Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202402723, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227315

RESUMEN

A curved nanographene, conceptually by insertion of nitrogen into a trapezoidal planar nanographene at the edge was synthesized by π-extension of the nitrogen-doped hexa-peri-hexabenzocoronene. This aza-doped nanographene exhibited a π-electronic concave face containing a nonaromatic azepine ring in the middle with a size of 14.0 Å length and 4.0 Å depth, which represents an unprecedented half-side concave geometry of curved nanographene. The bent π-extension exhibited a low degree of conjugation suggested by calculation results. Due to the unique 3D structure and electron-rich property, this nanographene showed pronounced intermolecular charge transfer with C60.

2.
Heliyon ; 10(15): e34944, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170540

RESUMEN

A carbon-based material with a broad scope of favourable developments is called graphene. Recently, a graphene nanoribbon with cove-edged was integrated by utilizing a bottom-up liquid-phase procedure, and it can be geometrically viewed as a hybrid of the armchair and the zigzag edges. It is indeed a type of nanoribbon containing asymmetric edges made up of sequential hexagons with impressive mechanical and electrical characteristics. Topological indices are numerical values associated with the structure of a chemical graph and are used to predict various physical, chemical, and biological properties of molecules. They are derived from the graph representation of molecules, where atoms are represented as vertices and bonds as edges. In this article, we derived the exact topological expressions of cove-edged graphene nanoribbons based on the graph-theoretical structural measures that help reduce the number of repetitive laboratory tasks necessary for studying the physicochemical characteristics of graphene nanoribbons with curved edges.

3.
Biomolecules ; 14(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39199350

RESUMEN

Graphene oxide (GO), a carbon-based material with oxygen-containing functional groups, can be applied in biomedicine for drug delivery, cancer therapy, and tissue regeneration. We have previously shown that nanoscale-sized graphene oxide (NGO), an oxidized graphene derivative, exhibits effective anti-inflammatory activity in a murine model of sepsis mediated by T helper (Th)1-promoting cytokines such as IFNγ and TNFα. However, whether NGO influences Th2-induced skin inflammation remains unclear. To address this issue, we employed an ovalbumin (OVA) plus aluminum hydroxide (Alum)-induced Th2-mediated skin inflammation model in conjunction with OVA-specific DO11.10 T cell receptor transgenic Balb/c mice. In vivo NGO injection upon OVA/Alum sensitization down-regulated OVA-elicited antigen-specific Th2 cells and GATA3-expressing Th2-type regulatory T cells. Next, we examined the effect of NGO injection on OVA/Alum-induced atopic dermatitis (AD)-like skin inflammation. NGO-injected mice exhibited significantly decreased Th2 disease phenotypes (e.g., a lower clinical score, decreased epidermal thickness and Th2 cell differentiation, and fewer infiltrated mast cells and basophils in skin lesions) compared with vehicle-injected control mice. Overall, our results suggest that NGOs are promising therapeutic materials for treating allergic diseases such as AD.


Asunto(s)
Grafito , Ratones Endogámicos BALB C , Ovalbúmina , Células Th2 , Animales , Grafito/química , Células Th2/inmunología , Células Th2/efectos de los fármacos , Ratones , Compuestos de Alumbre/química , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/patología , Dermatitis Atópica/inmunología , Femenino , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/inducido químicamente , Regulación hacia Abajo/efectos de los fármacos , Piel/efectos de los fármacos , Piel/patología , Piel/inmunología , Nanopartículas/química
4.
Angew Chem Int Ed Engl ; : e202409713, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031452

RESUMEN

The introduction of precise pore defects into nanocarbon structures results in the emergence of distinct physicochemical characteristics. However, there is a lack of research on non-planar chiral nanographene involving precise pore defects. Herein, we have developed two analogues to the π-extended pentadecabenzo[9]helicene (EP9H) containing embedded pore defects. Each molecule, namely extended dodecabenzo[7]helicene (ED7H; 1) or extended nonabenzo[5]helicene (EN5H; 2), exhibits dual-state emission. Significantly, the value of |glum| of 1 is exceptionally high at 1.41 × 10-2 in solution and BCPL as 254 M-1 cm-1. In PMMA film, |glum| of 1 is 8.56 × 10-3, and in powder film, it is 5.00 × 10-3. This study demonstrates that nanocarbon molecules with pore defects exhibit dual-state emission properties while maintaining quite good chiral luminescence properties. It was distinguished from the aggregation-caused quenching (ACQ) effect corresponding to the nanocarbon without embedded defect. Incorporating pore defects into chiral nanocarbon molecules also simplifies the synthesis process and enhances the solubility of the resulting product. These findings suggest that the introduction of pore defects can be a viable approach to improve nanocarbon molecules.

5.
Angew Chem Int Ed Engl ; : e202406497, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031496

RESUMEN

Heteroatom-embedded helical nanographenes (NGs) constitute an important and appealing class of intrinsically chiral materials. In this work, a series of B,N-embedded helical NGs bearing azepines was synthesized via stepwise regioselective cyclodehydrogenation. First, the phenyl- or nitrogen-bridged dimers were efficiently clipped into highly congested model compounds 1 and 2. Later, the controllable Scholl reactions of the tetraphenyl-tethered precursor generated 1, 7 or 8 new C‒C bonds, thereby establishing a robust method for the preparation of nonalternant BN-HNGs with up to 31 fused rings. The helical bilayer nature was unambiguously verified by X-ray diffraction analysis. The helical chirality was transferred to the stereogenic boron centers upon fluoride coordination, with a concave-concave structure to comply with the bilayer skeleton. Notably, the largest nonalternant BN-HNG (6) spontaneously resolved into a homochiral 41 helix structure as a molecular spiral staircase during crystallization via conglomerate formation at the single-crystal scale. The large twisted C2-symmetric pi-surface and the dynamic chiral skeleton induced by curved azepines might have synergistic effects on self-recognition of enantiomers of 6 to achieve the intriguing spontaneous resolution behavior. The chiroptical properties of the enantiomer of 6 were further investigated, revealing that 6 had a strong chiroptical response in the visible range (400-700 nm).

6.
ACS Appl Mater Interfaces ; 16(27): 34783-34797, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38949260

RESUMEN

Trauma is the leading cause of death for adults under the age of 44. Internal bleeding remains a significant challenge in medical emergencies, necessitating the development of effective hemostatic materials that could be administered by paramedics before a patient is in the hospital and treated by surgeons. In this study, we introduce a graphene oxide (GO)-based PEGylated synthetic hemostatic nanomaterial with an average size of 211 ± 83 nm designed to target internal bleeding by mimicking the role of fibrinogen. Functionalization of GO-g-PEG with peptides derived from the α-chain of fibrinogen, such as GRGDS, or the γ-chain of fibrinogen, such as HHLGGAKQAGDV:H12, was achieved with peptide loadings of 72 ± 6 and 68 ± 15 µM, respectively. In vitro studies with platelet-rich plasma (PRP) under confinement demonstrated aggregation enhancement of 39 and 24% for GO-g-PEG-GRGDS and GO-g-PEG-H12, respectively, compared to buffer, while adenosine diphosphate (ADP) alone induced a 5% aggregation. Compared to the same materials in the absence of ADP, GO-g-PEG-GRGDS achieved a 47% aggregation enhancement, while GO-g-PEG-H12 a 25% enhancement. This is particularly important for injectable hemostats and highlights the fact that our nanographene-based materials can only act as hemostats in the presence of agonists, reducing the possibility of unwanted clotting during circulation. Further studies on collagen-coated wells under dynamic flow revealed statistically significant augmentation of PRP fluorescence signal using GRGDS- or H12-coated GO-g-PEG compared to controls. Hemolysis studies showed <1% lysis of red blood cells (RBCs) at the highest PEGylated nanographene concentration. Finally, whole human blood coagulation studies reveal faster and more pronounced clotting using our nanohemostats vs PBS control from 3 min and below (blood is clotted with 10% CaCl2 within 4-5 min), with the biggest differences to be shown at 2 and 1 min. At 1 min, the clot weight was found to be ∼45% of that between 4 and 5 min, while no clot was formed in PBS-treated blood. Reduction of CaCl2 to 5 and 3%, or utilization of prostaglandin E1, an anticoagulant, still leads to clots but of smaller weight. The findings highlight the potential of our fibrinogen-mimic PEGylated nanographene as a promising non-hemolytic injectable scaffold for targeting internal bleeding, offering insights into its platelet aggregation capabilities under confinement and under dynamic flow as well as its pronounced coagulation abilities.


Asunto(s)
Fibrinógeno , Grafito , Hemostáticos , Grafito/química , Hemostáticos/química , Hemostáticos/farmacología , Humanos , Fibrinógeno/química , Fibrinógeno/metabolismo , Polietilenglicoles/química , Coagulación Sanguínea/efectos de los fármacos , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Hemorragia/tratamiento farmacológico
7.
Angew Chem Int Ed Engl ; 63(35): e202406927, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39011764

RESUMEN

The mature synthetic methodologies enable us to rationally design and produce chiral nanographenes (NGs), most of which consist of multiple helical motifs. However, inherent chirality originating from twisted geometry has just emerged to be employed in chiral NGs. Herein, we report a red-emissive chiral NG constituted of orthogonally arranged two-fold twisted π-skeletons at a contorted pyrene core which contributes to optical transitions of S0→S1 and vice versa. The thus-obtained NG exhibited a robustness on its redox properties through 2e- uptake/release. The chemical oxidation generated stable radical cation whose absorption covers near-infrared I and II regions. Overall, the contorted pyrene core governs electronic nature of the chiral NG. The twist operation on NGs would be, therefore, a design strategy to alter conventional chirality induction on NGs.

8.
Adv Sci (Weinh) ; : e2404001, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973254

RESUMEN

Nanographene oxide (nGO) flakes-graphene oxide with a lateral size of ≈100 nm or less-hold great promise for superior flux and energy-efficient nanofiltration membranes for desalination and precise ionic sieving owing to their unique high-density water channels with less tortuousness. However, their potential usage is currently limited by several challenges, including the tricky self-assembly of nano-sized flakes on substrates with micron-sized pores, severe swelling in aqueous solutions, and mechanical instability. Herein, the successful fabrication of a robust membrane stacked with nGO flakes on a substrate with a pore size of 0.22 µm by vacuum filtration is reported. This membrane achieved an unprecedented water permeance above 819.1 LMH bar-1, with a high rejection rate of 99.7% for multivalent metal ions. The nGO flakes prepared using an electron beam irradiation method, have uniquely pure hydroxyl groups and abundant aromatic regions. The calculations revealed the strong hydrogen bonds between two nGO flakes, which arise from hydroxyl groups, coupled with hydrophobic aromatic regions, greatly enhance the stability of stacked flakes in aqueous solutions and increase their effective lateral size. The research presents a simple yet effective approach toward the fabrication of advanced 2D nanographene membranes with superior performance for ion sieving applications.

9.
Angew Chem Int Ed Engl ; 63(33): e202406353, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38713529

RESUMEN

Near-Infrared (NIR) phosphorescence at room temperature is challenging to achieve for organic molecules due to negligible spin-orbit coupling and a low energy gap leading to fast non-radiative transitions. Here, we show a supramolecular host-guest strategy to harvest the energy from the low-lying triplet state of C64 nanographene tetraimide 1. 1H NMR and X-ray analysis confirmed the 1 : 2 stoichiometric binding of a Pt(II) porphyrin on the two π-surfaces of 1. While the free 1 does not show emission in the NIR, the host-guest complex solution shows NIR phosphorescence at 77 K. Further, between 860-1100 nm, room temperature NIR phosphorescence (λmax=900 nm, τavg=142 µs) was observed for a solid-state sample drop-casted from a preformed complex in solution. Theoretical calculations reveal a non-zero spin-orbit coupling between isoenergetic S1 and T3 of π-stacked [1 ⋅ Pt(II) porphyrin] complex. External heavy-atom-induced spin-orbit coupling along with rigidification and protection from oxygen in the solid-state promotes both the intersystem crossing from the first excited singlet state into the triplet manifold and the NIR phosphorescence from the lowest triplet state of 1.

10.
ACS Appl Mater Interfaces ; 16(22): 29016-29028, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38783839

RESUMEN

Graphene has received much scientific attention as an electrode material for lithium-ion batteries because of its extraordinary physical and electrical properties. However, the lack of structural control and restacking issues have hindered its application as carbon-based anode materials for next generation lithium-ion batteries. To improve its performance, several modification approaches such as edge-functionalization and electron-donating/withdrawing substitution have been considered as promising strategies. In addition, group 7A elements have been recognized as critical elements due to their electronegativity and electron-withdrawing character, which are able to further improve the electronic and structural properties of materials. Herein, we elucidated the chemistry of nanographenes with edge-substituted group 7A elements as lithium-ion battery anodes. The halogenated nanographenes were synthesized via bottom-up organic synthesis to ensure the structural control. Our study reveals that the presence of halogens on the edge of nanographenes not only tunes the structural and electronic properties but also impacts the material stability, reactivity, and Li+ storage capability. Further systematic spectroscopic studies indicate that the charge polarization caused by halogen atoms could regulate the Li+ transport, charge transfer energy, and charge storage behavior in nanographenes. Overall, this study provides a new molecular design for nanographene anodes aiming for next-generation lithium-ion batteries.

11.
Sci Rep ; 14(1): 10797, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734735

RESUMEN

Nano-graphene lubricating oil with appropriate concentration shows excellent performance in reducing friction and wear under different working conditions of diesel engines, and has been widely concerned. Lubricating oil has a significant impact on particulate matter (PM) emissions. At present, there are few studies on the impact of nano-graphene lubricating oil on the physicochemical properties of PM. In order to comprehensively evaluate the impact of nano-graphene lubricating oil on diesel engines, this paper mainly focused on the effects of lubricating oil nano-graphene additives on the particle size distribution and physicochemical properties of PM. The results show that, compared with pure lubricating oil, the total number of nuclear PM and accumulated PM of nano-graphene lubricating oil is significantly increased. The fractal dimension of PM of nano-graphene lubricating oil increases and its structure becomes more compact. The average fringe separation distance of basic carbon particles decreases, the average fringe length increases. The degree of ordering and graphitization of basic carbon particles are higher. The fringe tortuosity of basic carbon particles decreases, and the fluctuation of carbon layer structure of basic carbon particles decreases. Aliphatic substances in PM are basically unchanged, aromatic components and oxygen functional groups increase. The initial PM oxidation temperature and burnout temperature increase, the maximum oxidation rate temperature and combustion characteristic index decrease, and the activation energy increases, making it more difficult to oxidize. This was mainly caused by the higher graphitization degree of PM of nano-graphene lubricating oil and the increased content of aromatic substances.

12.
Nano Lett ; 24(17): 5387-5392, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629638

RESUMEN

Topological phases in laterally confined low-dimensional nanographenes have emerged as versatile design tools that can imbue otherwise unremarkable materials with exotic band structures ranging from topological semiconductors and quantum dots to intrinsically metallic bands. The periodic boundary conditions that define the topology of a given lattice have thus far prevented the translation of this technology to the quasi-zero-dimensional (0D) domain of small molecular structures. Here, we describe the synthesis of a polycyclic aromatic hydrocarbon (PAH) featuring two localized zero modes (ZMs) formed by the topological junction interface between a trivial and nontrivial phase within a single molecule. First-principles density functional theory calculations predict a strong hybridization between adjacent ZMs that gives rise to an exceptionally small HOMO-LUMO gap. Scanning tunneling microscopy and spectroscopy corroborate the molecular structure of 9/7/9-double quantum dots and reveal an experimental quasiparticle gap of 0.16 eV, corresponding to a carbon-based small molecule long-wavelength infrared (LWIR) absorber.

13.
Molecules ; 29(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474565

RESUMEN

Based on density functional theory (DFT) and wave function analysis, the ultraviolet and visible spectrophotometry (UV-Vis) spectra and Raman spectra of 1-meso and 1-rac obtained by the chiral separation of chiral nanographenes are theoretically investigated. The electron excitation properties of 1-meso and 1-rac are studied by means of transition density matrix (TDM) and charge density difference (CDD) diagrams. The intermolecular interaction is discussed based on an independent gradient model based on Hirshfeld partition (IGMH). The interaction of 1-meso and 1-rac with the external environment is studied using the electrostatic potential (ESP), and the electron delocalization degree of 1-meso and 1-rac is studied based on the magnetically induced current under the external magnetic field. Through the chiral separation of 1-rac, two enantiomers, 1-(P, P) and 1-(M, M), were obtained. The electrical-magnetic interaction of the molecule is revealed by analyzing the electron circular dichroism (ECD) spectra of 1-meso, 1-(P, P) and 1-(M, M), the transition electric dipole moment (TEDM) and the transition magnetic dipole moment (TMDM). It is found that 1-(P, P) and 1-(M, M) have opposite chiral properties due to the inversion of the structure.

14.
Adv Sci (Weinh) ; 11(18): e2309131, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430537

RESUMEN

Photoacoustic imaging (PAI)-guided photothermal therapy (PTT) in the second near-infrared (NIR-II, 1000-1700 nm) window has been attracting attention as a promising cancer theranostic platform. Here, it is reported that the π-extended porphyrins fused with one or two nanographene units (NGP-1 and NGP-2) can serve as a new class of NIR-responsive organic agents, displaying absorption extending to ≈1000 and ≈1400 nm in the NIR-I and NIR-II windows, respectively. NGP-1 and NGP-2 are dispersed in water through encapsulation into self-assembled nanoparticles (NPs), achieving high photothermal conversion efficiency of 60% and 69%, respectively, under 808 and 1064 nm laser irradiation. Moreover, the NIR-II-active NGP-2-NPs demonstrated promising photoacoustic responses, along with high photostability and biocompatibility, enabling PAI and efficient NIR-II PTT of cancer in vivo.


Asunto(s)
Técnicas Fotoacústicas , Porfirinas , Nanomedicina Teranóstica , Porfirinas/química , Nanomedicina Teranóstica/métodos , Técnicas Fotoacústicas/métodos , Ratones , Animales , Nanopartículas/química , Nanopartículas/uso terapéutico , Grafito/química , Humanos , Rayos Infrarrojos , Modelos Animales de Enfermedad , Terapia Fototérmica/métodos , Línea Celular Tumoral , Neoplasias/terapia , Fototerapia/métodos
15.
Chemistry ; 30(19): e202304169, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38270385

RESUMEN

Helical nanographenes have garnered substantial attention owing to their finely adjustable optical and semiconducting properties. The strategic integration of both helicity and heteroatoms into the nanographene structure, facilitated by a boron-oxygen-based multiple resonance (MR) thermally activated delayed fluorescence (TADF), elevates its photophysical and chiroptical features. This signifies the introduction of an elegant category of helical nanographene that combines optical (TADF) and chiroptical (CPL) features. In this direction, we report the synthesis, optical, and chiroptical properties of boron, oxygen-doped Π-extended helical nanographene. The π-extension induces distortion in the DOBNA-incorporated nanographene, endowing a pair of helicenes, (P)-B2NG, and (M)-B2NG exhibiting circularly polarized luminescence with glum of -2.3×10-3 and +2.5×10-3, respectively. B2NG exhibited MR-TADF with a lifetime below 5 µs, and a reasonably high fluorescence quantum yield (50 %). Our molecular design enriches the optical and chiroptical properties of nanographenes and opens up new opportunities in multidisciplinary fields.

16.
ACS Appl Mater Interfaces ; 16(4): 4333-4347, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38240200

RESUMEN

Nonmelanoma skin cancer (NMSC) is the most common cancer worldwide, among which 80% is basal cell carcinoma (BCC). Current therapies' low efficacy, side effects, and high recurrence highlight the need for alternative treatments. In this work, a partially reduced nanographene oxide (p-rGOn) developed in our laboratory was used. It has been achieved through a controlled reduction of nanographene oxide via UV-C irradiation that yields small nanometric particles (below 200 nm) that preserve the original water stability while acquiring high light-to-heat conversion efficiency. The latter is explained by a loss of carbon-oxygen single bonds (C-O) and the re-establishment of sp2 carbon bonds. p-rGOn was incorporated into a Carbopol hydrogel together with the anticancer drug 5-fluorouracil (5-FU) to evaluate a possible combined PTT and chemotherapeutic effect. Carbopol/p-rGOn/5-FU hydrogels were considered noncytotoxic toward normal skin cells (HFF-1). However, when A-431 skin cancer cells were exposed to NIR irradiation for 30 min in the presence of Carbopol/p-rGOn/5-FU hydrogels, almost complete eradication was achieved after 72 h, with a 90% reduction in cell number and 80% cell death of the remaining cells after a single treatment. NIR irradiation was performed with a light-emitting diode (LED) system, developed in our laboratory, which allows adjustment of applied light doses to achieve a safe and selective treatment, instead of the standard laser systems that are associated with damages in the healthy tissues in the tumor surroundings. Those are the first graphene-based materials containing pharmaceutical formulations developed for BCC phototherapy.


Asunto(s)
Grafito , Fotoquimioterapia , Neoplasias Cutáneas , Humanos , Grafito/química , Fluorouracilo/farmacología , Composición de Medicamentos , Línea Celular Tumoral , Fototerapia , Neoplasias Cutáneas/tratamiento farmacológico , Carbono , Óxidos , Hidrogeles/farmacología , Hidrogeles/química
17.
Angew Chem Int Ed Engl ; 63(14): e202315508, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38191241

RESUMEN

Photoluminescence (PL) color can be tuned by mixing fluorophores emitting the three primary colors in an appropriate ratio. When color tuning is achieved on a single substrate, we can simplify device structures. We demonstrated that nanographenes (NGs), which are graphene fragments with a size of tens of nanometers, could be utilized as carriers of fluorophores. The addition of red- and blue-light-emitting fluorophores on the edge successfully reproduced the purple light. The relative PL intensities of the fluorophores could be regulated by the excitation wavelength, enabling multicolor emission between blue and red light. Owing to the triphenylamine units of the fluorophores, the NGs showed PL enhancement due to aggregation. This characteristic was valuable for the fabrication of solid polymer materials. Specifically, the functionalized NGs can be dispersed into polyvinylidene difluoride. The resultant polymer films emitted red, blue, and purple color. Our study demonstrated the potential applicability of NGs for fluorophore carriers capable of reproducing intermediate colors of light.

18.
Comb Chem High Throughput Screen ; 27(11): 1629-1641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38213147

RESUMEN

BACKGROUND: Chemical graph theory has been used to mathematically model the various physical and biological aspects of chemical substances. A mathematical formulation that may be applied to any graph and can characterise a molecule structure is known as a topological index or molecular descriptor. METHOD: It is convenient and efficient to analyse the mathematical values and further research on various physical properties of a molecule based on these molecular descriptors. They provide useful alternatives to lengthy, expensive, and labour-intensive laboratory experiments. The topological indices can be used to predict the chemical structures, physicochemical properties, and biological activities using quantitative structure-activity relationships (QSARs) and quantitative structure-property relationships (QSPRs). RESULT: In this study, the molecular descriptors of the Dodeca-benzo-circumcorenene compounds are derived based on their corresponding molecular structures. CONCLUSION: The computed indices are then compared graphically to study their relationship with the molecular structure and with each other..


Asunto(s)
Relación Estructura-Actividad Cuantitativa , Estructura Molecular
19.
Chemphyschem ; 25(5): e202300740, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38226791

RESUMEN

The structural characterization of nonstoichiometric nanographene (NG)-organic hybrid materials is usually difficult. The number of substituents on the edge and their arrangements are frequently questioned but are difficult to answer. Since the number of functional groups is closely related to the distance between the nearest neighbors (dISD ), the extraction of dISD from spectroscopic data could provide important information on their structural characterization. We show that exciton coupling, which is a theoretical prediction of the absolute structures of discrete molecules, is a possible candidate to address this issue. The comparison of the calculated CD spectra of the chiral chromophores extracted from the model NG edge with the observed edge spectra indicated a dISD of ca. 8 Å; this corresponded to substitution on every other armchair edge. Furthermore, an up-up-down-down alternate orientation was found to be a possible edge structure. Although the procedure was limited to NGs carrying chiral substituents, our method could facilitate the detailed structural characterization of NG-organic hybrid materials.

20.
Molecules ; 29(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38257209

RESUMEN

Dehydrohelicene-based molecules stand out as highly promising scaffolds and captivating chiroptical materials, characterized by their unique chirality. Their quasi-helical π-conjugated molecular architecture, featuring successively ortho-annulated aromatic rings, endows them with remarkable thermal stability and optical properties. Over the past decade, diverse approaches have emerged for synthesizing these scaffolds, reinvigorating this field, with anticipated increased attention in the coming years. This review provides a comprehensive overview of the historical evolution of dehydrohelicene chemistry since the pioneering work of Zander and Franke in 1969 and highlights recent advancements in the synthesis of various molecules incorporating dehydrohelicene motifs. We elucidate the intriguing structural features and optical merits of these molecules, occasionally drawing comparisons with their helicene or circulene analogs to underscore the significance of the bond between the helical termini.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA