Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
1.
Biomaterials ; 314: 122819, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39270624

RESUMEN

Upon the pressure of conventional land agriculture and marine environment facing the future of human beings, the emerging of alternative proteins represented by cultured meat is expected with a breakthrough of efficient, safe and sustainable production. However, the cell proliferation efficiency and final myofiber density in current animal-derived scaffolds are still limited. Here, we incorporated five plant-derived edible polymeric glucosyl nanoparticles (GNPs) into gelatin/alginate hydrogels to spontaneously form nanoaggregates where nanotopographies were observed inside. The nanoscale topological morphology significantly enhances the adhesion and proliferation efficiencies of piscine satellite cells (PSCs) in the tailored extracellular matrix of as-prepared scaffold. Physically, the presence of GNP-induced nanoaggregate increases the interaction between ITG-A1 (membrane protein of PSCs) and hydrogel microenvironment, which activates the focal adhesion-integrin-cytoskeleton mechanotransduction signaling to promote cell proliferation. With a controlled diameter of hydrogel filament, these inner topological GNP nanoaggregates can also improve the density, alignment and differentiation efficiency of PSCs. When cultured in vitro for 15 days, the cell density, size and orientation of muscle fibers in the GNP-stimulated cultured fish fillet are very similar to the total cell mass in native fish muscle tissue.

2.
ACS Nano ; 18(37): 25465-25477, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39226301

RESUMEN

Inflammatory responses, leading to fibrosis and potential host rejection, significantly hinder the long-term success and widespread adoption of biomedical implants. The ability to control and investigated macrophage inflammatory responses at the implant-macrophage interface would be critical for reducing chronic inflammation and improving tissue integration. Nonetheless, the systematic investigation of how surface topography affects macrophage polarization is typically complicated by the restricted complexity of accessible nanostructures, difficulties in achieving exact control, and biased preselection of experimental parameters. In response to these problems, we developed a large-scale, high-content combinatorial biophysical cue (CBC) array for enabling high-throughput screening (HTS) of the effects of nanotopography on macrophage polarization and subsequent inflammatory processes. Our CBC array, created utilizing the dynamic laser interference lithography (DLIL) technology, contains over 1 million nanotopographies, ranging from nanolines and nanogrids to intricate hierarchical structures with dimensions ranging from 100 nm to several microns. Using machine learning (ML) based on the Gaussian process regression algorithm, we successfully identified certain topographical signals that either repress (pro-M2) or stimulate (pro-M1) macrophage polarization. The upscaling of these nanotopographies for further examination has shown mechanisms such as cytoskeletal remodeling and ROCK-dependent epigenetic activation to be critical to the mechanotransduction pathways regulating macrophage fate. Thus, we have also developed a platform combining advanced DLIL nanofabrication techniques, HTS, ML-driven prediction of nanobio interactions, and mechanotransduction pathway evaluation. In short, our developed platform technology not only improves our ability to investigate and understand nanotopography-regulated macrophage inflammatory responses but also holds great potential for guiding the design of nanostructured coatings for therapeutic biomaterials and biomedical implants.


Asunto(s)
Aprendizaje Automático , Macrófagos , Macrófagos/metabolismo , Ratones , Animales , Propiedades de Superficie , Células RAW 264.7 , Nanoestructuras/química
3.
Open Res Eur ; 4: 94, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39279819

RESUMEN

Background: Surface topography has been shown to influence cell behavior and direct stromal cell differentiation into distinct lineages. Whereas this phenomenon has been verified in two-dimensional cultures, there is an urgent need for a thorough investigation of topography's role within a three-dimensional (3D) environment, as it better replicates the natural cellular environment. Methods: A co-culture of Wharton's jelly-derived mesenchymal stem/stromal cells (WJ-MSCs) and human umbilical vein endothelial cells (HUVECs) was encapsulated in a 3D system consisting of a permselective liquefied environment containing freely dispersed spherical microparticles (spheres) or nanogrooved microdiscs (microdiscs). Microdiscs presenting 358 ± 23 nm grooves and 944 ± 49 nm ridges were produced via nanoimprinting of spherical polycaprolactone microparticles between water-soluble polyvinyl alcohol counter molds of nanogrooved templates. Spheres and microdiscs were cultured in vitro with umbilical cord-derived cells in a basal or osteogenic medium within liquefied capsules for 21 days. Results: WJ-MSCs and HUVECs were successfully encapsulated within liquefied capsules containing spheres and microdiscs, ensuring high cellular viability. Results show an enhanced osteogenic differentiation in microdiscs compared to spheres, even in basal medium, evidenced by alkaline phosphatase activity and osteopontin expression. Conclusions: This work suggests that the topographical features present in microdiscs induce the osteogenic differentiation of adhered WJ-MSCs along the contact guidance, without additional differentiation factors. The developed 3D bioencapsulation system comprising topographical features might be suitable for bone tissue engineering approaches with minimum in vitro manipulation.

4.
Front Bioeng Biotechnol ; 12: 1409735, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193229

RESUMEN

Introduction: Photomodifiable azopolymer nanotopographies represent a powerful means of assessing how cells respond to rapid changes in the local microenvironment. However, previous studies have suggested that azopolymers are readily photomodified under typical fluorescence imaging conditions over much of the visible spectrum. Here we assess the stability of azopolymer nanoridges under 1-photon and 2-photon imaging over a broad range of wavelengths. Methods: Azopolymer nanoridges were created via microtransfer molding of master structures that were created using interference lithography. The effects of exposure to a broad range of wavelengths of light polarized parallel to the ridges were assessed on both a spinning-disk confocal microscope and a 2-photon fluorescence microscope. Experiments with live Dictyostelium discoideum cells were also performed using alternating cycles of 514-nm light for photomodification and 561-nm light for fluorescence imaging. Results and Discussion: We find that for both 1-photon and 2-photon imaging, only a limited range of wavelengths of light leads to photomodification of the azopolymer nanotopography. These results indicate that nondestructive 1-photon and 2-photon fluorescence imaging can be performed over a considerably broader range of wavelengths than would be suggested by previous research.

5.
ACS Appl Mater Interfaces ; 16(33): 43374-43386, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39113638

RESUMEN

Orthopedic implant-related bacterial infections and resultant antibiotic-resistant biofilms hinder implant-tissue integration and failure. Biofilm quorum sensing (QS) communication determines the pathogen colonization success. However, it remains unclear how implant modifications and host cells are influenced by, or influence, QS. High aspect ratio nanotopographies have shown to reduce biofilm formation of Pseudomonas aeruginosa, a sepsis causing pathogen with well-defined QS molecules. Producing such nanotopographies in relevant orthopedic materials (i.e., titanium) allows for probing QS using mass spectrometry-based metabolomics. However, nanotopographies can reduce host cell adhesion and regeneration. Therefore, we developed a polymer (poly(ethyl acrylate), PEA) coating that organizes extracellular matrix proteins, promoting bioactivity to host cells such as human mesenchymal stromal cells (hMSCs), maintaining biofilm reduction. This allowed us to investigate how hMSCs, after winning the race for the surface against pathogenic cells, interact with the biofilm. Our approach revealed that nanotopographies reduced major virulence pathways, such as LasR. The enhanced hMSCs support provided by the coated nanotopographies was shown to suppress virulence pathways and biofilm formation. Finally, we selected bioactive metabolites and demonstrated that these could be used as adjuncts to the nanostructured surfaces to reduce biofilm formation and enhance hMSC activity. These surfaces make excellent models to study hMSC-pathogen interactions and could be envisaged for use in novel orthopedic implants.


Asunto(s)
Biopelículas , Técnicas de Cocultivo , Células Madre Mesenquimatosas , Pseudomonas aeruginosa , Percepción de Quorum , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Percepción de Quorum/efectos de los fármacos , Humanos , Biopelículas/efectos de los fármacos , Interacciones Huésped-Patógeno , Nanoestructuras/química
6.
ACS Appl Mater Interfaces ; 16(28): 36030-36046, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38951110

RESUMEN

Differentiation of induced pluripotent stem cells (iPSCs) is an extremely complex process that has proven difficult to study. In this research, we utilized nanotopography to elucidate details regarding iPSC differentiation by developing a nanodot platform consisting of nanodot arrays of increasing diameter. Subjecting iPSCs cultured on the nanodot platform to a cardiomyocyte (CM) differentiation protocol revealed several significant gene expression profiles that were associated with poor differentiation. The observed expression trends were used to select existing small-molecule drugs capable of modulating differentiation efficiency. BRD K98 was repurposed to inhibit CM differentiation, while iPSCs treated with NSC-663284, carmofur, and KPT-330 all exhibited significant increases in not only CM marker expression but also spontaneous beating, suggesting improved CM differentiation. In addition, quantitative polymerase chain reaction was performed to determine the gene regulation responsible for modulating differentiation efficiency. Multiple genes involved in extracellular matrix remodeling were correlated with a CM differentiation efficiency, while genes involved in the cell cycle exhibited contrasting expression trends that warrant further studies. The results suggest that expression profiles determined via short time-series expression miner analysis of nanodot-cultured iPSC differentiation can not only reveal drugs capable of enhancing differentiation efficiency but also highlight crucial sets of genes related to processes such as extracellular matrix remodeling and the cell cycle that can be targeted for further investigation. Our findings confirm that the nanodot platform can be used to reveal complex mechanisms behind iPSC differentiation and could be an indispensable tool for optimizing iPSC technology for clinical applications.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular/efectos de los fármacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Humanos , Nanopartículas/química , Células Cultivadas , Nanoestructuras/química
7.
Biomater Adv ; 163: 213939, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38954876

RESUMEN

The bone turnover capability influences the acquisition and maintenance of osseointegration. The architectures of osteocyte three-dimensional (3D) networks determine the direction and activity of bone turnover through osteocyte intercellular crosstalk, which exchanges prostaglandins through gap junctions in response to mechanical loading. Titanium nanosurfaces with anisotropically patterned dense nanospikes promote the development of osteocyte lacunar-canalicular networks. We investigated the effects of titanium nanosurfaces on intercellular network development and regulatory capabilities of bone turnover in osteocytes under cyclic compressive loading. MLO-Y4 mouse osteocyte-like cell lines embedded in type I collagen 3D gels on titanium nanosurfaces promoted the formation of intercellular networks and gap junctions even under static culture conditions, in contrast to the poor intercellular connectivity in machined titanium surfaces. The osteocyte 3D network on the titanium nanosurfaces further enhanced gap junction formation after additional culturing under cyclic compressive loading simulating masticatory loading, beyond the degree observed on machined titanium surfaces. A prostaglandin synthesis inhibitor cancelled the dual effects of titanium nanosurfaces and cyclic compressive loading on the upregulation of gap junction-related genes in the osteocyte 3D culture. Supernatants from osteocyte monolayer culture on titanium nanosurfaces promoted osteocyte maturation and intercellular connections with gap junctions. With cyclic loading, titanium nanosurfaces induced expression of the regulatory factors of bone turnover in osteocyte 3D cultures, toward higher osteoblast activation than that observed on machined surfaces. Titanium nanosurfaces with anisotropically patterned dense nanospikes promoted intercellular 3D network development and regulatory function toward osteoblast activation in osteocytes activated by cyclic compressive loading, through intercellular crosstalk by prostaglandin.


Asunto(s)
Osteoblastos , Osteocitos , Titanio , Titanio/farmacología , Titanio/química , Animales , Osteocitos/metabolismo , Osteocitos/fisiología , Osteocitos/efectos de los fármacos , Ratones , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/fisiología , Línea Celular , Propiedades de Superficie , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/fisiología , Uniones Comunicantes/metabolismo , Nanoestructuras
8.
Int J Nanomedicine ; 19: 4835-4856, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828200

RESUMEN

Metallic dental implants have been extensively used in clinical practice due to their superior mechanical properties, biocompatibility, and aesthetic outcomes. However, their integration with the surrounding soft tissue at the mucosal region remains challenging and can cause implant failure due to the peri-implant immune microenvironment. The soft tissue integration of dental implants can be ameliorated through different surface modifications. This review discussed and summarized the current knowledge of topography-mediated immune response and topography-mediated antibacterial activity in Ti dental implants which enhance soft tissue integration and their clinical performance. For example, nanopillar-like topographies such as spinules, and spikes showed effective antibacterial activity in human salivary biofilm which was due to the lethal stretching of bacterial membrane between the nanopillars. The key findings of this review were (I) cross-talk between surface nanotopography and soft tissue integration in which the surface nanotopography can guide the perpendicular orientation of collagen fibers into connective tissue which leads to the stability of soft tissue, (II) nanotubular array could shift the macrophage phenotype from pro-inflammatory (M1) to anti-inflammatory (M2) and manipulate the balance of osteogenesis/osteoclasia, and (III) surface nanotopography can provide specific sites for the loading of antibacterial agents and metallic nanoparticles of clinical interest functionalizing the implant surface. Silver-containing nanotubular topography significantly decreased the formation of fibrous encapsulation in per-implant soft tissue and showed synergistic antifungal and antibacterial properties. Although the Ti implants with surface nanotopography have shown promising in targeting soft tissue healing in vitro and in vivo through their immunomodulatory and antibacterial properties, however, long-term in vivo studies need to be conducted particularly in osteoporotic, and diabetic patients to ensure their desired performance with immunomodulatory and antibacterial properties. The optimization of product development is another challenging issue for its clinical translation, as the dental implant with surface nanotopography must endure implantation and operation inside the dental microenvironment. Finally, the sustainable release of metallic nanoparticles could be challenging to reduce cytotoxicity while augmenting the therapeutic effects.


Asunto(s)
Antibacterianos , Implantes Dentales , Propiedades de Superficie , Titanio , Titanio/química , Titanio/farmacología , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas del Metal/química , Animales , Biopelículas/efectos de los fármacos
9.
ACS Appl Mater Interfaces ; 16(24): 30967-30979, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38857475

RESUMEN

The ongoing global health has highlighted the critical issue of secondary infections, particularly antibiotic-resistant bacterial infections, which have been significant contributors to mortality rates. Orthopedic implants, while essential for trauma and orthopedic surgeries, are particularly susceptible to these infections, leading to severe complications and economic burdens. The traditional use of antibiotics in treating these infections poses further challenges including the risk of developing antibiotic-resistant bacteria. This study introduces a novel approach to combat this issue by developing nanostructured surfaces for orthopedic implants using target ion-induced plasma sputtering. Inspired by the natural design of dragonfly wings, these surfaces aim to prevent bacterial adhesion while promoting preosteoblast activity, offering a dual-function solution to the problems of bacterial infection and implant integration without relying on antibiotics. The in vitro results demonstrate the effectiveness of these bioinspired surfaces in eradicating bacteria and supporting cell proliferation and differentiation, presenting a promising alternative for the development of biomedical implants.


Asunto(s)
Antibacterianos , Oseointegración , Antibacterianos/farmacología , Antibacterianos/química , Animales , Oseointegración/efectos de los fármacos , Nanoestructuras/química , Ratones , Propiedades de Superficie , Staphylococcus aureus/efectos de los fármacos , Prótesis e Implantes , Adhesión Bacteriana/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular
10.
ACS Appl Mater Interfaces ; 16(21): 27164-27176, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38750662

RESUMEN

Macrophages are involved in every stage of the innate/inflammatory immune responses in the body tissues, including the resolution of the reaction, and they do so in close collaboration with the extracellular matrix (ECM). Simplified substrates with nanotopographical features attempt to mimic the structural properties of the ECM to clarify the functional features of the interaction of the ECM with macrophages. We still have a limited understanding of the macrophage behavior upon interaction with disordered nanotopography, especially with features smaller than 10 nm. Here, we combine atomic force microscopy (AFM), finite element modeling (FEM), and quantitative biochemical approaches in order to understand the mechanotransduction from the nanostructured surface into cellular responses. AFM experiments show a decrease of macrophage stiffness, measured with the Young's modulus, as a biomechanical response to a nanostructured (ns-) ZrOx surface. FEM experiments suggest that ZrOx surfaces with increasing roughness represent weaker mechanical boundary conditions. The mechanical cues from the substrate are transduced into the cell through the formation of integrin-regulated focal adhesions and cytoskeletal reorganization, which, in turn, modulate cell biomechanics by downregulating cell stiffness. Surface nanotopography and consequent biomechanical response impact the overall behavior of macrophages by increasing movement and phagocytic ability without significantly influencing their inflammatory behavior. Our study suggests a strong potential of surface nanotopography for the regulation of macrophage functions, which implies a prospective application relative to coating technology for biomedical devices.


Asunto(s)
Macrófagos , Propiedades de Superficie , Macrófagos/citología , Ratones , Animales , Microscopía de Fuerza Atómica , Nanoestructuras/química , Células RAW 264.7 , Matriz Extracelular/química , Análisis de Elementos Finitos , Fenómenos Biomecánicos , Mecanotransducción Celular/fisiología , Fagocitosis , Módulo de Elasticidad
11.
ACS Nano ; 18(18): 11863-11875, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38622996

RESUMEN

Receptor-mediated polyester drug delivery systems have tremendous potential for improving the clinical performance of existing pharmaceutical drugs. Despite significant progress made in this area, it remains unclear how and to what extent the polyester nanoparticle surface topography would affect the in vitro, ex vivo and in vivo performance of a drug, and if there exists a correlation between in vitro and in vivo, as well as healthy versus pathophysiological states. Herein, we report a systematic investigation of the interactions between ligands and receptors as a function of the linker length, two-carbon (2C) versus four-carbon (4C). The in vitro, ex vivo and in vivo in healthy models validate the hypothesis that 4C has better reach and binding to the receptors. The results indicate that 4C offered better performance over 2C in vivo in improving the oral bioavailability of insulin (INS) by 1.1-fold (3.5-fold compared to unfunctionalized nanoparticles) in a healthy rat model. Similar observations were made in pathophysiological models; however, the effects were less prominent compared to those in healthy models. Throughout, ligand decorated nanoparticles outperformed unfunctionalized nanoparticles. Finally, a semimechanistic pharmacokinetic and pharmacodynamic (PKPD) model was developed using the experimental data sets to quantitatively evaluate the effect of P2Ns-GA on oral bioavailability and efficacy of insulin. The study presents a sophisticated oral delivery system for INS or hydrophilic therapeutic cargo, highlighting the significant impact on bioavailability that minor adjustments to the surface chemistry can have.


Asunto(s)
Sistemas de Liberación de Medicamentos , Insulina , Nanopartículas , Poliésteres , Animales , Insulina/administración & dosificación , Insulina/farmacocinética , Insulina/química , Nanopartículas/química , Poliésteres/química , Ratas , Administración Oral , Masculino , Ratas Sprague-Dawley , Humanos , Propiedades de Superficie , Portadores de Fármacos/química
12.
Biomater Adv ; 160: 213861, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663159

RESUMEN

Novel strategies employing mechano-transducing materials eliciting biological outcomes have recently emerged for controlling cellular behaviour. Targeted cellular responses are achieved by manipulating physical, chemical, or biochemical modification of material properties. Advances in techniques such as nanopatterning, chemical modification, biochemical molecule embedding, force-tuneable materials, and artificial extracellular matrices are helping understand cellular mechanotransduction. Collectively, these strategies manipulate cellular sensing and regulate signalling cascades including focal adhesions, YAP-TAZ transcription factors, and multiple osteogenic pathways. In this minireview, we are providing a summary of the influence that these materials, particularly titanium-based orthopaedic materials, have on cells. We also highlight recent complementary methodological developments including, but not limited to, the use of metabolomics for identification of active biomolecules that drive cellular differentiation.


Asunto(s)
Mecanotransducción Celular , Osteogénesis , Osteogénesis/fisiología , Humanos , Titanio/química , Animales , Diferenciación Celular , Propiedades de Superficie , Materiales Biocompatibles/química , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiología , Matriz Extracelular/química
13.
Adv Healthc Mater ; 13(20): e2400257, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38520188

RESUMEN

As newly discovered substrate anchored extracellular vesicles, migrasomes (Migs) may bring a new opportunity for manipulating target cells bioactivities. In this study, the M2 macrophages derived Migs are obtained by titania nanotubes surface (NTs). Due to the benefits of nanostructuring, the NTs surface is not only able to induce RAW264.7 for M2 polarization but also to generate more Migs formation, which can be internalized by following seeded mesenchymal stem cells (MSCs). Then, the NTs surface induced Migs are collected by density-gradient centrifugation for MSCs treatment. As indicated by immunofluorescence staining, alkaline phosphatase activity, and alizarin red staining, the osteogenic differentiation capacity of MSCs is significantly enhanced by Migs treatment, in line with the dosage. By RNA-sequence analysis, the enhancement of osteogenic differentiation is correlated with PI3K-AKT pathway activation that may originate from the M2 polarization state of donor cells. Finally, the Migs are coated onto Ti surface for therapeutic application. Both the in vitro and in vivo analysis reveal that the Migs coated Ti implant shows significant enhancement of osteogenesis. In conclusion, this study suggests that the nanosurface may be a favorable platform for Migs production, which may bring a new concept for tissue regeneration.


Asunto(s)
Diferenciación Celular , Macrófagos , Células Madre Mesenquimatosas , Nanotubos , Osteogénesis , Titanio , Titanio/química , Titanio/farmacología , Osteogénesis/efectos de los fármacos , Animales , Nanotubos/química , Ratones , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células RAW 264.7 , Macrófagos/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Propiedades de Superficie , Proteínas Proto-Oncogénicas c-akt/metabolismo
14.
ACS Appl Mater Interfaces ; 16(11): 13622-13639, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38466038

RESUMEN

The design of implantable biomaterials involves precise tuning of surface features because the early cellular fate on such engineered surfaces is highly influenced by many physicochemical factors [roughness, hydrophilicity, reactive oxygen species (ROS) responsiveness, etc.]. Herein, to enhance soft tissue integration for successful implantation, Ti substrates decorated with uniform layers of nanoceria (Ce), called Ti@Ce, were optimally developed by a simple and cost-effective in situ immersion coating technique. The characterization of Ti@Ce shows a uniform Ce distribution with enhanced roughness (∼3-fold increase) and hydrophilicity (∼4-fold increase) and adopted ROS-scavenging capacity by nanoceria coating. When human gingival fibroblasts were seeded on Ti@Ce under oxidative stress conditions, Ti@Ce supported cellular adhesion, spreading, and survivability by its cellular ROS-scavenging capacity. Mechanistically, the unique nanocoating resulted in higher expression of amphiphysin (a nanotopology sensor), paxillin (a focal adhesion protein), and cell adhesive proteins (collagen-1 and fibronectin). Ti@Ce also led to global chromatin condensation by decreasing histone 3 acetylation as an early differentiation feature. Transcriptome analysis by RNA sequencing confirmed the chromatin remodeling, antiapoptosis, antioxidant, cell adhesion, and TGF-ß signaling-related gene signatures in Ti@Ce. As key fibroblast transcription (co)factors, Ti@Ce promotes serum response factor and MRTF-α nucleus localization. Considering all of this, it is proposed that the surface engineering approach using Ce could improve the biological properties of Ti implants, supporting their functioning at soft tissue interfaces and utilization as a bioactive implant for clinical conditions such as peri-implantitis.


Asunto(s)
Cerio , Fibroblastos , Titanio , Humanos , Especies Reactivas de Oxígeno/metabolismo , Titanio/farmacología , Titanio/química , Células Cultivadas , Propiedades de Superficie , Adhesión Celular/fisiología , Fibroblastos/metabolismo
15.
J Trace Elem Med Biol ; 83: 127408, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38387426

RESUMEN

BACKGROUND: Montmorillonite (MMT) is a biocompatible nanoclay and its incorporation into polymeric matrix not only improves the polymer's wettability/biodegradability, but also enhances cellular proliferation, and differentiation. On the other hand, the positive effect of boron (B) on the healing cascade and its antibacterial properties have drawn the attention of researchers. MATERIALS & METHODS: In this regard, B compounds in different chemical structures, boron nitride (BN), zinc borate (ZB), and phenylboronic acid (PBA), were adsorbed onto MMT and then, poly (lactic acid) (PLA) based MMT/B including micron/submicron fibers were fabricated by electrospinning. RESULTS: The incorporation of MMT nanoparticles into the PLA demonstrated a porous fiber topography with enhanced thermal properties, water uptake capacity, and antibacterial effect. Furthermore, the composites including BN, ZB, and PBA showed bacteriostatic effects against Gram-negative and Gram-positive pathogenic bacteria (Escherichia coli and Staphylococcus aureus). In-vitro cell culture studies performed with human dermal fibroblasts (HDF) indicated the non-toxic effect of B compounds. The results showed that incorporation of MMT supported cell adhesion and proliferation, and further addition of B compounds especially PBA increased cell viability for 14 days. CONCLUSION: The results illustrated the acceptable characteristics of the B-containing composites and their favorable effect on the cells, demonstrating their potential as a skin tissue engineering product.


Asunto(s)
Nanofibras , Polímeros , Humanos , Polímeros/farmacología , Polímeros/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Nanofibras/química , Arcilla , Antibacterianos/farmacología , Antibacterianos/química , Poliésteres/farmacología , Poliésteres/química , Compuestos de Boro/farmacología , Vendajes
16.
Pharmaceutics ; 16(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38399258

RESUMEN

Currently, biomineralization is widely used as a surface modification approach to obtain ideal material surfaces with complex hierarchical nanostructures, morphologies, unique biological functions, and categorized organizations. The fabrication of biomineralized coating for the surfaces of scaffolds, especially synthetic polymer scaffolds, can alter surface characteristics, provide a favorable microenvironment, release various bioactive substances, regulate the cellular behaviors of osteoblasts, and promote bone regeneration after implantation. However, the biomineralized coating fabricated by immersion in a simulated body fluid has the disadvantages of non-uniformity, instability, and limited capacity to act as an effective reservoir of bioactive ions for bone regeneration. In this study, in order to promote the osteoinductivity of 3D-printed PCL scaffolds, we optimized the surface biomineralization procedure by nano-topographical guidance. Compared with biomineralized coating constructed by the conventional method, the nano-topographically guided biomineralized coating possessed more mineral substances and firmly existed on the surface of scaffolds. Additionally, nano-topographically guided biomineralized coating possessed better protein adsorption and ion release capacities. To this end, the present work also demonstrated that nano-topographically guided biomineralized coating on the surface of 3D-printed PCL scaffolds can regulate the cellular behaviors of USCs, guide the osteogenic differentiation of USCs, and provide a biomimetic microenvironment for bone regeneration.

17.
J Colloid Interface Sci ; 659: 629-638, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38198940

RESUMEN

Polydimethylsiloxane (PDMS) is known to be a common substrate for various cell culture-based applications. However, native PDMS is not very conducive for cell culture and hence, surface modification via cell adhesion moieties is generally needed to make it suitable especially for long-term cell culture. To address this issue, we propose to coat PDMS nanoparticles (NPs) on the surface of PDMS film to improve adhesion, proliferation and differentiation of skin cells. The proposed modification strategy introduces necessary nanotopography without altering the surface chemical properties of PDMS. Due to resemblance in the mechanical properties of PDMS with skin, PDMS NPs can recreate the native extracellular nanoenvironment of skin on the PDMS surface and provide anchoring sites for skin cells to adhere and grow. Human keratinocytes, representing 95% of the epidermal skin cells maintained their characteristic well-spread morphology with the formation of interconnected cell-sheets on this coated PDMS surface. Moreover, our in vitro immunofluorescence studies confirmed expression of distinctive epidermal protein markers on the coated surface indicating close resemblance with the native skin epidermis. Conclusively, our findings suggest that introducing nanotopography via PDMS NPs can be an effective strategy for emulating the native cellular functions of keratinocytes on PDMS based cell culture devices.


Asunto(s)
Dimetilpolisiloxanos , Nanopartículas , Humanos , Dimetilpolisiloxanos/química , Adhesión Celular , Proliferación Celular
18.
Small ; 20(26): e2310149, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38233200

RESUMEN

Bioinspired nanotopography is a promising approach to generate antimicrobial surfaces to combat implant-associated infection. Despite efforts to develop bactericidal 1D structures, the antibacterial capacity of 2D structures and their mechanism of action remains uncertain. Here, hydrothermal synthesis is utilized to generate two 2D nanoflake surfaces on titanium (Ti) substrates and investigate the physiological effects of nanoflakes on bacteria. The nanoflakes impair the attachment and growth of Escherichia coli and trigger the accumulation of intracellular reactive oxygen species (ROS), potentially contributing to the killing of adherent bacteria. E. coli surface appendages type-1 fimbriae and flagella are not implicated in the nanoflake-mediated modulation of bacterial attachment but do influence the bactericidal effects of nanoflakes. An E. coli ΔfimA mutant lacking type-1 fimbriae is more susceptible to the bactericidal effects of nanoflakes than the parent strain, while E. coli cells lacking flagella (ΔfliC) are more resistant. The results suggest that type-1 fimbriae confer a cushioning effect that protects bacteria upon initial contact with the nanoflake surface, while flagella-mediated motility can lead to elevated membrane abrasion. This finding offers a better understanding of the antibacterial properties of nanoflake structures that can be applied to the design of antimicrobial surfaces for future medical applications.


Asunto(s)
Escherichia coli , Propiedades de Superficie , Titanio , Titanio/química , Titanio/farmacología , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Especies Reactivas de Oxígeno/metabolismo , Nanoestructuras/química , Adhesión Bacteriana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antiinfecciosos/química , Fimbrias Bacterianas/efectos de los fármacos , Fimbrias Bacterianas/metabolismo
19.
Colloids Surf B Biointerfaces ; 234: 113717, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38157767

RESUMEN

Porous Mg scaffolds are promising for bone repair but are limited by high corrosion rates and challenges in preserving coating integrity. We used Directed Plasma Nanosynthesis (DPNS) at 400 eV and a fluence of 1 × 1018 cm-2 to augment the bioactivity and corrosion resistance of porous Mg scaffolds, maintaining their overall material integrity. DPNS creates nanostructures that increase surface area, promote apatite nucleation, and enhance osseointegration, improving the bioactivity and corrosion resistance of porous Mg scaffolds without compromising their structure. Our findings indicate a decrease in surface roughness, with pre-irradiated samples having Rq = 60.4 ± 5.3 nm andRa = 48.2 ± 3.1 nm, and post-DPNS samples showing Rq = 36.9 ± 0.3 nm andRa = 28.6 ± 0.8 nm. This suggests changes in topography and wettability, corroborated by the increased water contact angles (CA) of 129.2 ± 3.2 degrees. The complexity of the solution influences the CA: DMEM results in a CA of 120.4 ± 0.1 degrees, while DMEM + SBF decreases it to 103.6 ± 0.5 degrees, in contrast to the complete spreading observed in non-irradiated samples. DPNS-treated scaffolds exhibit significantly reduced corrosion rates at 5.7 × 10-3 ± 3.8 × 10-4 mg/cm²/day, compared to the control's 2.3 × 10-2 ± 3.2 × 10-4 mg/cm²/day over 14 days (P < 0.01). The treatment encourages the formation of a Ca-phosphate-rich phase, which facilitates cell spreading and the development of focal adhesion points in hBM-MSCs on the scaffolds. Additionally, J774A.1 murine macrophages show an enhanced immune response with diminished TNF-α cytokine expression. These results offer insights into nanoscale modifications of Mg-based biomaterials and their promise for bone substitutes or tissue engineering scaffolds.


Asunto(s)
Magnesio , Andamios del Tejido , Ratones , Animales , Magnesio/farmacología , Magnesio/química , Porosidad , Andamios del Tejido/química , Materiales Biocompatibles/farmacología , Ingeniería de Tejidos , Corrosión
20.
ACS Appl Mater Interfaces ; 16(1): 389-400, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38117934

RESUMEN

Synthetic small-diameter vascular grafts (<6 mm) are used in the treatment of cardiovascular diseases, including coronary artery disease, but fail much more readily than similar grafts made from autologous vascular tissue. A promising approach to improve the patency rates of synthetic vascular grafts is to promote the adhesion of endothelial cells to the luminal surface of the graft. In this study, we characterized the surface chemical and topographic changes imparted on poly(vinyl alcohol) (PVA), an emerging hydrogel vascular graft material, after exposure to various reactive ion plasma (RIP) surface treatments, how these changes dissipate after storage in a sealed environment at standard temperature and pressure, and the effect of these changes on the adhesion of endothelial colony-forming cells (ECFCs). We showed that RIP treatments including O2, N2, or Ar at two radiofrequency powers, 50 and 100 W, improved ECFC adhesion compared to untreated PVA and to different degrees for each RIP treatment, but that the topographic and chemical changes responsible for the increased cell affinity dissipate in samples treated and allowed to age for 230 days. We characterized the effect of aging on RIP-treated PVA using an assay to quantify ECFCs on RIP-treated PVA 48 h after seeding, atomic force microscopy to probe surface topography, scanning electron microscopy to visualize surface modifications, and X-ray photoelectron spectroscopy to investigate surface chemistry. Our results show that after treatment at higher RF powers, the surface exhibits increased roughness and greater levels of charged nitrogen species across all precursor gases and that these surface modifications are beneficial for the attachment of ECFCs. This study is important for our understanding of the stability of surface modifications used to promote the adhesion of vascular cells such as ECFCs.


Asunto(s)
Células Endoteliales , Injerto Vascular , Alcohol Polivinílico/farmacología , Alcohol Polivinílico/química , Plasma , Prótesis Vascular , Etanol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA