Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(33): 40062-40069, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34379391

RESUMEN

The flashlight annealing process has been widely used in the field of flexible and printed electronics because it can instantly induce chemical and structural modifications over a large area on an electronic functional layer in a subsecond time range. In this study, for the first time, we explored a straightforward method to develop strong self-adhesion on a metal nanowire-based flexible and transparent conductive film via flashlight irradiation. Nanowire interlocking, for strong mechanical bonding at the interface between the nanowires and polyamide film, was achieved by simple hot pressing. Then, by irradiating the nanowire-impregnated film with a flashlight, several events such as interdiffusion and melting of surface polymers could be induced along with morphological changes leading to an increase in the film surface area. As a result, the surface of the fabricated film exhibited strong interfacial interactions while forming intimate contact with the heterogeneous surfaces of other objects, thereby becoming strongly self-adhesive. This readily achievable, self-attachable, flexible, and transparent electrode allowed the self-interconnection of a light-emitting diode chip, and it was also compatible for various applications, such as defogging windows and transparent organic light-emitting diodes.

2.
Nano Lett ; 17(9): 5206-5212, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28782965

RESUMEN

Tandem photovoltaics, combining absorber layers with two distinct band gap energies into a single device, provide a practical solution to reduce thermalization losses in solar energy conversion. Traditionally, tandem devices have been assembled using two-terminal (2-T) or four-terminal (4-T) configurations; the 2-T limits the tandem performance due to the series connection requiring current matching, while the standard 4-T configuration requires at least three transparent electrical contacts, which reduce the total collected power due to unavoidable parasitic absorption. Here, we introduce a novel architecture based on a nanoscale back-contact for a thin-film top cell in a three terminal (3-T) configuration. Using coupled optical-electrical modeling, we optimize this architecture for a planar perovskite-silicon tandem, highlighting the roles of nanoscale contacts to reduce the required perovskite electronic quality. For example, with an 18% planar silicon base cell, the 3-T back contact design can reach a 32.9% tandem efficiency with a 10 µm diffusion length perovskite material. Using the same perovskite quality, the 4-T and 2-T configurations only reach 30.2% and 24.8%, respectively. We also confirm that the same 3-T efficiency advantage applies when using 25% efficient textured silicon base cells, where the tandems reach 35.2% and 32.8% efficiency for the 3-T, and 4-T configurations, respectively. Furthermore, because our design is based on the individual subcells being back-contacted, further improvements can be readily made by optimizing the front surface, which is left free for additional antireflective coating, light trapping, surface passivation, and photoluminescence outcoupling enhancements.

3.
Sensors (Basel) ; 17(6)2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28632157

RESUMEN

This paper presents the world's first transparent flexible capacitive micromachined ultrasonic transducer (CMUT) that was fabricated through a roll-lamination technique. This polymer-based CMUT has advantages of transparency, flexibility, and non-contacting detection which provide unique functions in display panel applications. Comprising an indium tin oxide-polyethylene terephthalate (ITO-PET) substrate, SU-8 sidewall and vibrating membranes, and silver nanowire transparent electrode, the transducer has visible-light transmittance exceeding 80% and can operate on curved surfaces with a 40 mm radius of curvature. Unlike the traditional silicon-based high temperature process, the CMUT can be fabricated on a flexible substrate at a temperature below 100 °C to reduce residual stress introduced at high temperature. The CMUT on the curved surfaces can detect a flat target and finger at distances up to 50 mm and 40 mm, respectively. The transparent flexible CMUT provides a better human-machine interface than existing touch panels because it can be integrated with a display panel for non-contacting control in a health conscious environment and the flexible feature is critical for curved display and wearable electronics.


Asunto(s)
Ultrasonido , Electrodos , Diseño de Equipo , Nanocables , Transductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA