, these regions remained unaffected by altered functional activation patterns observed outside the core rich club regions. These results shed light on the connection between two major AD biomarkers and the rich club, providing valuable insights into AD as a potential disconnection syndrome.


Asunto(s)
Enfermedad de Alzheimer , Atrofia , Disfunción Cognitiva , Sustancia Gris , Imagen Multimodal , Tomografía de Emisión de Positrones , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Atrofia/patología , Anciano , Tomografía de Emisión de Positrones/métodos , Imagen Multimodal/métodos , Masculino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Gris/metabolismo , Femenino , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Amiloide/metabolismo , Imagen de Difusión por Resonancia Magnética/métodos
4.
mSphere ; 9(4): e0080323, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38567970

RESUMEN

Archaea, bacteria, and fungi in the soil are increasingly recognized as determinants of agricultural productivity and sustainability. A crucial step for exploring soil microbiomes with important ecosystem functions is to perform statistical analyses on the potential relationship between microbiome structure and functions based on comparisons of hundreds or thousands of environmental samples collected across broad geographic ranges. In this study, we integrated agricultural field metadata with microbial community analyses by targeting 2,903 bulk soil samples collected along a latitudinal gradient from cool-temperate to subtropical regions in Japan (26.1-42.8 °N). The data involving 632 archaeal, 26,868 bacterial, and 4,889 fungal operational taxonomic units detected across the fields of 19 crop plant species allowed us to conduct statistical analyses (permutational analyses of variance, generalized linear mixed models, randomization analyses, and network analyses) on the relationship among edaphic factors, microbiome compositions, and crop disease prevalence. We then examined whether the diverse microbes form species sets varying in potential ecological impacts on crop plants. A network analysis suggested that the observed prokaryotes and fungi were classified into several species sets (network modules), which differed substantially in association with crop disease prevalence. Within the network of microbe-to-microbe coexistence, ecologically diverse microbes, such as an ammonium-oxidizing archaeon, an antibiotics-producing bacterium, and a potentially mycoparasitic fungus, were inferred to play key roles in shifts between crop-disease-promotive and crop-disease-suppressive states of soil microbiomes. The bird's-eye view of soil microbiome structure will provide a basis for designing and managing agroecosystems with high disease-suppressive functions.IMPORTANCEUnderstanding how microbiome structure and functions are organized in soil ecosystems is one of the major challenges in both basic ecology and applied microbiology. Given the ongoing worldwide degradation of agroecosystems, building frameworks for exploring structural diversity and functional profiles of soil microbiomes is an essential task. Our study provides an overview of cropland microbiome states in light of potential crop-disease-suppressive functions. The large data set allowed us to explore highly functional species sets that may be stably managed in agroecosystems. Furthermore, an analysis of network architecture highlighted species that are potentially used to cause shifts from disease-prevalent states of agroecosystems to disease-suppressive states. By extending the approach of comparative analyses toward broader geographic ranges and diverse agricultural practices, agroecosystem with maximized biological functions will be further explored.


Asunto(s)
Archaea , Bacterias , Productos Agrícolas , Hongos , Microbiota , Enfermedades de las Plantas , Microbiología del Suelo , Japón , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Productos Agrícolas/microbiología , Enfermedades de las Plantas/microbiología , Suelo/química , Agricultura
5.
Front Mol Neurosci ; 16: 1245902, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915973

RESUMEN

Background: Spinal cord injury (SCI) causes severe sequelae and significant social loss, depending on the extent of the damage. Most previous studies have focused on the pathology of the spinal cord to develop treatments for SCI. However, it is now known that the brain, which is not directly damaged, also undergoes morphological changes after spinal cord injury, which could affect natural recovery and treatment. In recent years, magnetic resonance imaging (MRI) has been developed to analyze functional changes in the brain. Resting-state functional MRI (rsfMRI), which captures brain activity at rest, can calculate functional connections between brain areas and identify central hubs by network analysis. Purpose: We aim to investigate functional connectivity in the brain using rsfMRI after SCI and to determine how brain-network main hubs change over time. Methods: We evaluated rsfMRI in 10 mice of the contusional SCI model and calculated connectivity using graph theory. We evaluated "centrality," a representative parameter of network analysis. The subtype of centrality was degree centrality, which indicates the hub function of a single area. The five times of rsfMRI were performed in each individual mouse: before injury and at 1, 3, 7, and 14 weeks post-injury. Results: Before the injury, the degree centralities of the primary and secondary motor cortex were high, suggesting that these motor cortices served as main hubs for motor function. After SCI, the hub function of the motor cortices decreased by 14 weeks. In contrast, hub function in the external capsule and the putamen comparatively increased with time after injury, suggesting that the extrapyramidal/subcortical system, which runs the ventral side of the spinal cord and remains after injury in this model, becomes dominant. Conclusion: We demonstrated the shift of the brain network hub after SCI. The results of this study provide basic information for understanding brain network changes after SCI and would be useful for treatment selection and evaluation of its efficacy in SCI patients.

6.
Front Hum Neurosci ; 17: 1294312, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954940

RESUMEN

Introduction: Tai Chi standing meditation (Zhan Zhuang, also called pile standing) is characterized by meditation, deep breathing, and mental focus based on theories of traditional Chinese medicine. The purpose of the present study was to explore prefrontal cortical hemodynamics and the functional network organization associated with Tai Chi standing meditation by using functional near-infrared spectroscopy (fNIRS). Methods: Twenty-four channel fNIRS signals were recorded from 24 male Tai Chi Quan practitioners (54.71 ± 8.04 years) while standing at rest and standing during Tai Chi meditation. The general linear model and the SPM method were used to analyze the fNIRS signals. Pearson correlation was calculated to determine the functional connectivity between the prefrontal cortical sub-regions. The small world properties of the FC networks were then further analyzed based on graph theory. Results: During Tai Chi standing meditation, significantly higher concentrations of oxygenated hemoglobin were observed in bilateral dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), frontal eye field (FEF), and pre-motor cortex (PMC) compared with the values measured during standing rest (p < 0.05). Simultaneously, significant decreases in deoxygenated hemoglobin concentration were observed in left VLPFC, right PMC and DLPFC during Tai Chi standing meditation than during standing rest (p < 0.05). Functional connectivity between the left and right PFC was also significantly stronger during the Tai Chi standing meditation (p < 0.05). The functional brain networks exhibited small-world architecture, and more network hubs located in DLPFC and VLPFC were identified during Tai Chi standing meditation than during standing rest. Discussion: These findings suggest that Tai Chi standing meditation introduces significant changes in the cortical blood flow and the brain functional network organization.

7.
J Neurotrauma ; 40(1-2): 63-73, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35747994

RESUMEN

Mild traumatic brain injury (mTBI)-associated damage to hub regions can lead to disrupted modular structures of functional brain networks and may result in widespread cognitive and behavioral deficits. The spatial layout of brain connections and modules is essential for understanding the reorganization of brain networks to trauma. We investigated the roles of hubs in inter-subnetwork information coordination and integration using participation coefficients (PCs) in 74 patients with acute mTBI and 51 matched healthy controls. In some brain networks, such as default mode network (DMN) and frontoparietal network (FPN), mild TBI patients had decreased PC levels, while this measure was saliently increased in patients in other networks, such as the visual network. The hub disruption index was defined as the gradient of a straight line fitted to scatterplots of individual mTBI in participation coefficient versus mean participation coefficient of healthy groups. There was a trend of radical reorganization of some efficient "hub" nodes in patients (κ = -0.15), compared with controls (κ close to 0). The PC of brain hubs can also differentiate mTBI patients from controls with an 88% accuracy, and decreased PC levels in FPN can predict patient' s worse cognitive information processing speed (r = 0.36, p < 0.002) and working memory performance (r = 0.35, p < 0.002). Reduced PC within the DMN was associated with patients' complaints of post-concussion symptoms (r = -0.35, p < 0.002). This evidence suggests a trend of spatial transition of hub profiles in acute mTBI, and graph metrics of PC measures can be used as potential diagnostic biomarkers.


Asunto(s)
Conmoción Encefálica , Lesiones Encefálicas , Humanos , Conmoción Encefálica/diagnóstico por imagen , Mapeo Encefálico , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen
8.
Neuroimage ; 258: 119364, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35690257

RESUMEN

Even when subjects are at rest, it is thought that brain activity is organized into distinct brain states during which reproducible patterns are observable. Yet, it is unclear how to define or distinguish different brain states. A potential source of brain state variation is arousal, which may play a role in modulating functional interactions between brain regions. Here, we use simultaneous resting state functional magnetic resonance imaging (fMRI) and pupillometry to study the impact of arousal levels indexed by pupil area on the integration of large-scale brain networks. We employ a novel sparse dictionary learning-based method to identify hub regions participating in between-network integration stratified by arousal, by measuring k-hubness, the number (k) of functionally overlapping networks in each brain region. We show evidence of a brain-wide decrease in between-network integration and inter-subject variability at low relative to high arousal, with differences emerging across regions of the frontoparietal, default mode, motor, limbic, and cerebellum networks. State-dependent changes in k-hubness relate to the actual patterns of network integration within these hubs, suggesting a brain state transition from high to low arousal characterized by global synchronization and reduced network overlaps. We demonstrate that arousal is not limited to specific brain areas known to be directly associated with arousal regulation, but instead has a brain-wide impact that involves high-level between-network communications. Lastly, we show a systematic change in pairwise fMRI signal correlation structures in the arousal state-stratified data, and demonstrate that the choice of global signal regression could result in different conclusions in conventional graph theoretical analysis and in the analysis of k-hubness when studying arousal modulations. Together, our results suggest the presence of global and local effects of pupil-linked arousal modulations on resting state brain functional connectivity.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Nivel de Alerta/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Pupila/fisiología
9.
Hum Brain Mapp ; 43(14): 4239-4253, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35620874

RESUMEN

Many organizational principles of structural brain networks are established before birth and undergo considerable developmental changes afterwards. These include the topologically central hub regions and a densely connected rich club. While several studies have mapped developmental trajectories of brain connectivity and brain network organization across childhood and adolescence, comparatively little is known about subsequent development over the course of the lifespan. Here, we present a cross-sectional analysis of structural brain network development in N = 8066 participants aged 5-80 years. Across all brain regions, structural connectivity strength followed an "inverted-U"-shaped trajectory with vertex in the early 30s. Connectivity strength of hub regions showed a similar trajectory and the identity of hub regions remained stable across all age groups. While connectivity strength declined with advancing age, the organization of hub regions into a rich club did not only remain intact but became more pronounced, presumingly through a selected sparing of relevant connections from age-related connectivity loss. The stability of rich club organization in the face of overall age-related decline is consistent with a "first come, last served" model of neurodevelopment, where the first principles to develop are the last to decline with age. Rich club organization has been shown to be highly beneficial for communicability and higher cognition. A resilient rich club might thus be protective of a functional loss in late adulthood and represent a neural reserve to sustain cognitive functioning in the aging brain.


Asunto(s)
Conectoma , Adolescente , Adulto , Encéfalo , Niño , Estudios Transversales , Imagen de Difusión Tensora , Humanos , Vías Nerviosas
10.
Cell Commun Signal ; 20(1): 24, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246154

RESUMEN

BACKGROUND: Ras is a key cellular signaling hub that controls numerous cell fates via multiple downstream effector pathways. While pathways downstream of effectors such as Raf, PI3K and RalGDS are extensively described in the literature, how other effectors signal downstream of Ras is often still enigmatic. METHODS: A comprehensive and unbiased Ras-effector network was reconstructed downstream of 43 effector proteins (converging onto 12 effector classes) using public pathway and protein-protein interaction (PPI) databases. The output is an oriented graph of pairwise interactions defining a 3-layer signaling network downstream of Ras. The 2290 proteins comprising the network were studied for their implication in signaling crosstalk and feedbacks, their subcellular localizations, and their cellular functions. RESULTS: The final Ras-effector network consists of 2290 proteins that are connected via 19,080 binary PPIs, increasingly distributed across the downstream layers, with 441 PPIs in layer 1, 1660 in layer 2, and 16,979 in layer 3. We identified a high level of crosstalk among proteins of the 12 effector classes. A class-specific Ras sub-network was generated in CellDesigner (.xml file) and a functional enrichment analysis thereof shows that 58% of the processes have previously been associated to a respective effector pathway, with the remaining providing insights into novel and unexplored functions of specific effector pathways. CONCLUSIONS: Our large-scale and cell general Ras-effector network is a crucial steppingstone towards defining the network boundaries. It constitutes a 'reference interactome' and can be contextualized for specific conditions, e.g. different cell types or biopsy material obtained from cancer patients. Further, it can serve as a basis for elucidating systems properties, such as input-output relationships, crosstalk, and pathway redundancy. Video Abstract.


Asunto(s)
Proteínas , Transducción de Señal , Humanos
11.
Netw Neurosci ; 6(1): 234-274, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36605887

RESUMEN

In systems neuroscience, most models posit that brain regions communicate information under constraints of efficiency. Yet, evidence for efficient communication in structural brain networks characterized by hierarchical organization and highly connected hubs remains sparse. The principle of efficient coding proposes that the brain transmits maximal information in a metabolically economical or compressed form to improve future behavior. To determine how structural connectivity supports efficient coding, we develop a theory specifying minimum rates of message transmission between brain regions to achieve an expected fidelity, and we test five predictions from the theory based on random walk communication dynamics. In doing so, we introduce the metric of compression efficiency, which quantifies the trade-off between lossy compression and transmission fidelity in structural networks. In a large sample of youth (n = 1,042; age 8-23 years), we analyze structural networks derived from diffusion-weighted imaging and metabolic expenditure operationalized using cerebral blood flow. We show that structural networks strike compression efficiency trade-offs consistent with theoretical predictions. We find that compression efficiency prioritizes fidelity with development, heightens when metabolic resources and myelination guide communication, explains advantages of hierarchical organization, links higher input fidelity to disproportionate areal expansion, and shows that hubs integrate information by lossy compression. Lastly, compression efficiency is predictive of behavior-beyond the conventional network efficiency metric-for cognitive domains including executive function, memory, complex reasoning, and social cognition. Our findings elucidate how macroscale connectivity supports efficient coding and serve to foreground communication processes that utilize random walk dynamics constrained by network connectivity.

12.
Sci Total Environ ; 773: 145008, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33592479

RESUMEN

AIMS: The effects of aridity on soil and water-use efficient (WUE) crop species are relatively well known. However, the understanding of its impacts on the dynamics of below-ground microorganisms associated with plant roots is less well understood. METHODS: To investigate the influence of increasing aridity on the dynamics of the fungal communities, samples from the root endosphere and rhizosphere associated with the prickly pear cactus trees (Opuntia ficus-indica) growing along the aridity gradient were collected and the internal transcribed spacer (ITS) were sequenced. The diversity and network analyses of fungal taxa were determined along with standard measurements of soil parameters. RESULTS: We found that (i) the fungal community exhibited similar alpha diversity and shared a set of core taxa within the rhizosphere and endosphere, but there was significant beta diversity differences; (ii) the relative abundance of major phyla was higher in the rhizosphere than in the endosphere; (iii) arbuscular endomycorrhizal colonization was highest in the humid climate and decreased under lower-arid, and was negatively correlated with increased concentration of Ca2+ in the soil; (iv) increased aridity correlated with increased connectivity of the soil microbial-root fungal networks in the arid soils, producing a highly cohesive network in the upper-arid area; and (v) distinct fungal hubs sculpt the fungal microbiome network structure in the rhizosphere and endosphere within each bioclimatic zone. CONCLUSIONS: Our findings highlight the importance of gradient analysis-based correlation network as a powerful approach to understand changes in the diversity, the dynamics, and the structure of fungal communities associated with the rhizosphere-endosphere interaction and led to the identification of microbes at each bioclimatic zone that are potentially involved in promoting the survival, protection, and growth of Opuntia trees. The variability of fungal hubs composition depending on plant compartment and bioclimatic zone will give key implications for the application of rhizospheric fungi and endophytes as microbial inoculants in agriculture, as well as in the conservation and restoration of cacti plants in arid and semi-arid lands against the backdrop of climate change. Overall, this study will enhance our understanding of the microbiomes'dynamic of CAM plants in nature.


Asunto(s)
Micobioma , Opuntia , Hongos , Raíces de Plantas , Rizosfera , Microbiología del Suelo
13.
Neurosci Conscious ; 2020(1): niaa017, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33376599

RESUMEN

Neuroimaging methods have improved the accuracy of diagnosis in patients with disorders of consciousness (DOC), but novel, clinically translatable methods for prognosticating this population are still needed. In this case series, we explored the association between topographic and global brain network properties and prognosis in patients with DOC. We recorded high-density electroencephalograms in three patients with acute or chronic DOC, two of whom also underwent an anesthetic protocol. In these two cases, we compared functional network motifs, network hubs and power topography (i.e. topographic network properties), as well as relative power and graph theoretical measures (i.e. global network properties), at baseline, during exposure to anesthesia and after recovery from anesthesia. We also compared these properties to a group of healthy, conscious controls. At baseline, the topographic distribution of nodes participating in alpha motifs resembled conscious controls in patients who later recovered consciousness and high relative power in the delta band was associated with a negative outcome. Strikingly, the reorganization of network motifs, network hubs and power topography under anesthesia followed by their return to a baseline patterns upon recovery from anesthesia, was associated with recovery of consciousness. Our findings suggest that topographic network properties measured at the single-electrode level might provide more prognostic information than global network properties that are averaged across the brain network. In addition, we propose that the brain network's capacity to reorganize in response to a perturbation is a precursor to the recovery of consciousness in DOC patients.

14.
PeerJ ; 8: e10057, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33062446

RESUMEN

Source localization and functional brain network modeling are methods of identifying critical regions during cognitive tasks. The first activity estimates the relative differences of the signal amplitudes in regions of interest (ROI) and the second activity measures the statistical dependence among signal fluctuations. We hypothesized that the source amplitude-functional connectivity relationship decouples or reverses in persons having brain impairments. Five Broca's aphasics with five matched cognitively healthy controls underwent overt picture-naming magnetoencephalography scans. The gamma-band (30-45 Hz) phase-locking values were calculated as connections among the ROIs. We calculated the partial correlation coefficients between the amplitudes and network measures and detected four node types, including hothubs with high amplitude and high connectivity, coldhubs with high connectivity but lower amplitude, non-hub hotspots, and non-hub coldspots. The results indicate that the high-amplitude regions are not necessarily highly connected hubs. Furthermore, the Broca aphasics utilized different hothub sets for the naming task. Both groups had dark functional networks composed of coldhubs. Thus, source amplitude-functional connectivity relationships could help reveal functional reorganizations in patients. The amplitude-connectivity combination provides a new perspective for pathological studies of the brain's dark functional networks.

15.
Microbiome ; 8(1): 82, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32498714

RESUMEN

BACKGROUND: Microbial interactions shape the structure and function of microbial communities; microbial co-occurrence networks in specific environments have been widely developed to explore these complex systems, but their interconnection pattern across microbiomes in various environments at the global scale remains unexplored. Here, we have inferred an Earth microbial co-occurrence network from a communal catalog with 23,595 samples and 12,646 exact sequence variants from 14 environments in the Earth Microbiome Project dataset. RESULTS: This non-random scale-free Earth microbial co-occurrence network consisted of 8 taxonomy distinct modules linked with different environments, which featured environment specific microbial co-occurrence relationships. Different topological features of subnetworks inferred from datasets trimmed into uniform size indicate distinct co-occurrence patterns in the microbiomes of various environments. The high number of specialist edges highlights that environmental specific co-occurrence relationships are essential features across microbiomes. The microbiomes of various environments were clustered into two groups, which were mainly bridged by the microbiomes of plant and animal surface. Acidobacteria Gp2 and Nisaea were identified as hubs in most of subnetworks. Negative edges proportions ranged from 1.9% in the soil subnetwork to 48.9% the non-saline surface subnetwork, suggesting various environments experience distinct intensities of competition or niche differentiation. Video abstract CONCLUSION: This investigation highlights the interconnection patterns across microbiomes in various environments and emphasizes the importance of understanding co-occurrence feature of microbiomes from a network perspective.


Asunto(s)
Bacterias , Microbiota , Microbiología del Suelo , Animales , Bacterias/genética , Consorcios Microbianos , Suelo
16.
Cereb Cortex Commun ; 1(1): tgaa088, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34296144

RESUMEN

Intracranial EEG (iEEG) studies have suggested that the conscious perception of pain builds up from successive contributions of brain networks in less than 1 s. However, the functional organization of cortico-subcortical connections at the multisecond time scale, and its accordance with iEEG models, remains unknown. Here, we used graph theory with modular analysis of fMRI data from 60 healthy participants experiencing noxious heat stimuli, of whom 36 also received audio stimulation. Brain connectivity during pain was organized in four modules matching those identified through iEEG, namely: 1) sensorimotor (SM), 2) medial fronto-cingulo-parietal (default mode-like), 3) posterior parietal-latero-frontal (central executive-like), and 4) amygdalo-hippocampal (limbic). Intrinsic overlaps existed between the pain and audio conditions in high-order areas, but also pain-specific higher small-worldness and connectivity within the sensorimotor module. Neocortical modules were interrelated via "connector hubs" in dorsolateral frontal, posterior parietal, and anterior insular cortices, the antero-insular connector being most predominant during pain. These findings provide a mechanistic picture of the brain networks architecture and support fractal-like similarities between the micro-and macrotemporal dynamics associated with pain. The anterior insula appears to play an essential role in information integration, possibly by determining priorities for the processing of information and subsequent entrance into other points of the brain connectome.

17.
Microbiome ; 6(1): 116, 2018 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-29935536

RESUMEN

BACKGROUND: Although a number of recent studies have uncovered remarkable diversity of microbes associated with plants, understanding and managing dynamics of plant microbiomes remain major scientific challenges. In this respect, network analytical methods have provided a basis for exploring "hub" microbial species, which potentially organize community-scale processes of plant-microbe interactions. METHODS: By compiling Illumina sequencing data of root-associated fungi in eight forest ecosystems across the Japanese Archipelago, we explored hubs within "metacommunity-scale" networks of plant-fungus associations. In total, the metadata included 8080 fungal operational taxonomic units (OTUs) detected from 227 local populations of 150 plant species/taxa. RESULTS: Few fungal OTUs were common across all the eight forests. However, in each of the metacommunity-scale networks representing northern four localities or southern four localities, diverse mycorrhizal, endophytic, and pathogenic fungi were classified as "metacommunity hubs," which were detected from diverse host plant taxa throughout a climatic region. Specifically, Mortierella (Mortierellales), Cladophialophora (Chaetothyriales), Ilyonectria (Hypocreales), Pezicula (Helotiales), and Cadophora (incertae sedis) had broad geographic and host ranges across the northern (cool-temperate) region, while Saitozyma/Cryptococcus (Tremellales/Trichosporonales) and Mortierella as well as some arbuscular mycorrhizal fungi were placed at the central positions of the metacommunity-scale network representing warm-temperate and subtropical forests in southern Japan. CONCLUSIONS: The network theoretical framework presented in this study will help us explore prospective fungi and bacteria, which have high potentials for agricultural application to diverse plant species within each climatic region. As some of those fungal taxa with broad geographic and host ranges have been known to promote the survival and growth of host plants, further studies elucidating their functional roles are awaited.


Asunto(s)
Endófitos/clasificación , Hongos/clasificación , Raíces de Plantas/microbiología , Plantas/microbiología , Secuencia de Bases , Biodiversidad , ADN de Hongos/genética , Endófitos/genética , Endófitos/aislamiento & purificación , Bosques , Hongos/genética , Hongos/aislamiento & purificación , Especificidad del Huésped , Japón , Microbiota/genética , Micorrizas/fisiología , Análisis de Secuencia de ADN , Microbiología del Suelo
18.
F1000Res ; 7: 1906, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30881689

RESUMEN

Background: The topological analysis of networks extracted from different types of "omics" data is a useful strategy for characterizing biologically meaningful properties of the complex systems underlying these networks. In particular, the biological significance of highly connected genes in diverse molecular networks has been previously determined using data from several model organisms and phenotypes. Despite such insights, the predictive potential of candidate hubs in gene co-expression networks in the specific context of cancer-related drug experiments remains to be deeply investigated. The examination of such associations may offer opportunities for the accurate prediction of anticancer drug responses.  Methods: Here, we address this problem by: a) analyzing a co-expression network obtained from thousands of cancer cell lines, b) detecting significant network hubs, and c) assessing their capacity to predict drug sensitivity using data from thousands of drug experiments. We investigated the prediction capability of those genes using a multiple linear regression model, independent datasets, comparisons with other models and our own in vitro experiments. Results: These analyses led to the identification of 47 hub genes, which are implicated in a diverse range of cancer-relevant processes and pathways. Overall, encouraging agreements between predicted and observed drug sensitivities were observed in public datasets, as well as in our in vitro validations for four glioblastoma cell lines and four drugs. To facilitate further research, we share our hub-based drug sensitivity prediction model as an online tool. Conclusions: Our research shows that co-expression network hubs are biologically interesting and exhibit potential for predicting drug responses in vitro. These findings motivate further investigations about the relevance and application of our unbiased discovery approach in pre-clinical, translationally-oriented research.

19.
Eur J Neurosci ; 46(9): 2471-2480, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28922510

RESUMEN

Graph-theoretical methods have rapidly become a standard tool in studies of the structure and function of the human brain. Whereas the structural connectome can be fairly straightforwardly mapped onto a complex network, there are more degrees of freedom in constructing networks that represent functional connections between brain areas. For functional magnetic resonance imaging (fMRI) data, such networks are typically built by aggregating the blood-oxygen-level dependent signal time series of voxels into larger entities (such as Regions of Interest in some brain atlas) and determining their connection strengths from some measure of time-series correlations. Although it is evident that the outcome must be affected by how the voxel-level time series are treated at the preprocessing stage, there is a lack of systematic studies of the effects of preprocessing on network structure. Here, we focus on the effects of spatial smoothing, a standard preprocessing method for fMRI. We apply various levels of spatial smoothing to resting-state fMRI data and measure the changes induced in functional networks. We show that the level of spatial smoothing clearly affects the degrees and other centrality measures of functional network nodes; these changes are non-uniform, systematic, and depend on the geometry of the brain. The composition of the largest connected network component is also affected in a way that artificially increases the similarity of the networks of different subjects. Our conclusion is that wherever possible, spatial smoothing should be avoided when preprocessing fMRI data for network analysis.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Femenino , Humanos , Masculino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Descanso
20.
Oncotarget ; 8(6): 10171-10184, 2017 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-28052038

RESUMEN

Although competing endogenous RNAs (ceRNAs) have been implicated in many solid tumors, their roles in breast cancer subtypes are not well understood. We therefore generated a ceRNA network for each subtype based on the significance of both, positive co-expression and the shared miRNAs, in the corresponding subtype miRNA dys-regulatory network, which was constructed based on negative regulations between differentially expressed miRNAs and targets. All four subtype ceRNA networks exhibited scale-free architecture and showed that the common ceRNAs were at the core of the networks. Furthermore, the common ceRNA hubs had greater connectivity than the subtype-specific hubs. Functional analysis of the common subtype ceRNA hubs highlighted factors involved in proliferation, MAPK signaling pathways and tube morphogenesis. Subtype-specific ceRNA hubs highlighted unique subtype-specific pathways, like the estrogen response and inflammatory pathways in the luminal subtypes or the factors involved in the coagulation process that participates in the basal-like subtype. Ultimately, we identified 29 critical subtype-specific ceRNA hubs that characterized the different breast cancer subtypes. Our study thus provides new insight into the common and specific subtype ceRNA interactions that define the different categories of breast cancer and enhances our understanding of the pathology underlying the different breast cancer subtypes, which can have prognostic and therapeutic implications in the future.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Redes Reguladoras de Genes , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Neoplásico/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/genética , Biología Computacional , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , MicroARNs/metabolismo , Mutación , Fenotipo , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , ARN Neoplásico/metabolismo , Transducción de Señal , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA