Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38257018

RESUMEN

Resistive switching memories are among the emerging next-generation technologies that are possible candidates for in-memory and neuromorphic computing. In this report, resistive memory-switching behavior in solution-processed trans, trans-1,4-bis-(2-(2-naphthyl)-2-(butoxycarbonyl)-vinyl) benzene-PVA-composite-based aryl acrylate on an ITO-coated PET device was studied. A sandwich configuration was selected, with silver (Ag) serving as a top contact and trans, trans-1,4-bis-(2-(2-naphthyl)-2-(butoxycarbonyl)-vinyl) benzene-PVA-composite-based aryl acrylate and ITO-PET serving as a bottom contact. The current-voltage (I-V) characteristics showed hysteresis behavior and non-zero crossing owing to voltages sweeping from positive to negative and vice versa. The results showed non-zero crossing in the devices' current-voltage (I-V) characteristics due to the nanobattery effect or resistance, capacitive, and inductive effects. The device also displayed a negative differential resistance (NDR) effect. Non-volatile storage was feasible with non-zero crossing due to the exhibition of resistive switching behavior. The sweeping range was -10 V to +10 V. These devices had two distinct states: 'ON' and 'OFF'. The ON/OFF ratios of the devices were 14 and 100 under stable operating conditions. The open-circuit voltages (Voc) and short-circuit currents (Isc) corresponding to memristor operation were explained. The DC endurance was stable. Ohmic conduction and direct tunneling mechanisms with traps explained the charge transport model governing the resistive switching behavior. This work gives insight into data storage in terms of a new conception of electronic devices based on facile and low-temperature processed material composites for emerging computational devices.

2.
ACS Nano ; 16(9): 14230-14238, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36094408

RESUMEN

The flexible strain sensors based on the textile substrate have natural flexibility, high sensitivity, and wide-range tensile response. However, the textile's complex and anisotropic substructure leads to a negative differential resistance (NDR) response, lacking a deeper understanding of the mechanism. Therefore, we examined a graphene textile strain sensor with a conspicuous NDR tensile response, providing a requisite research platform for mechanism investigation. The pioneering measurement of single fiber bundles confirmed the existence of the NDR effect on the subgeometry scale. Based on the in situ characterization of tensile morphology and measurement, we conducted quantitative behavior analyses to reveal the origin of tensile electrical responses in the full range comprehensively. The results showed that the dominant factor in generating the NDR effect is the relative displacement of fibers within the textile bundles. Based on the neural spiking-like tensile response, we further demonstrated the application potential of the textile strain sensor in threshold detection and near-sensor signal processing. The proposed NDR behavior model would provide a reference for the design and application of wearable intelligent textiles.

3.
Nanotechnology ; 33(7)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34736241

RESUMEN

Understanding the mechanism of the negative differential resistance (NDR) in transition metal dichalcogenides is essential for fundamental science and the development of electronic devices. Here, the NDR of the current-voltage characteristics was observed based on the glutamine-functionalized WS2quantum dots (QDs). The NDR effect can be adjusted by varying the applied voltage range, air pressure, surrounding gases, and relative humidity. A peak-to-valley current ratio as high as 6.3 has been achieved at room temperature. Carrier trapping induced by water molecules was suggested to be responsible for the mechanism of the NDR in the glutamine-functionalized WS2QDs. Investigating the NDR of WS2QDs may promote the development of memory applications and emerging devices.

4.
Adv Sci (Weinh) ; 7(19): 2000991, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33042740

RESUMEN

Recently, combinations of 2D van der Waals (2D vdW) materials and organic materials have attracted attention because they facilitate the formation of various heterojunctions with excellent interface quality owing to the absence of dangling bonds on their surface. In this work, a double negative differential resistance (D-NDR) characteristic of a hybrid 2D vdW/organic tunneling device consisting of a hafnium disulfide/pentacene heterojunction and a 3D pentacene resistor is reported. This D-NDR phenomenon is achieved by precisely controlling an NDR peak voltage with the pentacene resistor and then integrating two distinct NDR devices in parallel. Then, the operation of a controllable-gain amplifier configured with the D-NDR device and an n-channel transistor is demonstrated using the Cadence Spectre simulation platform. The proposed D-NDR device technology based on a hybrid 2D vdW/organic heterostructure provides a scientific foundation for various circuit applications that require the NDR phenomenon.

5.
Beilstein J Nanotechnol ; 11: 688-694, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32395399

RESUMEN

A nanometer-scaled resonant tunneling diode based on lateral heterojunctions of armchair graphene and boron nitride nanoribbons, exhibiting negative differential resistance is proposed. Low-bandgap armchair graphene nanoribbons and high-bandgap armchair boron nitride nanoribbons are used to design the well and the barrier region, respectively. The effect of all possible substitutional defects (including BC, NC, CB, and CN) at the interface of graphene and boron nitride nanoribbons on the negative differential resistance behavior of the proposed resonant tunneling diode is investigated. Transport simulations are carried out in the framework of tight-binding Hamiltonians and non-equilibrium Green's functions. The results show that a single substitutional defect at the interface of armchair graphene and boron nitride nanoribbons can dramatically affect the negative differential resistance behavior depending on its type and location in the structure.

6.
Nano Lett ; 16(8): 4975-81, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27416362

RESUMEN

Interlayer tunnel field-effect transistors based on graphene and hexagonal boron nitride (hBN) have recently attracted much interest for their potential as beyond-CMOS devices. Using a recently developed method for fabricating rotationally aligned two-dimensional heterostructures, we show experimental results for devices with varying thicknesses and stacking order of the graphene electrode layers and also model the current-voltage behavior. We show that an increase in the graphene layer thickness results in narrower resonance. However, due to a simultaneous increase in the number of sub-bands and decrease of sub-band separation with an increase in thickness, the negative differential resistance peaks becomes less prominent and do not appear for certain conditions at room temperature. Also, we show that due to the unique band structure of odd number of layer Bernal-stacked graphene, the number of closely spaced resonance conditions increase, causing interference between neighboring resonance peaks. Although this can be avoided with even number of layer graphene, we find that in this case the bandgap opening present at high biases tend to broaden the resonance peaks.

7.
Nano Lett ; 15(9): 5791-8, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26226296

RESUMEN

van der Waals (vdW) heterojunctions composed of two-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibits novel physics phenomena that can power a range of electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse, and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions and broaden the potential applications of 2D layered materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA