Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38930709

RESUMEN

This manuscript analyses changes in the optical parameters of a commercial alumina nanoporous structure (AnodiscTM or AND support) due to surface coverage by the ionic liquid (IL) AliquatCl (AlqCl). XPS measurements were performed for chemical characterization of the composite AND/AlqCl and the AND support, but XPS resolved angle analysis (from 15° to 75°) was carried out for the homogeneity estimation of the top surface of the ANDAlqCl sample. Optical characterization of both the composite AND/AlqCl and the AND support was performed by three non-destructive and non-invasive techniques: ellipsometry spectroscopy (SE), light transmittance/reflection, and photoluminescence. SE measurements (wavelength ranging from 250 nm to 1250 nm) allow for the determination of the refraction index of the AND/AlqCl sample, which hardly differs from that corresponding to the IL, confirming the XPS results. The presence of the IL significantly increases the light transmission of the alumina support in the visible region and reduces reflection, affecting also the maximum position of this latter curve, as well as the photoluminescence spectra. Due to these results, illuminated I-V curves for both the composite AND/AlqCl film and the AND support were also measured to estimate its possible application as a solar cell. The optical behaviour exhibited by the AND/AlqCl thin film in the visible region could be of interest for different applications.

2.
Materials (Basel) ; 17(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38541569

RESUMEN

This study explores the optical and electrochemical properties of a ZnO coating layer deposited on a nanoporous alumina structure (NPAS) for potential multifunctional applications. The NPAS, synthesized through an electrochemical anodization process, displays well-defined nanochannels with a high aspect ratio (~3000). The ZnO coating, achieved via atomic layer deposition, enables the tuning of the pore diameter and porosity of the NPAS, thereby influencing both the optical and electrochemical interfacial properties. A comprehensive characterization using photoluminescence, spectroscopy ellipsometry and impedance spectroscopy (with the sample in contact with NaCl solutions) provides insights into optical and electrochemical parameters, including the refractive index, absorption coefficient, and electrolyte-ZnO/NPAS interface processes. This research demonstrates potential for tailoring the optical and interfacial properties of nanoporous structures by selecting appropriate coating materials, thus opening avenues for their utilization in various technological applications.

3.
Nanomaterials (Basel) ; 13(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37836308

RESUMEN

In this study, anodic aluminum oxide membranes (AAOMs) and Au-coated AAOMs (AAOM/Au) with pore diameters of 55 nm and inter-pore spacing of 100 nm are used to develop ZnO/AAOM and ZnO/ZnAl2O4/Au nanoarrays of different morphologies. The effects of the electrodeposition current, time, barrier layer, and Au coating on the morphology of the resultant nanostructures were investigated using field emission scanning electron microscopy. Energy dispersive X-ray and X-ray diffraction were used to analyze the structural parameters and elemental composition of the ZnO/ZnAl2O4/Au nanoarray, and the Kirkendall effect was confirmed. The developed ZnO/ZnAl2O4/Au electrode was applied to remove organic dyes from aqueous solutions, including methylene blue (MB) and methyl orange (MO). Using a 3 cm2 ZnO/ZnAl2O4/Au sample, the 100% dye removal for 20 ppm MB and MO dyes at pH 7 and 25 °C was achieved after approximately 50 and 180 min, respectively. According to the kinetics analysis, the pseudo-second-order model controls the dye adsorption onto the sample surface. AAOM/Au and ZnO/ZnAl2O4/Au nanoarrays are also used as pH sensor electrodes. The sensing capability of AAOM/Au showed Nernstian behavior with a sensitivity of 65.1 mV/pH (R2 = 0.99) in a wide pH range of 2-9 and a detection limit of pH 12.6, whereas the ZnO/ZnAl2O4/Au electrode showed a slope of 40.1 ± 1.6 mV/pH (R2 = 0.996) in a pH range of 2-6. The electrode's behavior was more consistent with non-Nernstian behavior over the whole pH range under investigation. The sensitivity equation was given by V(mV) = 482.6 + 372.6 e-0.2095 pH at 25 °C with R2 = 1.0, which could be explained in terms of changes in the surface charge during protonation and deprotonation.

4.
ACS Sens ; 8(10): 3973-3984, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37725347

RESUMEN

Distinguishing between heavy water and regular water has been a continuing challenge since these isotopologues of water have very similar physical and chemical properties. We report the development and evaluation of a simple, inexpensive sensor capable of detecting liquid D2O and other isotopologues of liquid water through the measurement of electrical signals generated from a nanoporous alumina film. This electrical output, consisting of a sharp voltage pulse followed by a separate broad voltage pulse, is present during the application of microliter volumes of liquid. The amplitude and temporal characteristics of these pulses have been combined to enable four diagnostic parameters for sensing D2O and H218O. The sensing mechanism is based on different modification effects on the alumina surface by H2O and D2O, spatially localized variations in the surface potential of alumina induced by isotopically substituted water molecules, combined with the effect of isotopic composition on charge transfer. As a proof-of-concept demonstration, a sensing system has been developed that provides real-time detection of liquid D2O in a stand-alone system.


Asunto(s)
Óxido de Aluminio , Agua , Agua/química , Óxido de Deuterio
5.
Micromachines (Basel) ; 14(4)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37421072

RESUMEN

Optical characterization of nanoporous alumina-based structures (NPA-bSs), obtained by ALD deposition of a thin conformal SiO2 layer on two alumina nanosupports with different geometrical parameters (pore size and interpore distance), was performed by two noninvasive and nondestructive techniques such as spectroscopic ellipsometry (SE) and photoluminescence (Ph) spectra. SE measurements allow us to estimate the refraction index and extinction coefficient for the studied samples and their dependence with wavelength for the 250-1700 nm interval, showing the effect of sample geometry and cover-layer material (SiO2, TiO2, or Fe2O3), which significantly affect the oscillatory character of both parameters, as well as changes associated with the light incidence angle, which are attributed to surface impurities and inhomogeneity. Photoluminescence curves exhibit a similar shape independently of sample pore-size/porosity, but they seem to affect intensity values. This analysis shows the potential application of these NPA-bSs platforms to nanophotonics, optical sensing, or biosensing.

6.
Micromachines (Basel) ; 14(7)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37512643

RESUMEN

With the increases in work environment regulations restricting alcohol to 1000 ppm, and in drink-driving laws, testing for alcohol with a simple method is a crucial issue. Conventional alcohol sensors based on sulfide, metal oxide, boron nitride or graphene oxide have a detection limit in the range of 50-1000 ppm but have disadvantages of complicated manufacture and longer processing times. A recent portable alcohol meter based on semiconductor material using conductivity or chemistry measurements still has the problem of a complex and lengthy manufacturing process. In this paper, a simple and effective resistive-type alcohol vapor sensor using one-step anodic aluminum oxide (AAO) is proposed. The nanoporous AAO was produced in one-step by anodizing low-purity AA1050 at room temperature of 25 °C, which overcame the traditional high-cost and lengthy process at low temperature of anodization and etching from high-purity aluminum. The highly specific surface area of AAO has benefits for good sensing performance, especially as a humidity or alcohol vapor sensor. With the resistance measurement method, alcohol vapor concentration of 0, 100, 300, 500, 700 and 1000 ppm correspond to mean resistances of 8524 Ω, 8672 Ω, 9121 Ω, 9568 Ω, 10,243 Ω, and 11,045 Ω, respectively, in a linear relationship. Compared with other materials for detecting alcohol vapor, the AAO resistive sensor has advantages of fast and simple manufacturing with good detection limits for practical applications. The resistive-type alcohol vapor-sensing mechanism is described with respect to the resistivity of the test substance and the pore morphology of AAO. In a human breath test, the AAO sensor can quickly distinguish whether the subject is drinking, with normal breath response of -30% to -40% and -20% to -30% response after drinking 50 mL of wine of 25% alcohol.

7.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37108198

RESUMEN

Tuning and controlling the magnetic properties of nanomaterials is crucial to implement new and reliable technologies based on magnetic hyperthermia, spintronics, or sensors, among others. Despite variations in the alloy composition as well as the realization of several post material fabrication treatments, magnetic heterostructures as ferromagnetic/antiferromagnetic coupled layers have been widely used to modify or generate unidirectional magnetic anisotropies. In this work, a pure electrochemical approach has been used to fabricate core (FM)/shell (AFM) Ni@(NiO,Ni(OH)2) nanowire arrays, avoiding thermal oxidation procedures incompatible with integrative semiconductor technologies. Besides the morphology and compositional characterization of these core/shell nanowires, their peculiar magnetic properties have been studied by temperature dependent (isothermal) hysteresis loops, thermomagnetic curves and FORC analysis, revealing the existence of two different effects derived from Ni nanowires' surface oxidation over the magnetic performance of the array. First of all, a magnetic hardening of the nanowires along the parallel direction of the applied magnetic field with respect their long axis (easy magnetization axis) has been found. The increase in coercivity, as an effect of surface oxidation, has been observed to be around 17% (43%) at 300 K (50 K). On the other hand, an increasing exchange bias effect on decreasing temperature has been encountered when field cooling (3T) the oxidized Ni@(NiO,Ni(OH)2) nanowires below 100 K along their parallel lengths.


Asunto(s)
Nanoporos , Nanocables , Nanocables/química , Óxido de Aluminio , Níquel/química , Nanotecnología/métodos
8.
Food Chem ; 411: 135493, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36689871

RESUMEN

A voltammetric immunosensor was developed for detection of porcine serum albumin (PSA) to identify raw meat products adulterated with pork. A novel strategy to fabricate multiple individual nanoporous alumina (NPA) millirods (length, 5.0 mm; diameter, 1.0 mm) as the biorecognition platform is described. Each NPA millirod was covalently bioconjugated with anti-PSA capturing antibodies (α-PSAC). Following immunocapture, the PSA bound to the α-PSAC/NPA millirod bioconjugate were tagged with gold nanoparticles (AuNPs) functionalized with anti-PSA detection antibodies as the signaling probe. Subsequently, the AuNPs were voltammetrically analyzed to quantify the target PSA. The immunosensor exhibited 100 % specificity and high sensitivity to PSA with a limit of detection (LoD) of 50 (range, 0-1000) pg/mL (R2 = 0.9907). Real-world applicability was successfully validated using pork/beef adulterated mixtures with a LoD of 0.05 % (w/w). Overall, the detection performance of the proposed immunosensor was excellent and, thus, is suitable for surveillance of food safety and quality.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanoporos , Humanos , Masculino , Animales , Porcinos , Bovinos , Antígeno Prostático Específico , Oro , Óxido de Aluminio , Inmunoensayo , Límite de Detección , Albúmina Sérica , Técnicas Electroquímicas
9.
Nanomaterials (Basel) ; 12(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36500754

RESUMEN

This work analyzes chemical surface and optical characteristics of a commercial nanoporous alumina structure (NPAS) as a result of surface coverage by different imidazolium-based ionic liquids (1-butyl-3-metylimidazolium hexafluorophosphate, 3-methyl-1-octylimidazolium hexafluorophosphate, or 1-ethyl-3-methylimidazolium tetrafluoroborate). Optical characteristics of the IL/NPAS samples were determined by photoluminescence (at different excitation wavelengths (from 300 nm to 400 nm), ellipsometry spectroscopy, and light transmittance/reflectance measurements for a range of wavelengths that provide information on modifications related to both visible and near-infrared regions. Chemical surface characterization of the three IL/NPAS samples was performed by X-ray photoelectron spectroscopy (XPS), which indicates almost total support coverage by the ILs. The IL/NPAS analyzed samples exhibit different photoluminescence behavior, high transparency (<85%), and a reflection maximum at wavelength ~380 nm, with slight differences depending on the IL, while the refractive index values are rather similar to those shown by the ILs. Moreover, the illuminated I−V curves (under standard conditions) of the IL/NPAS samples were also measured for determining the efficiency energy conversion to estimate their possible application as solar cells. On the other hand, a computational quantum mechanical modeling method (DFT) was used to establish the most stable bond between the ILs and the NPAS support.

10.
Biochem Biophys Res Commun ; 636(Pt 2): 18-23, 2022 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-36343486

RESUMEN

We report an NK-lysin peptide-functionalized nanoporous anodized aluminum oxide (NAAO) based biosensor to detect bacterial endotoxin. Bovine NK-lysin-derived peptides show antimicrobial activity against bacterial pathogens, and bactericidal activity is primarily due to the membranolysis activity. Antimicrobial activity of NK-lysin NK2A was confirmed against a Gram-negative Mannheimia haemolytica and a Gram-positive Staphylococcus aureus. Electron microscopic examination showed the localization of NK2A conjugated silver nanoparticles, but not unconjugated silver nanoparticles used as control, to the bacterial outer membrane and cell wall. NK2A functionalized NAAO membranes were used in a previously developed four-electrode electrochemical configuration to detect the presence of Gram-negative bacterial lipopolysaccharides (LPS) and Gram-positive bacterial lipoteichoic acid (LTA) molecules. NK2A-functionalized NAAO biosensor could detect LPS with a detection limit of 10 ng/mL within an appreciable signal/noise ratio. Biosensors functionalized with a scrambled amino acid version of NK2A (Sc-NK2A) that lacks antimicrobial activity could not detect the presence of LPS. However, both NK2A and Sc-NK2A functionalized biosensors showed sensing signals with Gram-positive bacterial lipoteichoic acids. These results suggest that the specific binding of NK2A-LPS on the NAAO membrane surface is responsible for the observed biosensor signals. These findings suggest that NK2A-functionalized biosensors can be used for rapid and sensitive label-free LPS detection.


Asunto(s)
Antiinfecciosos , Técnicas Biosensibles , Nanopartículas del Metal , Nanoporos , Bovinos , Animales , Lipopolisacáridos/química , Péptidos Antimicrobianos , Óxido de Aluminio , Plata , Endotoxinas , Bacterias Grampositivas , Péptidos/química , Antiinfecciosos/química , Antibacterianos/química
11.
ACS Appl Mater Interfaces ; 14(1): 150-158, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34937345

RESUMEN

We report an experimental and computational approach for the fabrication and characterization of a highly sensitive and responsive label-free biosensor that does not require the presence of redox couples in electrolytes for sensitive electrochemical detection. The sensor is based on an aptamer-functionalized transparent electrode composed of nanoporous anodized alumina (NAA) grown on indium tin oxide (ITO)-covered glass. Electrochemical impedance changes in a thrombin binding aptamer (TBA)-functionalized NAA/ITO/glass electrode due to specific binding of α-thrombin are monitored for protein detection. The aptamer-functionalized electrode enables sensitive and specific thrombin protein detection with a detection limit of ∼10 pM and a high signal-to-noise ratio. The transient impedance of the alumina film-covered surface is computed using a computational electrochemical impedance spectroscopy (EIS) approach and compared to experimental observations to identify the dominant mechanisms underlying the sensor response. The computational and experimental results indicate that the sensing response is due to the modified ionic transport under the combined influence of steric hindrance and surface charge modification due to ligand/receptor binding between α-thrombin and the aptamer-covered alumina film. These results suggest that alumina film-covered electrodes utilize both steric and charge modulation for sensing, leading to tremendous improvement in the sensitivity and signal-to-noise ratio. The film configuration is amenable for miniaturization and can be readily incorporated into existing portable sensing systems.


Asunto(s)
Óxido de Aluminio/química , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Nanoporos , Trombina/análisis , Compuestos de Estaño/química , Técnicas Biosensibles/instrumentación , Espectroscopía Dieléctrica/instrumentación , Espectroscopía Dieléctrica/métodos , Impedancia Eléctrica , Electrodos , Límite de Detección
12.
Materials (Basel) ; 14(17)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34501141

RESUMEN

Changes associated to atomic layer deposition (ALD) of SiO2 from 3-aminopropyl triethoxysilane (APTES) and O3, on a nanoporous alumina structure, obtained by two-step electrochemical anodization in oxalic acid electrolyte (Ox sample) are analysed. A reduction of 16% in pore size for the Ox sample, used as support, was determined by SEM analysis after its coverage by a SiO2 layer (Ox+SiO2 sample), independently of APTES or O3 modification (Ox+SiO2/APTES and Ox+SiO2/APTES/O3 samples). Chemical surface modification was determined by X-ray photoelectron spectroscopy (XPS) technique during the different stages of the ALD process, and differences induced at the surface level on the Ox nanoporous alumina substrate seem to affect interfacial effects of both samples when they are in contact with an electrolyte solution according to electrochemical impedance spectroscopy (EIS) measurements, or their refraction index as determined by spectroscopic ellipsometry (SE) technique. However, no substantial differences in properties related to the nanoporous structure of anodic alumina (photoluminescent (PL) character or geometrical parameters) were observed between Ox+SiO2/APTES and Ox+SiO2/APTES/O3 samples.

13.
ACS Nano ; 15(3): 4155-4164, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33646747

RESUMEN

Resistance switching in metal-insulator-metal structures has been extensively studied in recent years for use as synaptic elements for neuromorphic computing and as nonvolatile memory elements. However, high switching power requirements, device variabilities, and considerable trade-offs between low operating voltages, high on/off ratios, and low leakage have limited their utility. In this work, we have addressed these issues by demonstrating the use of ultraporous dielectrics as a pathway for high-performance resistive memory devices. Using a modified atomic layer deposition based technique known as sequential infiltration synthesis, which was developed originally for improving polymer properties such as enhanced etch resistance of electron-beam resists and for the creation of films for filtration and oleophilic applications, we are able to create ∼15 nm thick ultraporous (pore size ∼5 nm) oxide dielectrics with up to 73% porosity as the medium for filament formation. We show, using the Ag/Al2O3 system, that the ultraporous films result in ultrahigh on/off ratio (>109) at ultralow switching voltages (∼±600 mV) that are 10× smaller than those for the bulk case. In addition, the devices demonstrate fast switching, pulsed endurance up to 1 million cycles. and high temperature (125 °C) retention up to 104 s, making this approach highly promising for large-scale neuromorphic and memory applications. Additionally, this synthesis methodology provides a compatible, inexpensive route that is scalable and compatible with existing semiconductor nanofabrication methods and materials.

14.
Materials (Basel) ; 13(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352979

RESUMEN

Fe-Pd magnetic shape-memory alloys are of major importance for microsystem applications due to their magnetically driven large reversible strains under moderate stresses. In this context, we focus on the synthesis of nanostructured Fe70Pd30 shape-memory alloy antidot array thin films with different layer thicknesses in the range from 20 nm to 80 nm, deposited onto nanostructured alumina membranes. A significant change in the magnetization process of nanostructured samples was detected by varying the layer thickness. The in-plane coercivity for the antidot array samples increased with decreasing layer thickness, whereas for non-patterned films the coercive field decreased. Anomalous coercivity dependence with temperature was detected for thinner antidot array samples, observing a critical temperature at which the in-plane coercivity behavior changed. A significant reduction in the Curie temperature for antidot samples with thinner layer thicknesses was observed. We attribute these effects to complex magnetization reversal processes and the three-dimensional magnetization profile induced by the nanoholes. These findings could be of major interest in the development of novel magnetic sensors and thermo-magnetic recording patterned media based on template-assisted deposition techniques.

15.
Nanomaterials (Basel) ; 10(10)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081163

RESUMEN

A sensitive fluorescence resonance energy transfer (FRET) biosensor is proposed to detect 8-hydroxy-2'-deoxyguanosine (8-OHdG), which is a typical DNA oxidation damage product excreted in human urine. The FRET biosensor was based on carbon dots (CDs)-modified nanoporous alumina membrane with CDs as fluorescence donors. Gold nanoparticles were encapsulated in zeolitic imidazolate framework-8 to form Au@ZIF-8 nanoparticles as signal quenchers. CDs and Au@ZIF-8 nanoparticles were biofunctionalized by 8-OHdG antibody. The capture of 8-OHdG on the membrane substrates can bring Au@ZIF-8 nanoparticles closely to CDs. With 350 nm excitation, the fluorescence of CDs was quenched by Au@ZIF-8 nanoparticles and FRET effect occurred. The quenching efficiency was analyzed. The limit of detection (LOD) was 0.31 nM. Interference experiments of the FRET biosensor showed good specificity for 8-OHdG detection. The biosensor could detect urinary 8-OHdG sensitively and selectively with simple sample pretreatment processes. It shows applicability for detecting biomarkers of DNA damage in urine or other biological fluids.

16.
J Appl Crystallogr ; 52(Pt 4): 745-754, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31396027

RESUMEN

Nanoporous anodic aluminium oxide (AAO) membranes are promising host systems for confinement of condensed matter. Characterizing their structure and composition is thus of primary importance for studying the behavior of confined objects. Here a novel methodology to extract quantitative information on the structure and composition of well defined AAO membranes by combining small-angle neutron scattering (SANS) measurements and scanning electron microscopy (SEM) imaging is reported. In particular, (i) information about the pore hexagonal arrangement is extracted from SEM analysis, (ii) the best SANS experimental conditions to perform reliable measurements are determined and (iii) a detailed fitting method is proposed, in which the probed length in the fitting model is a critical parameter related to the longitudinal pore ordering. Finally, to validate this strategy, it is applied to characterize AAOs prepared under different conditions and it is shown that the experimental SANS data can be fully reproduced by a core/shell model, indicating the existence of a contaminated shell. This original approach, based on a detailed and complete description of the SANS data, can be applied to a variety of confining media and will allow the further investigation of condensed matter under confinement.

17.
Molecules ; 24(17)2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31443342

RESUMEN

Histamine can be formed by enzymatic decarbonylation of histidine, which is an important indicator of seafood quality. A rapid and sensitive assay method is necessary for histamine monitoring. A fluorescence resonance energy transfer (FRET) assay system based on a carbon dot (CD)-modified nanoporous alumina membrane and Fe3O4@Au magnet nanocomposites has been developed for histamine detection in mackerel fish. CDs immobilized on nanoporous alumina membranes were used as donors, which provided a fluorescence sensing substrate for histamine detection. Fe3O4@Au magnet nanocomposites can not only act as acceptors, but also concentrate histamine from fish samples to increase detection sensitivity. Histamine was detected by the fluorescence signal changes of CDs capturing histamine by an immune reaction. The fluorescence signals of CDs were quenched by Fe3O4@Au magnet nanocomposites via the FRET mechanism. With an increase of histamine, the fluorescence intensity decreased. By recording fluorescence spectra and calculating intensity change, histamine concentration can be determined with a limit of detection (LOD) of 70 pM. This assay system can be successfully applied for histamine determination in mackerel fish to monitor the fish spoilage process in different storage conditions. It shows the potential applications of CDs-modified nanoporous alumina membranes and Fe3O4@Au magnet nanocomposites-based biosensors in the food safety area.


Asunto(s)
Carbono , Compuestos Férricos/química , Transferencia Resonante de Energía de Fluorescencia , Histamina/análisis , Membranas Artificiales , Nanocompuestos , Nanoporos , Puntos Cuánticos , Óxido de Aluminio/química , Técnicas Biosensibles/métodos , Técnicas Biosensibles/normas , Carbono/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Transferencia Resonante de Energía de Fluorescencia/normas , Límite de Detección , Nanocompuestos/química , Nanocompuestos/ultraestructura , Difracción de Rayos X
18.
Materials (Basel) ; 12(14)2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31336614

RESUMEN

In order to improve the absorption performance of the aluminum sheet for solar application, the nanoporous alumina sheets with the pore diameters of 30 nm and 400 nm were prepared by the anodic oxidation method. The absorption properties of the nanoporous alumina sheets under different solar radiation intensity were studied and compared with the conventional polished aluminum sheet. The results showed that the average absorptivity of the aluminum sheets decreased with the increase of the radiation intensity. When the radiation intensity was 100 W/m2, the nanoporous alumina sheet with the 30 nm pore diameter had the highest average solar absorptivity of 0.39, which was 18% higher than that of the nanoporous alumina sheet with 400 nm pore diameter, and 50% higher than that of the polished aluminum sheet. The maximum instantaneous absorption efficiency of the nanoporous alumina sheet with 30 nm pore diameter was found at 0.92 when the radiation intensity was 100 W/m2. The testing results indicated that the nanoporous alumina sheet with the 30 nm pore diameter performed the best compared with the other two aluminum sheets. By error propagation analysis, the relative error of the average amount of heat absorption and the average absorptivity were acceptable.

19.
ACS Appl Mater Interfaces ; 11(33): 30154-30162, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31353888

RESUMEN

Here, we propose a simple approach for the design of highly porous multicomponent heterostructures by infiltration of block-co-polymer templates with inorganic precursors in swelling solvents followed by gas-phase sequential infiltration synthesis and thermal annealing. This approach can prepare conformal coatings, free-standing membranes, and powders consisting of uniformly sized metal or metal oxide nanoparticles (NPs) well dispersed in a porous oxide matrix. We employed this new, versatile synthetic concept to synthesize catalytically active heterostructures of uniformly dispersed ∼4.3 nm PdO nanoparticles accessible through three-dimensional pore networks of the alumina support. Importantly, such materials reveal high resistance against sintering at 800 °C, even at relatively high loadings of NPs (∼10 wt %). At the same time, such heterostructures enable high mass transport due to highly interconnected nature of the pores. The surface of synthesized nanoparticles in the porous matrix is highly accessible, which enables their good catalytic performance in methane and carbon monoxide oxidation. In addition, we demonstrate that this approach can be utilized to synthesize heterostructures consisting of different types of NPs on a highly porous support. Our results show that swelling-based infiltration provides a promising route toward the robust and scalable synthesis of multicomponent structures.

20.
Biosens Bioelectron ; 126: 88-95, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30396022

RESUMEN

Nanoporous alumina membranes have become a ubiquitous biosensing platform for a variety of applications and aptamers are being increasingly utilized as recognition elements in protein sensing devices. Combining the advantages of the two, we report label-free sensitive detection of human α-thrombin by an aptamer-functionalized nanoporous alumina membrane using a four-electrode electrochemical cell. The sensor response to α-thrombin was determined in the presence of a high concentration (500 µM) of human serum albumin (HSA) as an interfering protein in the background. The sensor sensitivity was also characterized against γ-thrombin, which is a modified α-thrombin lacking the aptamer binding epitope. The detection limit, within an appreciable signal/noise ratio, was 10 pM of α-thrombin in presence of 500 µM HSA. The proposed scheme involves the use of minimum reagents/sample preparation steps, has appreciable response in presence of high concentrations of interfering molecules and is readily amenable to miniaturization by association with existing-chip based electrical systems for application in point-of-care diagnostic devices.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/instrumentación , Nanoporos , Trombina/análisis , Electrodos , Diseño de Equipo , Humanos , Límite de Detección , Membranas Artificiales , Nanoporos/ultraestructura , Albúmina Sérica/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA