Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nano Lett ; 24(33): 10228-10236, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39120132

RESUMEN

Modern nanotechnology has generated numerous datasets from in vitro and in vivo studies on nanomaterials, with some available on nanoinformatics portals. However, these existing databases lack the digital data and tools suitable for machine learning studies. Here, we report a nanoinformatics platform that accurately annotates nanostructures into machine-readable data files and provides modeling toolkits. This platform, accessible to the public at https://vinas-toolbox.com/, has annotated nanostructures of 14 material types. The associated nanodescriptor data and assay test results are appropriate for modeling purposes. The modeling toolkits enable data standardization, data visualization, and machine learning model development to predict properties and bioactivities of new nanomaterials. Moreover, a library of virtual nanostructures with their predicted properties and bioactivities is available, directing the synthesis of new nanomaterials. This platform provides a data-driven computational modeling platform for the nanoscience community, significantly aiding in the development of safe and effective nanomaterials.


Asunto(s)
Aprendizaje Automático , Nanoestructuras , Nanoestructuras/química , Nanotecnología/métodos , Programas Informáticos , Simulación por Computador , Humanos
2.
Comput Struct Biotechnol J ; 25: 47-60, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38646468

RESUMEN

The rapid advance of nanotechnology has led to the development and widespread application of nanomaterials, raising concerns regarding their potential adverse effects on human health and the environment. Traditional (experimental) methods for assessing the nanoparticles (NPs) safety are time-consuming, expensive, and resource-intensive, and raise ethical concerns due to their reliance on animals. To address these challenges, we propose an in silico workflow that serves as an alternative or complementary approach to conventional hazard and risk assessment strategies, which incorporates state-of-the-art computational methodologies. In this study we present an automated machine learning (autoML) scheme that employs dose-response toxicity data for silver (Ag), titanium dioxide (TiO2), and copper oxide (CuO) NPs. This model is further enriched with atomistic descriptors to capture the NPs' underlying structural properties. To overcome the issue of limited data availability, synthetic data generation techniques are used. These techniques help in broadening the dataset, thus improving the representation of different NP classes. A key aspect of this approach is a novel three-step applicability domain method (which includes the development of a local similarity approach) that enhances user confidence in the results by evaluating the prediction's reliability. We anticipate that this approach will significantly expedite the nanosafety assessment process enabling regulation to keep pace with innovation, and will provide valuable insights for the design and development of safe and sustainable NPs. The ML model developed in this study is made available to the scientific community as an easy-to-use web-service through the Enalos Cloud Platform (www.enaloscloud.novamechanics.com/sabydoma/safenanoscope/), facilitating broader access and collaborative advancements in nanosafety.

3.
Microb Pathog ; 189: 106575, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423405

RESUMEN

BACKGROUND: The bacterial pathogen, Flavobacterium columnare causes columnaris disease in Labeo rohita globally. Major effects of this bacterial infection include skin rashes and gill necrosis. Nimbolide, the key ingredient of the leaf extract of Azadirachta indica possesses anti-bacterial properties effective against many microorganisms. Nano-informatics plays a promising role in drug development and its delivery against infections caused by multi-drug-resistant bacteria. Currently, studies in the disciplines of dentistry, food safety, bacteriology, mycology, virology, and parasitology are being conducted to learn more about the wide anti-virulence activity of nimbolide. METHODS: The toxicity of nimbolide was predicted to determine its dosage for treating bacterial infection in Labeo rohita. Further, comparative 3-D structure prediction and docking studies are done for nimbolide conjugated nanoparticles with several key target receptors to determine better natural ligands against columnaris disease. The nanoparticle conjugates are being designed using in-silico approaches to study molecular docking interactions with the target receptor. RESULTS: Bromine conjugated nimbolide shows the best molecular interaction with the target receptors of selected species ie L rohita. Nimbolide comes under the class III level of toxic compound so, attempts are made to reduce the dosage of the compound without compromising its efficiency. Further, bromine is also used as a common surfactant and can eliminate heavy metals from wastewater. CONCLUSION: The dosage of bromine-conjugated nimbolide can be reduced to a non-toxic level and thus the efficiency of the Nimbolide can be increased. Moreover, it can be used to synthesize nanoparticle composites which have potent antibacterial activity towards both gram-positive and gram-negative bacteria. This material also forms a good coating on the surface and kills both airborne and waterborne bacteria.


Asunto(s)
Cyprinidae , Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Infecciones por Bacterias Gramnegativas , Limoninas , Animales , Nanoconjugados , Antibacterianos/farmacología , Simulación del Acoplamiento Molecular , Bromo , Bacterias Gramnegativas , Bacterias Grampositivas , Flavobacterium , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/microbiología , Infecciones por Flavobacteriaceae/microbiología
4.
Polymers (Basel) ; 15(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37514522

RESUMEN

Curcumin (CUR) has potent anticancer activities, and its bioformulations, including biodegradable polymers, are increasingly able to improve CUR's solubility, stability, and delivery to cancer cells. In this study, copolymers comprising poly (L-lactide)-poly (ethylene glycol)-poly (L-lactide) (PLA-PEG-PLA) and poly (ethylene glycol)-poly (L-lactide)-poly (ethylene glycol) (PEG-PLA-PEG) were designed and synthesized to assess and compare their CUR-delivery capacity and inhibitory potency on MCF-7 breast cancer cells. Molecular dynamics simulations and free energy analysis indicated that PLA-PEG-PLA has a higher propensity to interact with the cell membrane and more negative free energy, suggesting it is the better carrier for cell membrane penetration. To characterize the copolymer synthesis, Fourier transform-infrared (FT-IR) and proton nuclear magnetic resonance (1H-NMR) were employed, copolymer size was measured using dynamic light scattering (DLS), and their surface charge was determined by zeta potential analysis. Characterization indicated that the ring-opening polymerization (ROP) reaction was optimal for synthesizing high-quality polymers. Microspheres comprising the copolymers were then synthesized successfully. Of the two formulations, PLA-PEG-PLA experimentally exhibited better results, with an initial burst release of 17.5%, followed by a slow, constant release of the encapsulated drug up to 80%. PLA-PEG-PLA-CUR showed a significant increase in cell death in MCF-7 cancer cells (IC50 = 23.01 ± 0.85 µM) based on the MTT assay. These data were consistent with gene expression studies of Bax, Bcl2, and hTERT, which showed that PLA-PEG-PLA-CUR induced apoptosis more efficiently in these cells. Through the integration of nano-informatics and in vitro approaches, our study determined that PLA-PEG-PLA-CUR is an optimal system for delivering curcumin to inhibit cancer cells.

5.
Mol Inform ; 42(8-9): e2300019, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37258455

RESUMEN

In this study we present deimos, a computational methodology for optimal grouping, applied on the read-across prediction of engineered nanomaterials' (ENMs) toxicity-related properties. The method is based on the formulation and the solution of a mixed-integer optimization program (MILP) problem that automatically and simultaneously performs feature selection, defines the grouping boundaries according to the response variable and develops linear regression models in each group. For each group/region, the characteristic centroid is defined in order to allocate untested ENMs to the groups. The deimos MILP problem is integrated in a broader optimization workflow that selects the best performing methodology between the standard multiple linear regression (MLR), the least absolute shrinkage and selection operator (LASSO) models and the proposed deimos multiple-region model. The performance of the suggested methodology is demonstrated through the application to benchmark ENMs datasets and comparison with other predictive modelling approaches. However, the proposed method can be applied to property prediction of other than ENM chemical entities and it is not limited to ENMs toxicity prediction.


Asunto(s)
Nanoestructuras , Nanoestructuras/química , Modelos Lineales , Benchmarking
6.
Curr Med Chem ; 30(3): 271-285, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35692148

RESUMEN

BACKGROUND: Even though the battle against one of the deadliest diseases, cancer, has advanced remarkably in the last few decades and the survival rate has improved significantly; the search for an ultimate cure remains a utopia. Nanoinformatics, which is bioinformatics coupled with nanotechnology, endows many novel research opportunities in the preclinical and clinical development of personalized nanosized drug carriers in cancer therapy. Personalized nanomedicines serve as a promising treatment option for cancer owing to their noninvasiveness and their novel approach. Explicitly, the field of personalized medicine is expected to have an enormous impact soon because of its many advantages, namely its versatility to adapt a drug to a cohort of patients. OBJECTIVE: The current review explains the application of this newly emerging field called nanoinformatics to the field of precision medicine. This review also recapitulates how nanoinformatics could hasten the development of personalized nanomedicine for cancer, which is undoubtedly the need of the hour. CONCLUSION: This approach has been facilitated by a humongous impending field named Nanoinformatics. These breakthroughs and advances have provided insight into the future of personalized medicine. Imperatively, they have been enabling landmark research to merge all advances, creating nanosized particles that contain drugs targeting cell surface receptors and other potent molecules designed to kill cancerous cells. Nanoparticle- based medicine has been developing and has become a center of attention in recent years, focusing primely on proficient delivery systems for various chemotherapy drugs.


Asunto(s)
Neoplasias , Medicina de Precisión , Humanos , Neoplasias/tratamiento farmacológico , Biología Computacional , Portadores de Fármacos , Nanomedicina , Sistemas de Liberación de Medicamentos
7.
NanoImpact ; 27: 100402, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35717894

RESUMEN

Publishing research data using a findable, accessible, interoperable, and reusable (FAIR) approach is paramount to further innovation in many areas of research. In particular in developing innovative approaches to predict (eco)toxicological risks in (nano or advanced) material design where efficient use of existing data is essential. The use of tools assessing the FAIRness of data helps the future improvement of data FAIRness and therefore their re-use. This paper reviews ten FAIR assessment tools that have been evaluated and characterized using two datasets from the nanomaterials and microplastics risk assessment domain. The tools were grouped into four categories: online and offline self-assessment survey based, online (semi-) automated and other tools. We found that the online self-assessment tools can be used for a quick scan of a user's dataset due to their ease of use, little need for experience and short time investment. When a user is looking to assess full databases, and not just datasets, for their FAIRness, (semi-)automated tools are more practical. The offline assessment tools were found to be limited and unreliable due to a lack of guidance and an under-developed state. To further characterize the usability, two datasets were run through all tools to check the similarity in the tools' results. As most of the tools differ in their implementation of the FAIR principles, a large variety in outcomes was obtained. Furthermore, it was observed that only one tool gives recommendations to the user on how to improve the FAIRness of the evaluated dataset. This paper gives clear recommendations for both the user and the developer of FAIR assessment tools.


Asunto(s)
Manejo de Datos , Plásticos , Bases de Datos Factuales , Medición de Riesgo , Autoevaluación (Psicología)
8.
NanoImpact ; 25: 100366, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35559874

RESUMEN

The risk of each nanoform (NF) of the same substance cannot be assumed to be the same, as they may vary in their physicochemical characteristics, exposure and hazard. However, neither can we justify a need for more animal testing and resources to test every NF individually. To reduce the need to test all NFs, (regulatory) information requirements may be fulfilled by grouping approaches. For such grouping to be acceptable, it is important to demonstrate similarities in physicochemical properties, toxicokinetic behaviour, and (eco)toxicological behaviour. The GRACIOUS Framework supports the grouping of NFs, by identifying suitable grouping hypotheses that describe the key similarities between different NFs. The Framework then supports the user to gather the evidence required to test these hypotheses and to subsequently assess the similarity of the NFs within the proposed group. The evidence needed to support a hypothesis is gathered by an Integrated Approach to Testing and Assessment (IATA), designed as decision trees constructed of decision nodes. Each decision node asks the questions and provides the methods needed to obtain the most relevant information. This White paper outlines existing and novel methods to assess similarity of the data generated for each decision node, either via a pairwise analysis conducted property-by-property, or by assessing multiple decision nodes simultaneously via a multidimensional analysis. For the pairwise comparison conducted property-by-property we included in this White paper: The x-fold, Bayesian and Arsinh-OWA distance algorithms performed comparably in the scoring of similarity between NF pairs. The Euclidean distance was also useful, but only with proper data transformation. The x-fold method does not standardize data, and thus produces skewed histograms, but has the advantage that it can be implemented without programming knowhow. A range of multidimensional evaluations, using for example dendrogram clustering approaches, were also investigated. Multidimensional distance metrics were demonstrated to be difficult to use in a regulatory context, but from a scientific perspective were found to offer unexpected insights into the overall similarity of very different materials. In conclusion, for regulatory purposes, a property-by-property evaluation of the data matrix is recommended to substantiate grouping, while the multidimensional approaches are considered to be tools of discovery rather than regulatory methods.


Asunto(s)
Nanoestructuras , Animales , Teorema de Bayes , Nanoestructuras/química , Medición de Riesgo/métodos
9.
F1000Res ; 10: 1196, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34853679

RESUMEN

Nanotoxicology is a relatively new field of research concerning the study and application of nanomaterials to evaluate the potential for harmful effects in parallel with the development of applications. Nanotoxicology as a field spans materials synthesis and characterisation, assessment of fate and behaviour, exposure science, toxicology / ecotoxicology, molecular biology and toxicogenomics, epidemiology, safe and sustainable by design approaches, and chemoinformatics and nanoinformatics, thus requiring scientists to work collaboratively, often outside their core expertise area. This interdisciplinarity can lead to challenges in terms of interpretation and reporting, and calls for a platform for sharing of best-practice in nanotoxicology research. The F1000Research Nanotoxicology collection, introduced via this editorial, will provide a place to share accumulated best practice, via original research reports including no-effects studies, protocols and methods papers, software reports and living systematic reviews, which can be updated as new knowledge emerges or as the domain of applicability of the method, model or software is expanded. This editorial introduces the Nanotoxicology Collection in F1000Research. The aim of the collection is to provide an open access platform for nanotoxicology researchers, to support an improved culture of data sharing and documentation of evolving protocols, biological and computational models, software tools and datasets, that can be applied and built upon to develop predictive models and move towards in silico nanotoxicology and nanoinformatics. Submissions will be assessed for fit to the collection and subjected to the F1000Research open peer review process.


Asunto(s)
Nanoestructuras , Nanoestructuras/toxicidad , Proyectos de Investigación , Programas Informáticos
10.
Chemosphere ; 285: 131452, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34265725

RESUMEN

Nanoinformatics models to predict the toxicity/ecotoxicity of nanomaterials (NMs) are urgently needed to support commercialization of nanotechnologies and allow grouping of NMs based on their physico-chemical and/or (eco)toxicological properties, to facilitate read-across of knowledge from data-rich NMs to data-poor ones. Here we present the first ecotoxicological read-across models for predicting NMs ecotoxicity, which were developed in accordance with ECHA's recommended strategy for grouping of NMs as a means to explore in silico the effects of a panel of freshly dispersed versus environmentally aged (in various media) Ag and TiO2 NMs on the freshwater zooplankton Daphnia magna, a keystone species used in regulatory testing. The dataset used to develop the models consisted of dose-response data from 11 NMs (5 TiO2 NMs of identical cores with different coatings, and 6 Ag NMs with different capping agents/coatings) each dispersed in three different media (a high hardness medium (HH Combo) and two representative river waters containing different amounts of natural organic matter (NOM) and having different ionic strengths), generated in accordance with the OECD 202 immobilization test. The experimental hypotheses being tested were (1) that the presence of NOM in the medium would reduce the toxicity of the NMs by forming an ecological corona, and (2) that environmental ageing of NMs reduces their toxicity compared to the freshly dispersed NMs irrespective of the medium composition (salt only or NOM-containing). As per the ECHA guidance, the NMs were grouped into two categories - freshly dispersed and 2-year-aged and explored in silico to identify the most important features driving the toxicity in each group. The final predictive models have been validated according to the OECD criteria and a QSAR model report form (QMRF) report included in the supplementary information to support adoption of the models for regulatory purposes.


Asunto(s)
Daphnia , Nanoestructuras , Animales , Ecotoxicología
11.
Cancers (Basel) ; 13(10)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069606

RESUMEN

Application of drugs in high doses has been required due to the limitations of no specificity, short circulation half-lives, as well as low bioavailability and solubility. Higher toxicity is the result of high dosage administration of drug molecules that increase the side effects of the drugs. Recently, nanomedicine, that is the utilization of nanotechnology in healthcare with clinical applications, has made many advancements in the areas of cancer diagnosis and therapy. To overcome the challenge of patient-specificity as well as time- and dose-dependency of drug administration, artificial intelligence (AI) can be significantly beneficial for optimization of nanomedicine and combinatorial nanotherapy. AI has become a tool for researchers to manage complicated and big data, ranging from achieving complementary results to routine statistical analyses. AI enhances the prediction precision of treatment impact in cancer patients and specify estimation outcomes. Application of AI in nanotechnology leads to a new field of study, i.e., nanoinformatics. Besides, AI can be coupled with nanorobots, as an emerging technology, to develop targeted drug delivery systems. Furthermore, by the advancements in the nanomedicine field, AI-based combination therapy can facilitate the understanding of diagnosis and therapy of the cancer patients. The main objectives of this review are to discuss the current developments, possibilities, and future visions in naoinformatics, for providing more effective treatment for cancer patients.

12.
NanoImpact ; 21: 100298, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-35559785

RESUMEN

Due to the lack of nano descriptors that can appropriately represent the wide chemical space of engineered nanomaterials (ENMs), applicability domain of nano-quantitative structure-activity relationship models are limited to certain types of ENMs, such as metal oxides, metals, carbon-based nanomaterials, or quantum dots. In this study, a size-dependent electron configuration fingerprint (SDEC FP) was introduced to estimate the quantity of electrons based on the core, doping, and coating materials of ENMs in different sizes. SDEC FP was used in prediction model development and nanostructure similarity analysis on datasets including metal and carbon-based nanomaterials with and without surface modifications. Cytotoxicity and zeta potential prediction models developed with SDEC FP achieved good prediction accuracies on test set. Nanostructure similarity analysis was performed through principal component analysis which showed that structural similarity between ENMs measured by SDEC FP was highly correlated with their properties.


Asunto(s)
Electrones , Nanoestructuras , Carbono , Metales , Nanoestructuras/química , Óxidos/química , Relación Estructura-Actividad Cuantitativa
13.
NanoImpact ; 23: 100331, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-35559832

RESUMEN

The empirical necessity for integrating informatics throughout the experimental process has become a focal point of the nano-community as we work in parallel to converge efforts for making nano-data reproducible and accessible. The NanoInformatics Knowledge Commons (NIKC) Database was designed to capture the complex relationship between nanomaterials and their environments over time in the concept of an 'Instance'. Our Instance Organizational Structure (IOS) was built to record metadata on nanomaterial transformations in an organizational structure permitting readily accessible data for broader scientific inquiry. By transforming published and on-going data into the IOS we are able to tell the full transformational journey of a nanomaterial within its experimental life cycle. The IOS structure has prepared curated data to be fully analyzed to uncover relationships between observable phenomenon and medium or nanomaterial characteristics. Essential to building the NIKC database and associated applications was incorporating the researcher's needs into every level of development. We started by centering the research question, the query, and the necessary data needed to support the question and query. The process used to create nanoinformatic tools informs usability and analytical capability. In this paper we present the NIKC database, our developmental process, and its curated contents. We also present the Collaboration Tool which was built to foster building new collaboration teams. Through these efforts we aim to: 1) elucidate the general principles that determine nanomaterial behavior in the environment; 2) identify metadata necessary to predict exposure potential and bio-uptake; and 3) identify key characterization assays that predict outcomes of interest.


Asunto(s)
Nanoestructuras , Bases de Datos Factuales , Metadatos , Nanoestructuras/química
14.
NanoImpact ; 22: 100308, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-35559965

RESUMEN

The physicochemical characterisation data from a library of 69 engineered nanomaterials (ENMs) has been exploited in silico following enrichment with a set of molecular descriptors that can be easily acquired or calculated using atomic periodicity and other fundamental atomic parameters. Based on the extended set of twenty descriptors, a robust and validated nanoinformatics model has been proposed to predict the ENM ζ-potential. The five critical parameters selected as the most significant for the model development included the ENM size and coating as well as three molecular descriptors, metal ionic radius (rion), the sum of metal electronegativity divided by the number of oxygen atoms present in a particular metal oxide (Σχ/nO) and the absolute electronegativity (χabs), each of which is thoroughly discussed to interpret their influence on ζ-potential values. The model was developed using the Isalos Analytics Platform and is available to the community as a web service through the Horizon 2020 (H2020) NanoCommons Transnational Access services and the H2020 NanoSoveIT Integrated Approach to Testing and Assessment (IATA).


Asunto(s)
Nanoestructuras , Metales , Nanoestructuras/química , Óxidos
15.
Nanomaterials (Basel) ; 10(10)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003330

RESUMEN

In this work, we evaluated the effect of protein corona formation on graphene oxide (GO) mixture toxicity testing (i.e., co-exposure) using the Daphnia magna model and assessing acute toxicity determined as immobilisation. Cadmium (Cd2+) and bovine serum albumin (BSA) were selected as co-pollutant and protein model system, respectively. Albumin corona formation on GO dramatically increased its colloidal stability (ca. 60%) and Cd2+ adsorption capacity (ca. 4.5 times) in reconstituted water (Daphnia medium). The acute toxicity values (48 h-EC50) observed were 0.18 mg L-1 for Cd2+-only and 0.29 and 0.61 mg L-1 following co-exposure of Cd2+ with GO and BSA@GO materials, respectively, at a fixed non-toxic concentration of 1.0 mg L-1. After coronation of GO with BSA, a reduction in cadmium toxicity of 110 % and 238% was achieved when compared to bare GO and Cd2+-only, respectively. Integration of datasets associated with graphene-based materials, heavy metals and mixture toxicity is essential to enable re-use of the data and facilitate nanoinformatics approaches for design of safer nanomaterials for water quality monitoring and remediation technologies. Hence, all data from this work were annotated and integrated into the NanoCommons Knowledge Base, connecting the experimental data to nanoinformatics platforms under the FAIR data principles and making them interoperable with similar datasets.

16.
Curr Med Chem ; 27(38): 6523-6535, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32718281

RESUMEN

Drug discovery as well as (nano)material design projects demand the in silico analysis of large datasets of compounds with their corresponding properties/activities, as well as the retrieval and virtual screening of more structures in an effort to identify new potent hits. This is a demanding procedure for which various tools must be combined with different input and output formats. To automate the data analysis required we have developed the necessary tools to facilitate a variety of important tasks to construct workflows that will simplify the handling, processing and modeling of cheminformatics data and will provide time and cost efficient solutions, reproducible and easier to maintain. We therefore develop and present a toolbox of >25 processing modules, Enalos+ nodes, that provide very useful operations within KNIME platform for users interested in the nanoinformatics and cheminformatics analysis of chemical and biological data. With a user-friendly interface, Enalos+ Nodes provide a broad range of important functionalities including data mining and retrieval from large available databases and tools for robust and predictive model development and validation. Enalos+ Nodes are available through KNIME as add-ins and offer valuable tools for extracting useful information and analyzing experimental and virtual screening results in a chem- or nano- informatics framework. On top of that, in an effort to: (i) allow big data analysis through Enalos+ KNIME nodes, (ii) accelerate time demanding computations performed within Enalos+ KNIME nodes and (iii) propose new time and cost efficient nodes integrated within Enalos+ toolbox we have investigated and verified the advantage of GPU calculations within the Enalos+ nodes. Demonstration data sets, tutorial and educational videos allow the user to easily apprehend the functions of the nodes that can be applied for in silico analysis of data.


Asunto(s)
Quimioinformática , Programas Informáticos , Bases de Datos Factuales , Descubrimiento de Drogas , Flujo de Trabajo
17.
Small ; 16(36): e2001080, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32548897

RESUMEN

This study presents the results of applying deep learning methodologies within the ecotoxicology field, with the objective of training predictive models that can support hazard assessment and eventually the design of safer engineered nanomaterials (ENMs). A workflow applying two different deep learning architectures on microscopic images of Daphnia magna is proposed that can automatically detect possible malformations, such as effects on the length of the tail, and the overall size, and uncommon lipid concentrations and lipid deposit shapes, which are due to direct or parental exposure to ENMs. Next, classification models assign specific objects (heart, abdomen/claw) to classes that depend on lipid densities and compare the results with controls. The models are statistically validated in terms of their prediction accuracy on external D. magna images and illustrate that deep learning technologies can be useful in the nanoinformatics field, because they can automate time-consuming manual procedures, accelerate the investigation of adverse effects of ENMs, and facilitate the process of designing safer nanostructures. It may even be possible in the future to predict impacts on subsequent generations from images of parental exposure, reducing the time and cost involved in long-term reproductive toxicity assays over multiple generations.


Asunto(s)
Daphnia , Aprendizaje Profundo , Ecotoxicología , Nanoestructuras , Animales , Simulación por Computador , Daphnia/efectos de los fármacos , Ecotoxicología/métodos , Nanoestructuras/toxicidad , Contaminantes Químicos del Agua/toxicidad
18.
Comput Struct Biotechnol J ; 18: 583-602, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32226594

RESUMEN

Nanotechnology has enabled the discovery of a multitude of novel materials exhibiting unique physicochemical (PChem) properties compared to their bulk analogues. These properties have led to a rapidly increasing range of commercial applications; this, however, may come at a cost, if an association to long-term health and environmental risks is discovered or even just perceived. Many nanomaterials (NMs) have not yet had their potential adverse biological effects fully assessed, due to costs and time constraints associated with the experimental assessment, frequently involving animals. Here, the available NM libraries are analyzed for their suitability for integration with novel nanoinformatics approaches and for the development of NM specific Integrated Approaches to Testing and Assessment (IATA) for human and environmental risk assessment, all within the NanoSolveIT cloud-platform. These established and well-characterized NM libraries (e.g. NanoMILE, NanoSolutions, NANoREG, NanoFASE, caLIBRAte, NanoTEST and the Nanomaterial Registry (>2000 NMs)) contain physicochemical characterization data as well as data for several relevant biological endpoints, assessed in part using harmonized Organisation for Economic Co-operation and Development (OECD) methods and test guidelines. Integration of such extensive NM information sources with the latest nanoinformatics methods will allow NanoSolveIT to model the relationships between NM structure (morphology), properties and their adverse effects and to predict the effects of other NMs for which less data is available. The project specifically addresses the needs of regulatory agencies and industry to effectively and rapidly evaluate the exposure, NM hazard and risk from nanomaterials and nano-enabled products, enabling implementation of computational 'safe-by-design' approaches to facilitate NM commercialization.

19.
Small ; 16(21): e1906588, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32174008

RESUMEN

Zeta potential is one of the most critical properties of nanomaterials (NMs) which provides an estimation of the surface charge, and therefore electrostatic stability in medium and, in practical terms, influences the NM's tendency to form agglomerates and to interact with cellular membranes. This paper describes a robust and accurate read-across model to predict NM zeta potential utilizing as the input data a set of image descriptors derived from transmission electron microscopy (TEM) images of the NMs. The image descriptors are calculated using NanoXtract (http://enaloscloud.novamechanics.com/EnalosWebApps/NanoXtract/), a unique online tool that generates 18 image descriptors from the TEM images, which can then be explored by modeling to identify those most predictive of NM behavior and biological effects. NM TEM images are used to develop a model for prediction of zeta potential based on grouping of the NMs according to their nearest neighbors. The model provides interesting insights regarding the most important similarity features between NMs-in addition to core composition the main elongation emerged, which links to key drivers of NM toxicity such as aspect ratio. Both the NanoXtract image analysis tool and the validated model for zeta potential (http://enaloscloud.novamechanics.com/EnalosWebApps/ZetaPotential/) are freely available online through the Enalos Nanoinformatics platform.

20.
Environ Sci Pollut Res Int ; 27(16): 19127-19141, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31025282

RESUMEN

Empowering role of nanoinformatics in design and elucidation of nanoparticles for effective cancer treatment has made this field a fascinating area for researchers, inspiring them to enhance up the quality and efficacy of existing anticancer medicines. Theoretical and computational modeling is being seen as a forefront solution for problems related to surface chemistry, optimized geometry, or other properties in nanoparticle designing and drug delivery. The current review aims to acquaint with the insight story of the incubation of in silico tools and techniques in nanotechnology to develop better anticancer nanomedicines. The review also recapitulates the assets and liabilities of this field and present an outline of existing inventiveness and endeavors of nanoinformatics. We propose how nanoinformatics could hasten up the advancements in anticancer nanomedicines through use of computational tools, nanoparticles repositories & various modeling and simulation methods.


Asunto(s)
Nanopartículas , Neoplasias , Simulación por Computador , Humanos , Nanomedicina , Nanotecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA