Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39263915

RESUMEN

Interfacial polymerization has emerged as a robust method for fabricating task-specific polyamide (PA) membranes. However, the limited microporosity of highly cross-linked PA membranes constrains their effectiveness in gas separation applications. Herein, we introduce an ionic liquid (IL)-regulated interfacial polymerization process to fabricate polyamide nanofilms incorporating kinked tetrakis (4-aminophenyl) methane monomers. In situ ultraviolet-visible spectroscopy demonstrates that the diffusion of 1,3,5-benzenetricarbonyl trichloride (TMC) toward the interface increases with the IL/H2O ratio, leading to the formation of a more compact membrane with a higher cross-linking degree. The PA-TAM7/3-60 min membrane exhibits a CO2 permeance of 29.8 GPU and a CO2/CH4 selectivity of 109, exceeding the 2008 Robeson upper bond. Additionally, the highly cross-linked structure imparts the membranes with notable plasticization resistance. Mixed-gas tests (CO2/CH4 = 50/50, v/v) reveal that the PA-TAM7/3-60 min membrane experiences only a 2% reduction in CO2 permeance and a 10% decrease in CO2/CH4 selectivity at a CO2 partial pressure of 300 PSIG, compared to its performance at 30 PSIG. The ease of tuning membrane structure and gas separation performance, along with its excellent plasticization resistance, underscores the potential of these PA membranes for task-specific gas separations.

2.
Talanta ; 279: 126664, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39098238

RESUMEN

In this study, titanium dioxide (TiO2) nanofilms with nanoparticle structure were grown in situ on metallic aluminum (Al) sheets using a simple sol-hydrothermal method. Al sheets were chosen because they can form Schottky junctions with TiO2 during the calcination process, thus achieving a tight bonding between the nanoparticles and the solid substrate, which cannot be achieved with conventional glass substrates. The substrates synthesized with different contents of titanium butoxide [Ti(OBu)4] were investigated using 4-mercaptobenzoic acid as a probe molecule, and the results showed that the substrate with 9 % of the total volume of Ti(OBu)4 had the highest surface-enhanced Raman scattering (SERS) performance. As a low-cost SERS substrate that is simple to synthesize, it has excellent signal reproducibility, with a relative standard deviation of 4.51 % for the same substrate and 6.43 % for different batches of synthesized substrates. Meanwhile, the same batch of substrate can be stored at room temperature for at least 20 weeks and still maintain stable SERS signals. In addition, the synthetic substrate was used to quantitatively detect urea with a detection limit of 4.23 × 10-3 mol/L, which is comparable to the application of noble metal substrates. The feasibility of this method was verified in human urine, and the results were consistent with the clinical results, indicating that this method has great potential for clinical application.

3.
Nanotechnology ; 35(44)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39111328

RESUMEN

Sn-doped indium oxide (ITO) semiconductor nano-films are fabricated by plasma-enhanced atomic layer deposition using trimethylindium (TMIn), tetrakis(dimethylamino)tin (TDMASn), and O2plasma as the sources of In, Sn and O, respectively. A shared temperature window of 150 °C- 200 °C is observed for the deposition of ITO nano-films. The introduction of Sn into indium oxide is found to increase the concentration of oxygen into the ITO films and inhibit crystallization. Furthermore, two oxidation states are observed for In and Sn, respectively. With the increment of interfaces of In-O/Sn-O in the ITO films, the relative percentage of In3+ions increases and that of Sn4+decreases, which is generated by interfacial competing reactions. By optimizing the channel component, the In0.77Sn0.23O1.11thin-film transistors (TFTs) demonstrate high performance, includingµFEof 52.7 cm2V-1s-1, and a highION/IOFFof ∼5 × 109. Moreover, the devices show excellent positive bias temperature stress stability at 3 MV cm-1and 85 °C, i.e. a minimalVthshift of 0.017 V after 4 ks stress. This work highlights the successful application of ITO semiconductor nano-films by ALD for TFTs.

4.
Materials (Basel) ; 17(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39124533

RESUMEN

Finishing coatings in the wood-based composites industry not only influence the final appearance of the product but also serve to protect against fungi and molds and reduce the release of harmful substances, particularly formaldehyde and volatile organic compounds (VOCs). Carbon-rich materials, such as those derived from birch bark extraction, specifically suberin acids, can fulfill this role. Previous research has demonstrated that adding suberin acid residues (SAR) at 20% and 50% by weight significantly enhances the gas barrier properties of surface-finishing materials based on poly(lactide) (PLA) and polycaprolactone (PCL), particularly in terms of total VOC (TVOC) and formaldehyde emissions. This study aims to explore whether these properties can be further improved through the incorporation of nano-zinc oxide (nano-ZnO). Previous research has shown that these nanoparticles possess strong resistance to biological factors and can positively affect the characteristics of nanofilms applied as surface protection. The study employed PLA and PCL finishing layers blended with SAR powder at 10% w/w and included 2% and 4% nano-zinc oxide nanoparticles. The resulting blends were milled to create a powder, which was subsequently pressed into 1 mm-thick films. These films were then applied to raw particleboard surfaces. TVOC and formaldehyde emission tests were conducted. Additionally, the fungal resistance of the coated surfaces was assessed. The results showed that PLA/SAR and PCL/SAR composites with the addition of nano-zinc oxide nanoparticles exhibited significantly improved barrier properties, offering a promising avenue for developing biodegradable, formaldehyde-free coatings with enhanced features in the furniture industry. Furthermore, by utilizing SAR as a post-extraction residue, this project aligns perfectly with the concept of upcycling.

5.
Adv Mater ; 36(36): e2404164, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39091057

RESUMEN

The precise manipulation of the porous structure of the nanofiltration membrane is critical for unlocking enhanced separation efficiencies across various liquids and solutes. Ultrathin films of crosslinked macrocycles, specifically cyclodextrins (CDs), have drawn considerable attention in this area owing to their ability to facilitate precise molecular separation with high liquid permeance for both polar and non-polar liquids, resembling Janus membranes. However, the functional role of the intrinsic cavity of CD in liquid transport remains inadequately understood, demanding immediate attention in designing nanofiltration membranes. Here, the synthesis of polyester nanofilms derived from crosslinked ß-CD, demonstrating remarkable Na2SO4 rejection (≈92 - 99.5%), high water permeance (≈4.4 - 37.4 Lm-2h-1bar-1), extremely low hexane permeance (<1 Lm-2h-1bar-1), and extremely high ratio (α > 500) of permeances for polar and non-polar liquids, is reported. Molecular simulations support the findings, indicating that neither the polar nor the non-polar liquids flow through the ß-CD cavity in the nanofilm. Instead, liquid transport predominantly occurs through the 2.2 nm hydrophilic aggregate pores. This challenges the presumed functional role of macrocyclic cavities in liquid transport and raises questions about the existence of the Janus structure in nanofiltration membranes produced from the macrocyclic monomers.

6.
Front Chem ; 12: 1426865, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39036659

RESUMEN

Introduction: Smart multifunctional surfaces targeting intricate biological events or versatile therapeutic strategies are imminent to achieve long-term transmucosal implant success. Methods: This study used dopamine (DA), graphene oxide (GO), and type IV collagen (COL-IV) to construct multilayer nanofilms (DGCn) based on their universal adhesive and biomimetic properties to design a versatile and bioactive titanium implant. The characterization of DGCn on different titanium surfaces was performed, and its loading capacity, release profile, in situ gene delivery, and in vitro biological properties were preliminarily evaluated. Results: Our results demonstrate that hydrogenated TiO2 nanotubes (H) provide a better platform for the DGCn coating than machined Ti and air-TiO2 nanotubes. The H-DGC10 displayed the most stable surface with excellent loading capacity, sustained-release profile, and in situ gene transfection efficiency; this could be due to the high specific surface area of H and GO, as well as the functional groups in H, DA, and GO. Moreover, the H-DGC10 exhibited good biocompatibility for human oral epithelial cells and promoted the expression of integrin ß4 and laminin 332, both being hemidesmosome-related proteins. Discussion: Our findings suggest that H-DGCn can be designed as a smart multifunctional interface for titanium implants to achieve long-term transmucosal implant success and aid in versatile therapeutic strategies.

7.
Small ; : e2403915, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973115

RESUMEN

In 2D materials, a key engineering challenge is the mass production of large-area thin films without sacrificing their uniform 2D nature and unique properties. Here, it is demonstrated that a simple fluid phenomenon of water/alcohol solvents can become a sophisticated tool for self-assembly and designing organized structures of 2D nanosheets on a water surface. In situ, surface characterizations show that water/alcohol droplets of 2D nanosheets with cationic surfactants exhibit spontaneous spreading of large uniform monolayers within 10 s. Facile transfer of the monolayers onto solid or flexible substrates results in high-quality mono- and multilayer films with high coverages (>95%) and homogeneous electronic/optical properties. This spontaneous spreading is quite general and can be applied to various 2D nanosheets, including metal oxides, graphene oxide, h-BN, MoS2, and transition metal carbides, enabling on-demand smart manufacture of large-size (>4 inchϕ) 2D nanofilms and free-standing membranes.

8.
Angew Chem Int Ed Engl ; 63(36): e202408345, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38888253

RESUMEN

Membrane materials that resist nonspecific or specific adsorption are urgently required in widespread practical applications, such as water purification, food processing, and life sciences. In water purification, inevitable membrane fouling not only limits membrane separation performance, leading to a decline in both permeance and selectivity, but also remarkably increases operation requirements, and augments extra maintenance costs and higher energy consumption. In this work, we report a freestanding interfacial polymerization (IP) fabrication strategy for in situ creation of asymmetric block copolymer (BCP) nanofilms with antifouling properties, greatly outperforming the conventional surface post-modification approaches. The resultant free-standing asymmetric BCP nanofilms with highly-dense, highly-hydrophilic polyethylene glycol (PEG) brushes on one side, can be readily formed via a typical IP process of a well-defined double-hydrophilic BCP composed of a highly-efficient antifouling PEG block and a membrane-forming multiamine block. The asymmetric BCP nanofilms have been applied for efficient and sustainable natural water purification, demonstrating extraordinary antifouling capabilities accompanied with superior separation performance far beyond commercial polyamide nanofiltration membranes. The antifouling behaviors of asymmetric BCP nanofilms derived from the combined effect of the hydration layer, electrostatic repulsion and steric hindrance were further elucidated by water flux and fouling resistance in combination with all-atom molecular dynamics (MD) simulation. This work opens up a new avenue for the large-scale and low-cost creation of broad-spectrum, asymmetric membrane materials with diverse functional "defect-free" surfaces in real-world applications.

9.
Sensors (Basel) ; 24(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38793816

RESUMEN

Quenched Co-based ribbon strips are widely used in the fields of magnetic amplifier, magnetic head material, magnetic shield, electric reactor, inductance core, sensor core, anti-theft system label, and so on. In this study, Co-based composite CoFeNiSiB ribbon strips with a micron width were fabricated by micro-electro-mechanical systems (MEMS) technology. The carbon and FeCoGa nanofilms were deposited for surface modification. The effect of carbon and FeCoGa nanofilm coatings on the crystal structure, surface morphology, magnetic properties, and magnetoimpedance (MI) effect of composite ribbon strips were systematically investigated. The results show that the surface roughness and coercivity of the composite ribbon strips are minimum at a thickness of the carbon coating of 60 nm. The maximum value of MI effect is 41% at 2 MHz, which is approximately 2.4 times greater than plain ribbon and 1.6 times greater than FeCoGa-coated composite ribbon strip. The addition of a carbon layer provides a conductive path for high frequency currents, which effectively reduces the characteristic frequency of the composite ribbon strip. The FeCoGa coating is able to close the flux path and reduce the coercivity, which, in turn, increases the transverse permeability and improves the MI effect. The findings indicate that a successful combination of carbon layer and magnetostrictive FeCoGa nanofilm layer can improve the MI effect and magnetic field sensitivity of the ribbon strips, demonstrating the potential of the composite strips for local and micro area field sensing applications.

10.
Int J Nanomedicine ; 19: 2113-2136, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476282

RESUMEN

Introduction: Poor interfacial bonding between the fibers and resin matrix in fiber-reinforced composites (FRCs) is a significant drawback of the composites. To enhance the mechanical properties of FRC, fibers were modified by depositing SiO2 nanofilms via the atomic layer deposition (ALD) technique. This study aims to evaluate the effect of ALD treatment of the fibers on the mechanical properties of the FRCs. Methods: The quartz fibers were modified by depositing different cycles (50, 100, 200, and 400) of SiO2 nanofilms via the ALD technique and FRCs were proposed from the modified fibers. The morphologies, surface characterizations of nanofilms, mechanical properties, and cytocompatibility of FRCs were systematically investigated. Moreover, the shear bond strength (SBS) of FRCs to human enamel was also evaluated. Results: The SEM and SE results showed that the ALD-deposited SiO2 nanofilms have good conformality and homogeneity. According to the results of FTIR and TGA, SiO2 nanofilms and quartz fiber surfaces had good chemical combinations. Three-point bending tests with FRCs showed that the deposited SiO2 nanofilms effectively improved FRCs' strength and Group D underwent 100 deposition cycles and had the highest flexural strength before and after aging. Furthermore, the strength of the FRCs demonstrated a crescendo-decrescendo tendency with SiO2 nanofilm thickness increasing. The SBS results also showed that Group D had outstanding performance. Moreover, the results of cytotoxicity experiments such as cck8, LDH and Elisa, etc., showed that the FRCs have good cytocompatibility. Conclusion: Changing the number of ALD reaction cycles affects the mechanical properties of FRCs, which may be related to the stress relaxation and fracture between SiO2 nanofilm layers and the built-up internal stresses in the nanofilms. Eventually, the SiO2 nanofilms could enhance the FRCs' mechanical properties and performance to enamel by improving the interfacial bonding strength, and have good cytocompatibility.


Asunto(s)
Cuarzo , Dióxido de Silicio , Humanos , Ensayo de Materiales , Resinas Compuestas/química , Resistencia al Corte , Propiedades de Superficie
11.
Small ; 20(29): e2311361, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38381007

RESUMEN

The semiconductor thin film engineering technique plays a key role in the development of advanced electronics. Printing uniform nanofilms on freeform surfaces with high efficiency and low cost is significant for actual industrialization in electronics. Herein, a high-throughput colloidal printing (HTCP) strategy is reported for fabricating large-area and uniform semiconductor nanofilms on freeform surfaces. High-throughput and uniform printing rely on the balance of atomization and evaporation, as well as the introduced thermal Marangoni flows of colloidal dispersion, that suppresses outward capillary flows. Colloidal printing with in situ heating enables the fast fabrication of large-area semiconductor nanofilms on freeform surfaces, such as SiO2/Si, Al2O3, quartz glass, poly(ethylene terephthalate) (PET), Al foil, plastic tube, and Ni foam, expanding their technological applications where substrates are essential. The printed SnS2 nanofilms are integrated into thin-film semiconductor gas sensors with one of the fastest responses (8 s) while maintaining the highest sensitivity (Rg/Ra = 21) (toward 10 ppm NO2), as well as an ultralow limit of detection (LOD) of 46 ppt. The ability to print uniform semiconductor nanofilms on freeform surfaces with high-throughput promises the development of next-generation electronics with low cost and high efficiency.

12.
Molecules ; 29(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38338472

RESUMEN

Cutaneous wounds pose a significant health burden, affecting millions of individuals annually and placing strain on healthcare systems and society. Nanofilm biomaterials have emerged as promising interfaces between materials and biology, offering potential for various biomedical applications. To explore this potential, our study aimed to assess the wound healing efficacy of amniotic fluid and Moringa olifera-loaded nanoclay films by using in vivo models. Additionally, we investigated the antioxidant and antibacterial properties of these films. Using a burn wound healing model on rabbits, both infected and non-infected wounds were treated with the nanoclay films for a duration of twenty-one days on by following protocols approved by the Animal Ethics Committee. We evaluated wound contraction, proinflammatory mediators, and growth factors levels by analyzing blood samples. Histopathological changes and skin integrity were assessed through H&E staining. Statistical analysis was performed using SPSS software (version 2; Chicago, IL, USA) with significance set at p < 0.05. Our findings demonstrated a significant dose-dependent increase in wound contraction in the 2%, 4%, and 8% AMF-Me.mo treatment groups throughout the study (p < 0.001). Moreover, macroscopic analysis revealed comparable effects (p > 0.05) between the 8% AMF-Me.mo treatment group and the standard treatment. Histopathological examination confirmed the preservation of skin architecture and complete epidermal closure in both infected and non-infected wounds treated with AMF-Me.mo-loaded nanofilms. RT-PCR analysis revealed elevated concentrations of matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF), along with decreased levels of tumor necrosis factor-alpha (TNF-α) in AMF-Me.mo-loaded nanofilm treatment groups. Additionally, the antimicrobial activity of AMF-Me.mo-loaded nanofilms contributed to the decontamination of the wound site, positioning them as potential candidates for effective wound healing. However, further extensive clinical trials-based studies are necessary to confirm these findings.


Asunto(s)
Moringa , Animales , Conejos , Moringa/metabolismo , Líquido Amniótico/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cicatrización de Heridas , Piel/metabolismo
13.
ACS Appl Mater Interfaces ; 16(10): 13006-13017, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38414331

RESUMEN

Organs-on-chips (OoCs) support an organotypic human cell culture in vitro. Precise representation of basement membranes (BMs) is critical for mimicking physiological functions of tissue interfaces. Artificial membranes in polyester (PES) and polycarbonate (PC) commonly used in in vitro models and OoCs do not replicate the characteristics of the natural BMs, such as submicrometric thickness, selective permeability, and elasticity. This study introduces porous poly(d,l-lactic acid) (PDLLA) nanofilms for replicating BMs in in vitro models and demonstrates their integration into microfluidic chips. Using roll-to-roll gravure coating and polymer phase separation, we fabricated transparent ∼200 nm thick PDLLA films. These nanofilms are 60 times thinner and 27 times more elastic than PES membranes and show uniformly distributed pores of controlled diameter (0.4 to 1.6 µm), which favor cell compartmentalization and exchange of large water-soluble molecules. Human umbilical vein endothelial cells (HUVECs) on PDLLA nanofilms stretched across microchannels exhibited 97% viability, enhanced adhesion, and a higher proliferation rate compared to their performance on PES membranes and glass substrates. After 5 days of culture, HUVECs formed a functional barrier on suspended PDLLA nanofilms, confirmed by a more than 10-fold increase in transendothelial electrical resistance and blocked 150 kDa dextran diffusion. When integrated between two microfluidic channels and exposed to physiological shear stress, despite their ultrathin thickness, PDLLA nanofilms upheld their integrity and efficiently maintained separation of the channels. The successful formation of an adherent endothelium and the coculture of HUVECs and human astrocytes on either side of the suspended nanofilm validate it as an artificial BM for OoCs. Its submicrometric thickness guarantees intimate contact, a key feature to mimic the blood-brain barrier and to study paracrine signaling between the two cell types. In summary, porous PDLLA nanofilms hold the potential for improving the accuracy and physiological relevance of the OoC as in vitro models and drug discovery tools.


Asunto(s)
Polímeros , Humanos , Membrana Basal , Porosidad , Polímeros/química , Endotelio , Células Endoteliales de la Vena Umbilical Humana
14.
Adv Sci (Weinh) ; 11(12): e2307165, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38225747

RESUMEN

Flexible and highly ultraviolet (UV) sensitive materials garner considerable attention in wearable devices, adaptive sensors, and light-driven actuators. Herein, a type of nanofilms with unprecedented fully reversible UV responsiveness are successfully constructed. Building upon this discovery, a new system for ultra-fast, sensitive, and reliable UV detection is developed. The system operates by monitoring the displacement of photoinduced macroscopic motions of the nanofilms based composite membranes. The system exhibits exceptional responsiveness to UV light at 375 nm, achieving remarkable response and recovery times of < 0.3 s. Furthermore, it boasts a wide detection range from 2.85 µW cm-2 to 8.30 mW cm-2, along with robust durability. Qualitative UV sensing is accomplished by observing the shape changes of the composite membranes. Moreover, the composite membrane can serve as sunlight-responsive actuators for artificial flowers and smart switches in practical scenarios. The photo-induced motion is ascribed to the cis-trans isomerization of the acylhydrazone bonds, and the rapid and fully reversible shape transformation is supposed to be a synergistic result of the instability of the cis-isomers acylhydrazone bonds and the rebounding property of the networked nanofilms. These findings present a novel strategy for both quantitative and qualitative UV detection.

15.
J Colloid Interface Sci ; 660: 513-521, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38262178

RESUMEN

Wearable SERS substrates have gained substantial attention for health monitoring and other applications. Current designs often rely on conventional polymer substrates, leading to discomfort and complexity due to the need of additional adhesive layers. To address the issues, we fabricate a flexible, uniform, ultrathin, transparent and porous SERS substrate via depositing Ag nanoparticles (AgNPs) onto the CdS nanowires (CdSNWs) grown on the surface of a prepared nanofilm (AgNPs-CdSNWs/nanofilm). Unlike the wearable SERS substrates reported in literature, the one presented in this work is self-adhesive to a variety of surfaces, which simplifies structure, enhances comfort and improves performance. Importantly, the new SERS substrate as developed is highly stable and reusable. Artificial sample tests revealed that the substrate showed a great enhancement factor (EF) of 4.2 × 107 and achieved a remarkable detection limit (DL) of 1.0 × 10-14 M for rhodamine 6G (R6G), which are among the highest records observed in wearable SERS substrates reported in literature. Moreover, the substrate enables at real-time and in-situ reliable monitoring of urea dynamics in human sweat and plant leaves, indicating its applicability for health analysis and in precision agriculture.


Asunto(s)
Nanopartículas del Metal , Cementos de Resina , Humanos , Nanopartículas del Metal/química , Urea , Plata/química , Espectrometría Raman
16.
Nanomaterials (Basel) ; 13(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38063702

RESUMEN

Flame spray pyrolysis (FSP) is an industrially scalable technology that enables the engineering of a wide range of metal-based nanomaterials with tailored properties nanoparticles. In the present review, we discuss the recent state-of-the-art advances in FSP technology with regard to nanostructure engineering as well as the FSP reactor setup designs. The challenges of in situ incorporation of nanoparticles into complex functional arrays are reviewed, underscoring FSP's transformative potential in next-generation nanodevice fabrication. Key areas of focus include the integration of FSP into the technology readiness level (TRL) for nanomaterials production, the FSP process design, and recent advancements in nanodevice development. With a comprehensive overview of engineering methodologies such as the oxygen-deficient process, double-nozzle configuration, and in situ coatings deposition, this review charts the trajectory of FSP from its foundational roots to its contemporary applications in intricate nanostructure and nanodevice synthesis.

17.
ACS Appl Mater Interfaces ; 15(48): 56233-56241, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37988740

RESUMEN

Stretchable interconnects with miniature widths are vital for the high-density integration of deformable electronic components on a single substrate for targeted data logic or storage functions. However, it is still challenging to attain high-resolution patternability of stretchable conductors with robust circuit fabrication capability. Here, we report a self-assembled silver nanofilm firmly interlocked by an elastomeric nanodielectric that can be photolithographically patterned into microscale features while preserving high stretchability and conductivity. Both silver and dielectric nanofilms are fabricated by layer-by-layer assembly, ensuring wafer-scale uniformity and meticulous control of thicknesses. Without any thermal annealing, the as-fabricated nanofilms from silver nanoparticles (AgNPs) exhibit conductivity of 1.54 × 106 S m-1 and stretchability of ∼200%, which is due to the impeded crack propagation by the underlying PU nanodielectrics. Furthermore, it is revealed that AgNP microstrips defined by photolithography show higher stretchability when their widths are downscaled to 100 µm owing to confined cracks. However, further scaling restricts the stretchability, following the early development of cracks cutting across the strip. In addition, the resistance change of these silver interconnects can be decreased using serpentine architectures. As a demonstration, these self-assembled interconnects are used as stretchable circuit boards to power LEDs.

18.
Adv Mater ; 35(47): e2305344, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37540191

RESUMEN

The integration of hydrogen-bonded organic frameworks (HOFs) into electronic devices holds great promise due to their high crystallinity, intrinsic porosity, and easy regeneration. However, despite their potential, the utilization of HOFs in electronic devices remains largely unexplored, primarily due to the challenges associated with fabricating high-quality films. Herein, a controlled synthesis of HOF nanofilms with smooth surface, good crystallinity, and high orientation is achieved using a solution-processed approach. The memristors exhibit outstanding bipolar switching performance with a low set voltage of 0.86 V, excellent retention of 1.64 × 104 s, and operational endurance of 60 cycles. Additionally, these robust memristors display remarkable thermal stability, maintaining their performance even at elevated temperatures of up to 200 °C. More strikingly, scratched HOF films can be readily regenerated through a simple solvent rinsing process, enabling their reuse for the fabrication of new memristors, which is difficult to achieve with traditional resistive switching materials. Additionally, a switching mechanism based on the reversible formation and annihilation of conductive filaments is revealed. This work provides novel and invaluable insights that have a significant impact on advancing the widespread adoption of HOFs as active layers in electronic devices.

19.
Small ; 19(48): e2303911, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37541305

RESUMEN

With the urgent demand for the achievement of carbon neutrality, novel nanomaterials, and environmentally friendly nanotechnologies are constantly being explored and continue to drive the sustainable development of energy storage and conversion installations. Among various candidate materials, metal-organic frameworks (MOFs) and their derivatives with unique nanostructures have attracted increasing attention and intensive investigation for the construction of next generation electrode materials, benefitting from their unique intrinsic characteristics such as large specific surface area, high porosity, and chemical tunability as well as the interconnected channels. Nevertheless, the poor electrochemical conductivity severely limits their application prospects, hence a variety of nanocomposites with multifarious structures have been designed and proposed from different dimensionalities. In this review, recent advances based on MOFs and their derivatives in different dimensionalities ranging from 1D nanopowders to 2D nanofilms and 3D aerogels, as well as 4D self-supporting electrodes for supercapacitors are summarized and highlighted. Furthermore, the key challenges and perspectives of MOFs and their derivatives-based materials for the practical and sustainable electrochemical energy conversion and storage applications are also briefly discussed, which may be served as a guideline for the design of next-generation electrode materials from different dimensionalities.

20.
Materials (Basel) ; 16(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37512263

RESUMEN

The ultra-fast laser heating process of nano-films is characterized by an ultra-short duration and ultra-small space size, in which the classical Fourier law based on the hypothesis of local equilibrium is no longer applicable. Based on the Cattaneo-Vernotte (CV) model and the dual-phase-lag (DPL) model, the two-dimensional analytical solutions of heat conduction in nano-films under ultra-fast laser are obtained using the integral transformation method. The results show that there is a thermal wave phenomenon inside the film, which becomes increasingly evident as the elapse of the lag time of the temperature gradient. Moreover, the wave amplitude in the vertical direction is much larger than that in the horizontal direction of the nano-film. By comparing the numerical result of the two models, it is found that the temperature distribution inside the nano-film based on the DPL model is gentler than that of the CV model. Additionally, the temperature distribution in the two-dimensional solution is lower than that in the one-dimensional solution under the same Knudsen number. In the comparison results of the CV model, the maximum peak difference in the thermal wave reaches 75.08 K when the Knudsen number is 1.0. This demonstrates that the horizontal energy carried by the laser source significantly impacts the temperature distribution within the film.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA