Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.148
Filtrar
1.
Small Methods ; : e2400370, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225431

RESUMEN

Lithium-sulfur (Li-S) battery are considered as the next generation energy storage system owing to their ultra-high theoretical specific capacity and energy density. However, the commercialization of Li-S battery is still hindered by the intrinsically low conductivity of sulfur, sluggish catalytic conversion and notorious shuttle effect of polysulfides. The implantation of defects in sulfur electrocatalyst can effectively increase its conductivity and catalytic efficiency of lithium polysulfides, but the current mainstream defective materials are limited and lack of in-depth research. Herein, a defective niobium selenide (NbSe2-x) nanosheet sulfur electrocatalyst is constructed with enriched selenium defects, which demonstrates strong interaction with sulfur species, endowing NbSe2-x with rapid and reliable sulfur reduction reaction. As a result, the Li-S cell with NbSe2-x exhibits excellent multiplicative performance in both coin cell and pouch cell, which maintains stable cycling for over 2000 cycles under 5 C, corresponding to a low-capacity fading rate of 0.024% per cycle. Ah level pouch cell is also fabricated, showing a decent energy density of 378 Wh kg-1. This creative strategy not only emphasizes the importance of selenium defect engineering in Li-S batterie toward practical application, but also enlightens the material engineering to realize superior performance in related energy storage and conversion area.

2.
Chemphyschem ; : e202400738, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258742

RESUMEN

The electrochemical nitrate reduction reaction (NO3-RR) is a novel green method for ammonia synthesis. The development of outstanding NO3-RR performance is based on reasonable catalyst. Metal oxides have garnered significant attention due to their exceptional electrical conductivity and catalytic properties. Doping serves as an effective strategy for enhancing catalyst performance due to its ability to change the electron cloud distribution and energy levels. In this study, we develop a heterojunction catalyst Fe doped copper oxide nanosheet and cobalt tetroxide nanowire growing on carbon cloth simultaneously (Fe-CuO@Co3O4/CC) via hydrothermal method. The well-designed Fe-CuO@Co3O4/CC has excellent NH3 yield (470.9 µmol h-1 cm-2) and Faraday efficiency (FE: 84.4%) at -1.2 V versus reversible hydrogen electrode (vs. RHE). The heterostructure increases the specific surface area of the catalyst, and the possibility of contact between the catalyst and NO3- ions, enhances the catalytic efficiency. In addition, the catalyst has excellent stability and can stably carry out the electrocatalytic nitrate reduction reaction (NO3-RR), which provides a way for further research on the high-efficiency reduction of nitrate.

3.
Materials (Basel) ; 17(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39274566

RESUMEN

Highly solar light-absorbing poly(vinyl alcohol) (PVA) nanocomposite films have garnered wide attention in fields such as flexible optoelectronics, solar energy harvesting, and photothermal therapy. However, fabricating PVA nanocomposite films with a broad spectrum of solar absorption using cost-effective and non-toxic nanofillers remains challenging. Herein, nanocomposite films of PVA incorporating various concentrations of mixed-phase 2D MoSe2 nanosheets (i.e., a combination of the 2H and 1T phase) were prepared using a solution casting technique. Scanning electron microscopy (SEM) shows homogenous dispersion of MoSe2 nanosheets in the PVA matrix even at higher concentrations, while atomic force microscopy (AFM) reveals increasing surface roughness with increasing MoSe2 content, reaching a plateau after 20 wt%. With the increase in the concentration of MoSe2, the nanocomposite films exhibit interesting light absorption characteristics reaching their highest absorption (average 94.9%) at 40 wt% MoSe2. The incorporated mixed-phase MoSe2 nanosheets induce a significant change in the energy levels of the PVA matrix, which is reflected in the reduced optical band gap energy (2.63 eV) at 40 wt% MoSe2 against pure PVA (5.28 eV). The excellent light absorption of PVA nanocomposite films across the entire range from 250 nm to 2500 nm is attributed to the thin 2D structure of MoSe2 and the presence of its mixed phase.

4.
Nanomaterials (Basel) ; 14(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39269037

RESUMEN

The scaling of bulk Si-based transistors has reached its limits, while novel architectures such as FinFETs and GAAFETs face challenges in sub-10 nm nodes due to complex fabrication processes and severe drain-induced barrier lowering (DIBL) effects. An effective strategy to avoid short-channel effects (SCEs) is the integration of low-dimensional materials into novel device architectures, leveraging the coupling between multiple gates to achieve efficient electrostatic control of the channel. We employed TCAD simulations to model multi-gate FETs based on various dimensional systems and comprehensively investigated electric fields, potentials, current densities, and electron densities within the devices. Through continuous parameter scaling and extracting the sub-threshold swing (SS) and DIBL from the electrical outputs, we offered optimal MoS2 layer numbers and single-walled carbon nanotube (SWCNT) diameters, as well as designed structures for multi-gate FETs based on monolayer MoS2, identifying dual-gate transistors as suitable for high-speed switching applications. Comparing the switching performance of two device types at the same node revealed CNT's advantages as a channel material in mitigating SCEs at sub-3 nm nodes. We validated the performance enhancement of 2D materials in the novel device architecture and reduced the complexity of the related experimental processes. Consequently, our research provides crucial insights for designing next-generation high-performance transistors based on low-dimensional materials at the scaling limit.

5.
Small ; : e2406002, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39286891

RESUMEN

Recent research on SnS2 materials aims to enhance their photocatalytic efficiency for water pollution remediation through doping and constructing heterojunctions. These methods face challenges in cost-effectiveness and practical scalability. This study synthesizes hexagonal SnS2 nanosheets of various sizes via a hydrothermal method, assessing their performance in degrading methyl orange (MO) and reducing hexavalent chromium (Cr(VI)). The results show that smaller SnS2 nanosheets exhibit higher photocatalytic efficiency under sunlight. Specifically, 50 mg of small-sized nanosheets degraded 100 ml of MO (10 mgL-1) in 30 min and reduced Cr(VI) (10 mgL-1) in 105 min. The enhanced performance is attributed to: i) an energy bandgap of 2.17 eV suitable for visible light, and ii) more surface sulfur (S) vacancies in smaller nanosheets, which create electronic states near the Fermi level, reducing electron-hole recombination. This study offers a straightforward strategy for improving 2D materials like SnS2.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39237688

RESUMEN

The enhanced emission properties of several cationic dye molecules on the clay surface established as a result of the strong electrostatic interaction and associated molecular flattening leading to either the suppression of non-radiative deactivation processes or the improvement of radiative deactivation processes has been verified, and it is known as surface-fixation induced emission (S-FIE). Here, the differences in the S-FIE properties as well as the self-fluorescence quenching behavior of the dimidium and propidium dyes were compared. Propidium differs from dimidium by the substitution of a propyl (diethyl methylammonium) group at the 5th position instead of the methyl group in dimidium. So, the differences induced by this substitution, which is not even in conjugation with the chromophore part of the dye molecule show a significant impact on the adsorption strength, S-FIE properties, and self-fluorescence quenching behavior. In propidium and dimidium, the suppression of knr was the key factor for emission enhancement on the clay surface. Interestingly, the alkylammonium cation group in the Propidium helped for better adsorption strength as well as to reduce the self-fluorescence quenching behavior on the clay surface as compared to the dimidium. Since the trialkylammonium cation was not in conjugation with the core structure of the molecule and located at a specific distance, it did not interrupt the flattening of the molecule on the clay surface. These results could be beneficial in the construction of efficient photochemical reaction systems, where the molecule having low adsorption strengths can be modified by alkyl ammonium cations, which will not affect molecular planarization.

7.
Discov Nano ; 19(1): 140, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39227488

RESUMEN

In this paper, we introduce a novel Forkshape nanosheet Inductive Tunnel Field-Effect Transistor (FS-iTFET) featuring a Gate-All-Around structure and a full-line tunneling heterojunction channel. The overlapping gate and source contact regions create a strong and uniform electric field in the channel. Furthermore, the metal-semiconductor Schottky junction in the intrinsic source region induces the required carriers without the need for doping. This innovative design achieves both a steeper subthreshold swing (SS) and a higher ON-state current (ION). Using calibration-based simulations with Sentaurus TCAD, we compare the performance of three newly designed device structures: the conventional Nanosheet Tunnel Field-Effect Transistor (NS-TFET), the Nanosheet Line-tunneling TFET (NS-LTFET), and the proposed FS-iTFET. Simulation results show that, compared to the traditional NS-TFET, the NS-LTFET with its full line-tunneling structure improves the average subthreshold swing (SSAVG) by 19.2%. More significantly, the FS-iTFET, utilizing the Schottky-inductive source, further improves the SSAVG by 49% and achieves a superior ION/IOFF ratio. Additionally, we explore the impact of Trap-Assisted Tunneling on the performance of the three different integrations. The FS-iTFET consistently demonstrates superior performance across various metrics, highlighting its potential in advancing tunnel field-effect transistor technology.

8.
Adv Sci (Weinh) ; : e2405981, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269288

RESUMEN

Hydrogen boride (HB) nanosheets are recognized as a safe and lightweight hydrogen carrier, yet their hydrogen (H2) generation technique has been limited. In the present study, nitrogen-containing organic heterocycles are mixed with HB nanosheets in acetonitrile solution for visible-light-driven H2 generation. After exploring various nitrogen-containing heterocycles, the mixture of 1,10-phenanthroline molecules (Phens) and HB nanosheets exhibited significant H2 generation even under visible light irradiation. The quantum efficiency for H2 generation of the mixture of HB nanosheets and Phens is 0.6%. Based on spectroscopic and electrochemical analyses and density functional theory (DFT) calculations, it is determined that radical species generated from Phens with electrons and protons donated by HB nanosheets are responsive to visible light for H2 generation. The HB nanosheets/Phens mixture presented in this study can generate H2 using renewable energy sources such as sunlight without the need for complex electrochemical systems or heating mechanisms and is expected to serve as a lightweight hydrogen storage/release system.

9.
J Colloid Interface Sci ; 678(Pt B): 828-841, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39270384

RESUMEN

The production of hydrogen gas as an environmentally friendly and emission-free fuel source, has emerged as the preeminent substitute for traditional fossil fuels. The demand for a viable and low-cost substitute of the anodic Oxygen Evolution Reaction (OER) in hydrogen gas production has led researchers to explore the Hydrazine Oxidation Reaction (HzOR), aiming to reduce overpotential. In this study, we present the synthesis of a NiSeP@NiCo/Cu electrocatalyst via electrodeposition method, offering precise control over parameter adjustments and an affordable price. The binder-free nanosheet structure of this electrocatalyst demonstrates improved performance in water electrolysis, resulting in potentials of -40 and -134 mV vs. Reversible Hydrogen Electrode (RHE) for Hydrogen Evolution Reaction (HER) and 0.041 and 0.194 V (vs. RHE) for HzOR (i = 10 and 100 mA.cm-2). The electrode has excellent features, including active electrochemical surface, synergistic effects among the elements, high stability, super-hydrophilicity and super-aerophobicity. The Bi-functional performance of electrode was tested in a two-electrode set for HER/HzOR, the cell voltage required to reach current densities of 10 and 100 mA.cm-2 were determined as 0.071 and 0.298 V respectively. On the whole, this work presents the excellent capabilities of the synthesized electrode (NiSeP@NiCo/Cu) for hydrogen gas production.

10.
Adv Sci (Weinh) ; : e2408829, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39234814

RESUMEN

Photocatalytic fixation of nitrogen to ammonia represents an attractive alternative to the Haber-Bosch process under ambient conditions, and the performance can be enhanced by defect engineering of the photocatalysts, in particular, formation of shallow energy levels due to oxygen vacancies that can significantly facilitate the adsorption and activation of nitrogen. This calls for deliberate size engineering of the photocatalysts. In the present study, pyrochlore Bi2Ti2O7 quantum dots and (bulk-like) nanosheets are prepared hydrothermally by using bismuth nitrate and titanium sulfate as the precursors. Despite a similar oxygen vacancy concentration, the quantum dots exhibit a drastically enhanced photocatalytic performance toward nitrogen fixation, at a rate of 332.03 µmol g-1 h-1, which is 77 times higher than that of the nanosheet counterpart. Spectroscopic and computational studies based on density functional theory calculations show that the shallow levels arising from oxygen vacancies in the Bi2Ti2O7 quantum dots, in conjunction with the moderately constrained quantum confinement effect, facilitate the chemical adsorption and activation of nitrogen.

11.
Chemosphere ; 364: 143240, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39222696

RESUMEN

Iron(II)-based metal organic framework (Fe(II)-MOF) nanosheets have emerged as promising candidates for photo-Fenton catalysis. However, efficiently synthesizing Fe(II)-MOF nanosheets remains a significant challenge. Here, a bottom-up synthesis strategy is proposed to prepare two-dimensional Fe-MOF nanosheets (TFMN) with micrometer lateral dimensions and nanometer thickness, featuring Fe(II) as the metal nodes. The application of TFMN in the photo-Fenton degradation of carbamazepine (CBZ) demonstrates remarkable CBZ degradation performance and excellent efficiency across a wide range of pH values. The electron density and density of states are further calculated by density functional theory. Mechanism analysis identifies h+, •OH and •O2- as the predominant active species contributing to the catalytic oxidation process in the Vis/TFMN/H2O2 system.

12.
J Colloid Interface Sci ; 677(Pt B): 161-170, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39142157

RESUMEN

Two-dimensional nanosheets, with their distinct characteristics, are widely used in various applications such as water splitting, supercapacitors, catalysis etc. In this research, we produced Cu-BDC MOF nanosheets by using Cu2O nanotubes for metal ions and H2BDC as the organic linker. We combined these Cu-BDC MOF nanosheets with reduced graphene oxide (rGO) to form a nanocomposite. The collaboration between Cu-BDC MOF and rGO boosts both the catalytic reduction of 4-nitrophenol and the electrochemical capabilities. The conversion of 4-nitrophenol to 4-aminophenol is achieved using sodium borohydride as both a reducing agent and a catalyst. The study explores the impact of different concentrations of 4-nitrophenol and sodium borohydride on catalytic efficiency. The increase in sodium borohydride concentration enhances catalytic efficiency by providing more BH4- ions and electrons for the reduction process. The catalytic reduction process adheres to the Langmuir-Hinshelwood mechanism with apparent pseudo-first-order kinetics. Specifically, Cu-BDC MOF and rGO/Cu-BDC MOF exhibit specific capacities of 468.4 mA h/g and 656.4 mA h/g at a current density of 2 A/g, respectively, while also enhancing the operating voltage window. Therefore, electrodes based on rGO/Cu-BDC MOF nanosheets present a novel approach for environmental remediation and energy storage applications across various fields.

13.
Chempluschem ; : e202400449, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109458

RESUMEN

A magnetically responsive photonic crystal of colloidal nanosheets can exhibit a controllable structural color, offering diverse potential applications. In this study, we systematically investigated how the lateral sizes of graphene oxide (GO) nanosheets affect their magnetic responsiveness in a photonic system. Contrary to the prediction that larger lateral sizes of nanosheets would be more responsive to an applied magnetic field based on the magnetic energy of anisotropic materials, we discovered that GO nanosheets with larger lateral sizes in the photonic system scarcely responded to a 12 T magnetic field. The lack of magnetic response may be due to the strongly restricted rotational motion of GO nanosheets by mutual electrostatic forces. In contrast, GO nanosheets with medium lateral sizes readily responded to the 12 T magnetic field, forming a uniaxially oriented structure that resulted in a vivid structural color. However, smaller GO nanosheets displayed a less vivid structural color, possibly because of less structural ordering of GO nanosheets. Finally, we found that the photonic crystal of GO nanosheets with optimized lateral sizes responded effectively to the 12 T magnetic field across various GO concentrations, resulting in a vivid and tunable structural color.

14.
Small ; : e2405013, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109579

RESUMEN

2D carbon nitride nanosheets, exemplified by g-C3N4, offers significant structural benefits and enhanced photocatalytic activity. Nonetheless, the quantum confinement effect prevalent in nanoscale photocatalysts would result in an enlarged bandgap, potentially restricting the spectral absorption range and impeding improvements in photocatalytic efficiency. Here, a high-performance 2D photocatalyst with an extended spectral response is achieved by incorporating a novel phenol-like structure into the conjugated framework of ultrathin g-C3N4 nanosheet. This novel strategy features targeted pyrimidine doping to create a conjugated carbon zone in heptazine structure, offering a thermodynamically favorable pathway for hydroxyl functionalization during the annealing exfoliation process. Consequently, the π-π* transition energy in the material is significantly decreased, and the active lone pair electrons in phenol-like structure induces a new n-π* transition with notably enhanced absorption from 500 to 650 nm. The optimized material shows a dramatic enhancement in photocatalytic activity, achieving ≈72 times than the activity of bulk g-C3N4, and demonstrating a measurable H2 production rate of 6.57 µmol g-1 h-1 under 650 nm light. This study represents a significant step forward in the strategic design of 2D photocatalysts, with tailored electronic structures that significantly boost light absorption and photocatalytic efficiency.

15.
Nanotechnology ; 35(45)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39137791

RESUMEN

Herein, we fabricated nanoscale 2D CeO2sheet structure to develop a stable resistive gas sensor for detection of low concentration (ppm) level formaldehyde vapors. The fabricated CeO2nanosheets (NSs) showed an optical band gap of 3.53 eV and cubic fluorite crystal structure with enriched defect states. The formation of 2D NSs with well crystalline phases is clearly observed from high-resolution transmission electron microscope (HRTEM) images. The NSs have been shown tremendous blue-green emission related to large oxygen defects. A VOC sensing device based on fabricated two-dimensional NSs has been developed for the sensing of different VOCs. The device showed better sensing for formaldehyde compared with other VOCs (2-propanol, methanol, ethanol, and toluene). The response was found to be 4.35, with the response and recovery time of 71 s and 310 s, respectively. The device showed an increment of the recovery time (71 s to 100 s) with the decrement of the formaldehyde ppm (100 ppm to 20 ppm). Theoretical fittings provided the detection limit of formaldehyde ≈8.86 ± 0.45 ppm with sensitivity of 0.56 ± 0.05 ppm-1. The sensor device showed good reproducibility with excellent stability over the study period of 135 d, with a deviation of 1.8% for 100 ppm formaldehyde. The average size of the NSs (≈24 nm) calculated from HRTEM observation showed lower value than the calculated Debye length (≈44 nm) of the charge accumulation during VOCs sensing. Different defect states, interstitial and surface states in the CeO2NSs as observed from the Raman spectrum and emission spectrum are responsible for the formaldehyde sensing. This work offers an insight into 2D semiconductor-based oxide material for highly sensitive and stable formaldehyde sensors.

16.
ACS Nano ; 18(34): 23277-23288, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39143839

RESUMEN

The anodeless battery design has recently gained significant interest by eliminating the direct use of a thick lithium (Li) foil. However, it suffers from inhomogeneous Li+ flux, resulting in dendrite growth and a short cycling life. To address this, the exfoliation of layered-structure titanium oxide to 2D nanosheets (2DTiOx) is proposed to precisely control Li+ flux at the atomic scale by maximizing Li+ affinitive Ti sites. Compared to cells without these nanosheets, the Li|2DTiOx|Cu half-cell demonstrates stable cyclability over 900 cycles, with a Coulombic efficiency (CE) over 99% at 0.5 mA cm-2 and 0.5 mAh cm-2. Similarly, a long stable cycling life over 1500 h at 1.0-3.0 mA cm-2 is observed for a 2DTiOx-based symmetric cell containing a limited Li amount from electrodeposited Li metal (e-Li|2DTiOx|e-Li). The full cells (e-Li|2DTiOx||NCM811 and e-Li|2DTiOx||LFP) coupled with NCM811 and LFP cathodes showed a long cycle life of 400 cycles at 1.0 C and 0.5 C, respectively. The exceptional battery performance is attributed to the uniform Li disposition on the 2DTiOx electrode, emphasizing the crucial role of the exposed basal plane in 2DTiOx as an efficient atomic scale Li+ flux regulator. This strategy is expected to advance next-generation lithium metal batteries (LMBs) by highlighting the significance of Li+ affinity at the Ti sites of 2DTiOx nanosheets.

17.
Chemistry ; : e202402444, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150684

RESUMEN

Ultrathin two-dimensional (2D) metal-organic nanosheets (MONs) have attracted continued attention in the field of advanced functional materials. Their nanoscale thickness, high surface-to-volume ratio, and abundant accessible active sites, are superior advantages compared with their 3D bulk counterparts. Bioinspired molecular scalpel strategy is a promising method for the creation of 2D MONs, and may solve the current shortcomings of MONs synthesis. This review aims to provide a state-of-the-art overview of molecular scalpel strategies and share the results of current development to provide a better solution for MONs synthesis. Different types of molecular scalpel strategies have been systematically summarized. Both mechanisms, advantages and limitations of multiform molecular scalpel strategies have been discussed. Besides, the challenges to be overcome and the question to be solved are also introduced.

18.
J Colloid Interface Sci ; 677(Pt B): 853-861, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39173517

RESUMEN

Electrocatalytic nitrate reduction reaction presents a promising avenue for environmentally friendly ammonia (NH3) synthesis and wastewater treatment. An essential aspect to consider is the meticulous design of electrocatalysts. This study explores the utilization of a Ni-Co alloy nanosheet-decorated three-dimensional titanium dioxide (3D-TiO2) nanobelts electrodeposited on titanium meshes (NixCoy@TiO2/TM) for efficient electrocatalytic NH3 production. The optimized Ni1Co3@TiO2/TM electrode achieves a significant NH3 yield of 676.3 ± 27.1 umol h-1 cm-2 with an impressive Faradaic efficiency (FE) of 95.1 % ± 2.1 % in a 0.1 M KOH solution containing 0.1 M NO3- at -0.4 V versus the reversible hydrogen electrode. Additionally, the electrode demonstrates exceptional electrochemical activity for NH3 synthesis in simulated wastewater, delivering an outstanding NH3 yield of 751.6 ± 44.3 umol h-1 cm-2 with a FE of 96.8 % ± 0.4 % at the same potential of -0.4 V. Moreover, the electrode exhibits minimal variation in current density, NH3 yields and FEs throughout the 24-h stability test and the 20-cycle test, demonstrating its excellent stability and durability. This study offers a straightforward electrodeposited approach for the development of 3D-nanostructured alloys as catalysts for NH3 electrosynthesis from nitrates at room temperature.

19.
Macromol Rapid Commun ; : e2400549, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137300

RESUMEN

Aqueous emulsion polymerization is a robust technique for preparing nanoparticles of block copolymers; however, it typically yields spherical nanoassemblies. The scale preparation of nanoassemblies with nonspherical high-order morphologies is a challenge, particularly 2D core-shell nanosheets. In this study, the polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) are combined to demonstrate the preparation of 2D nanosheets and their aggregates via aqueous reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization. First, the crucial crystallizable component for CDSA, hydroxyethyl methacrylate polycaprolactone (HPCL) macromonomer is synthesized by ring opening polymerization (ROP). Subsequently, the RAFT emulsion polymerization of HPCL is conducted to generate crystallizable nanomicelles by a grafting-through approach. This PISA process simultaneously prepared spherical latices and bottlebrush block copolymers comprising poly(N',N'-dimethylacrylamide)-block-poly(hydroxyethyl methacrylate polycaprolactone) (PDMA-b-PHPCL). The latexes are now served as seeds for inducing the formation of 2D hexagonal nanosheets, bundle-shaped and flower-like aggregation via the CDSA of PHPCL segments and unreacted HPCL during cooling. Electron microscope analysis trace the morphology evolution of these 2D nanoparticles and reveal that an appropriate crystallized component of PHPCL blocks play a pivotal role in forming a hierarchical structure. This work demonstrates significant potential for large-scale production of 2D nanoassemblies through RAFT emulsion polymerization.

20.
Sensors (Basel) ; 24(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39124017

RESUMEN

Pure SnO2 and 1 at.% PdO-SnO2 materials were prepared using a simple hydrothermal method. The micromorphology and element valence state of the material were characterized using XRD, SEM, TEM, and XPS methods. The SEM results showed that the prepared material had a two-dimensional nanosheet morphology, and the formation of PdO and SnO2 heterostructures was validated through TEM. Due to the influence of the heterojunction, in the XPS test, the energy spectrum peaks of Sn and O in PdO-SnO2 were shifted by 0.2 eV compared with SnO2. The PdO-SnO2 sensor showed improved ethanol sensing performance compared to the pure SnO2 sensor, since it benefited from the large specific surface area of the nanosheet structure, the modulation effect of the PdO-SnO2 heterojunction on resistance, and the catalyst effect of PdO on the adsorption of oxygen. A DFT calculation study of the ethanol adsorption characteristics of the PdO-SnO2 surface was conducted to provide a detailed explanation of the gas-sensing mechanism. PdO was found to improve the reducibility of ethanol, enhance the adsorption of ethanol's methyl group, and increase the number of adsorption sites. A synergistic effect based on the continuous adsorption sites was also deduced.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA