Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066717

RESUMEN

Scanning microscopy methods are crucial for the advancement of nanoelectronics. However, the vertical nanoprobes in such techniques suffer limitations such as the fragility at the tip-sample interface, complex instrumentation, and the lack of in operando functionality in several cases. Here, we introduce scanning plasmon-enhanced microscopy (SPEM) and demonstrate its capabilities on MoS2 and WSe2 nanosheets. SPEM combines a nanoparticle-on-mirror (NPoM) configuration with a portable conductive cantilever, enabling simultaneous optical and electrical characterization. This distinguishes it from other current techniques that cannot provide both characterizations simultaneously. It offers a competitive optical resolution of 600 nm with local enhancement of optical signal up to 20,000 times. A single gold nanoparticle with a 15 nm radius forms pristine, nondamaging van der Waals contact, which allows observation of unexpected p-type behavior of MoS2 at the nanoscale. SPEM reconstructs the NPoM method by eliminating the need for extensive statistical analysis and offering excellent nanoscale mapping resolution of any selected region. It surpasses other scanning techniques in combining precise optical and electrical characterization, interactive simplicity, tip durability, and reproducibility, positioning it as the optimal tool for advancing nanoelectronics.

2.
ACS Nano ; 18(16): 10885-10901, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38587876

RESUMEN

Hypochlorous acid (HClO), as a powerful oxidizer, is obtained from the oxidation of Cl- ions during the electrochemical therapy (EChT) process for cancer therapy. However, the extracellular generated HClO is inadequate to inhibit effective tumor cell death. Herein, manganese-doped potassium chloride nanocubes (MPC NCs) fabricated and modified with amphipathic polymer PEG (PMPC NCs) to function as massive three-dimensional nanoelectrodes (NEs) were developed to enhance the generation of HClO for electrochemical immunotherapy under an alternating electric field. Under an square-wave alternating current (AC) electric field, the generation of HClO was boosted by PMPC NEs due to the enlarged active surface area, enhanced mass transfer rate, and improved electrocatalytic activity. Notably, PMPC NEs upregulated the intracellular HClO concentration to induce robust immunogenic cell death (ICD) under an AC electric field. Meanwhile, the electric-triggered release of Mn2+ effectively stimulated dendritic cells (DCs) maturation. In vivo results illustrated that PMPC-mediated EChT inhibited tumor growth and triggered the promotion of the immune response to regulate the tumor immune microenvironment. Based on the potent antitumor immunity, PMPC-mediated EChT was further combined with an immune checkpoint inhibitor (αCTLA-4) to realize combined EChT-immunotherapy, which demonstrated enhanced tumor inhibition of the primary tumors and an abscopal effect on distant tumors. To summarize, our work highlights the application of electrochemical-immunotherapy technology in tumor therapy.


Asunto(s)
Inmunoterapia , Manganeso , Manganeso/química , Ratones , Animales , Electrodos , Humanos , Técnicas Electroquímicas , Línea Celular Tumoral , Ratones Endogámicos C57BL , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos BALB C
3.
Small ; 19(51): e2302136, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37635265

RESUMEN

Nanoscale electrodes have been a topic of intense research for many decades. Their enhanced sensitivities, born out of an improved signal-to-noise ratio as electrode dimensions decrease, make them ideal for the development of low-concentration analyte sensors. However, to date, nanoelectrode fabrication has typically required expensive equipment and exhaustive, time-consuming fabrication methods that have rendered them unsuitable for widespread use and commercialization. Herein, a method of nanoband electrode fabrication using low cost materials and equipment commonly found in research laboratories around the world is reported. The materials' cost to produce each nanoband is less than €0.01 and fabrication of a batch takes less than 1 h. The devices can be made of flexible plastics and their designs can be quickly and easily iterated. Facile methods of combining these nanobands into powerful devices, such as complete three-electrode systems, are also displayed. As a proof of concept, the electrodes are functionalized for the detection of a DNA sequence specific to SARS-CoV-2 and found to display single molecule sensitivity.

4.
ACS Sens ; 8(7): 2713-2720, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37428950

RESUMEN

Molecular and physical probes have been widely employed to investigate physicochemical properties and mechanisms of interfaces due to their ability to provide accurate measurements with temporal and spatial resolution. However, the direct measurement of electroactive species diffusion in ion-selective electrode (ISE) membranes and quantification of the water layer have been challenging due to the high impedance and optical opacity of polymer membranes. In the present work, carbon nanoelectrodes with ultrathin insulating encapsulation and good geometrical structure are reported as physical probes for direct electrochemical measurement of the water layer. The scanning electrochemical microscopy experiment exhibits positive feedback at the interface of the fresh ISE, and negative feedback after conditioning for 3 h. The thickness of the water layer was estimated to be ca. 13 nm. For the first time, we provide direct evidence that, during conditioning, the water molecules diffuse through the chloride ion selective membrane (Cl-ISM) until a water layer establishes at almost 3 h. Furthermore, the diffusion coefficient and concentration of oxygen molecules in the Cl-ISM are also directly electrochemical measured by introducing ferrocene (Fc) as a redox molecule probe. The oxygen concentration in the Cl-ISM decreases during conditioning, suggesting the diffusion of oxygen from ISM to the water layer. The proposed method can be used for the electrochemical measurement of solid contact, providing theoretical guidance and advice for the performance optimization of ISEs.


Asunto(s)
Carbono , Electrodos de Iones Selectos , Carbono/química , Polímeros/química , Oxidación-Reducción , Agua/química
5.
Micromachines (Basel) ; 14(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37420959

RESUMEN

We report the microfabrication and characterization of concentric gold nanoring electrodes (Au NREs), which were fabricated by patterning two gold nanoelectrodes on the same silicon (Si) micropillar tip. Au NREs of 165 ± 10 nm in width were micropatterned on a 6.5 ± 0.2 µm diameter 80 ± 0.5 µm height Si micropillar with an intervening ~ 100 nm thick hafnium oxide insulating layer between the two nanoelectrodes. Excellent cylindricality of the micropillar with vertical sidewalls as well as a completely intact layer of a concentric Au NRE including the entire micropillar perimeter has been achieved as observed via scanning electron microscopy and energy dispersive spectroscopy data. The electrochemical behavior of the Au NREs was characterized by steady-state cyclic voltammetry and electrochemical impedance spectroscopy. The applicability of Au NREs to electrochemical sensing was demonstrated by redox cycling with the ferro/ferricyanide redox couple. The redox cycling amplified the currents by 1.63-fold with a collection efficiency of > 90% on a single collection cycle. The proposed micro-nanofabrication approach with further optimization studies shows great promise for the creation and expansion of concentric 3D NRE arrays with controllable width and nanometer spacing for electroanalytical research and applications such as single-cell analysis and advanced biological and neurochemical sensing.

6.
Adv Mater ; 35(39): e2302472, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37385261

RESUMEN

This study presents a novel approach to improve the performance of microelectrode arrays (MEAs) used for electrophysiological studies of neuronal networks. The integration of 3D nanowires (NWs) with MEAs increases the surface-to-volume ratio, which enables subcellular interactions and high-resolution neuronal signal recording. However, these devices suffer from high initial interface impedance and limited charge transfer capacity due to their small effective area. To overcome these limitations, the integration of conductive polymer coatings, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is investigated as a mean of improving the charge transfer capacity and biocompatibility of MEAs. The study combines platinum silicide-based metallic 3D nanowires electrodes with electrodeposited PEDOT:PSS coatings to deposit ultra-thin (<50 nm) layers of conductive polymer onto metallic electrodes with very high selectivity. The polymer-coated electrodes were fully characterized electrochemically and morphologically to establish a direct relationship between synthesis conditions, morphology, and conductive features. Results show that PEDOT-coated electrodes exhibit thickness-dependent improved stimulation and recording performances, offering new perspectives for neuronal interfacing with optimal cell engulfment to enable the study of neuronal activity with acute spatial and signal resolution at the sub-cellular level.

7.
Angew Chem Int Ed Engl ; 62(34): e202303053, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37334855

RESUMEN

The in-depth study of single cells requires the dynamically molecular information in one particular nanometer-sized organelle in a living cell, which is difficult to achieve using current methods. Due to high efficiency of click chemistry, a new nanoelectrode-based pipette architecture with dibenzocyclooctyne at the tip is designed to realize fast conjugation with azide group-containing triphenylphosphine, which targets mitochondrial membranes. The covalent binding of one mitochondrion at the tip of the nanopipette allows a small region of the membrane to be isolated on the Pt surface inside the nanopipette. Therefore, the release of reactive oxygen species (ROS) from the mitochondrion is monitored, which is not interfered by the species present in the cytosol. The dynamic tracking of ROS release from one mitochondrion reveals the distinctive "ROS-induced ROS release" within the mitochondria. Further study of RSL3-induced ferroptosis using nanopipettes provides direct evidence for supporting the noninvolvement of glutathione peroxidase 4 in the mitochondria during RSL3-induced ROS generation, which has not previously been observed at the single-mitochondrion level. Eventually, this established strategy should overcome the existing challenge of the dynamic measurement of one special organelle in the complicated intracellular environment, which opens a new direction for electroanalysis in subcellular analysis.


Asunto(s)
Mitocondrias , Supervivencia Celular , Mitocondrias/química , Mitocondrias/metabolismo , Química Clic/instrumentación , Química Clic/métodos , Especies Reactivas de Oxígeno/metabolismo
8.
Biomedicines ; 11(5)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37239032

RESUMEN

The reactive oxygen species (ROS) production by a single neutrophil after stimulation with S. aureus and E. coli was estimated by an electrochemical amperometric method with a high time resolution. This showed significant variability in the response of a single neutrophil to bacterial stimulation, from a "silent cell" to a pronounced response manifested by a series of chronoamperometric spikes. The amount of ROS produced by a single neutrophil under the influence of S. aureus was 5.5-fold greater than that produced under the influence of E. coli. The response of a neutrophil granulocyte population to bacterial stimulation was analyzed using luminol-dependent biochemiluminescence (BCL). The stimulation of neutrophils with S. aureus, as compared to stimulation with E. coli, caused a total response in terms of ROS production that was seven-fold greater in terms of the integral value of the light sum and 13-fold greater in terms of the maximum peak value. The method of ROS detection at the level of a single cell indicated the functional heterogeneity of the neutrophil population, but the specificity of the cellular response to different pathogens was the same at the cellular and population levels.

9.
Electrophoresis ; 44(11-12): 956-967, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36892276

RESUMEN

Dielectrophoresis (DEP) is an AC electrokinetic effect that is proven to be effective for the immobilization of not only cells, but also of macromolecules, for example, antibodies and enzyme molecules. In our previous work, we have already demonstrated the high catalytic activity of immobilized horseradish peroxidase after DEP. To evaluate the suitability of the immobilization method for sensing or research in general, we want to test it for other enzymes, too. In this study, glucose oxidase (GOX) from Aspergillus niger was immobilized on TiN nanoelectrode arrays by DEP. Fluorescence microscopy showed the intrinsic fluorescence of the immobilized enzymes flavin cofactor on the electrodes. The catalytic activity of immobilized GOX was detectable, but a fraction of less than 1.3% of the maximum activity that was expected for a full monolayer of immobilized enzymes on all electrodes was stable for multiple measurement cycles. Therefore, the effect of DEP immobilization on the catalytic activity strongly depends on the used enzyme.


Asunto(s)
Enzimas Inmovilizadas , Glucosa Oxidasa , Electrodos , Aspergillus niger , Glucosa/análisis
10.
Biosens Bioelectron ; 220: 114899, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36399941

RESUMEN

The study of subcellular targets and biochemical processes within a living cell is valuable for biological and medical research. Secretory vesicles, one such important intracellular target, are nanoscale lipid structures that are capable of storage, transport, and secretion of, for example, neurotransmitters, hormones, proteins or waste products. Vesicles play an essential role in intercellular communication systems, as they facilitate the release of chemical messaging agents. If deregulated, these communication processes can be a central part in the pathogenesis of some neurodegenerative diseases or diabetes. Generally, due to their nanometer size and intracellular location, the analysis of single vesicles and their content is a great challenge. It requires sensitive techniques, micro/nanoscale tools and sensitive instruments with extreme spatio-temporal resolution. This review focuses on electrochemical sensors to study the biochemistry and quantification of messenger molecules and other species (e.g., reactive oxygen and nitrogen species) stored in organelles, providing new trends and developments in this field. Furthermore, we review the effect of the chemical environment of single cells (e.g., treatment with chemicals, drugs, lipids, and ions) on regulation of the physical and chemical properties of vesicles. Finally, unsolved challenges of and perspectives on vesicle electroanalysis are discussed.


Asunto(s)
Investigación Biomédica , Técnicas Biosensibles , Comunicación Celular , Nitrógeno , Orgánulos
11.
Adv Mater ; 35(10): e2209482, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36537248

RESUMEN

The mutual conversion between light and electricity lies at the heart of optoelectronic and photonic applications. Maximization of the photoelectric conversion is a long-term goal that can be pursued via the fabrication of devices with ad-hoc architectures. In this framework, it is of utter importance to harvest and transform light irradiation into high electric potential in specific area for driving functional dielectrics that respond to pure electric field. Here, a nano-fabrication technology has been devised featuring double self-alignment that is applied to construct zebra-like asymmetric heterojunction arrays. Such nanostructured composite, which covers a surface area of 5 × 4 mm2 and contains 500 periodic repeating units, is capable of photo generating voltages as high as 140 V on a flexible substrate. This approach represents a leap over the traditional functionalization process based on simply embedding materials into devices by demonstrating the disruptive potential of integrating oriented nanoscale device components into meta-material.

12.
Nanomaterials (Basel) ; 12(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36364512

RESUMEN

Electrochemical nano- and microsensors have been a useful tool for measuring different analytes because of their small size, sensitivity, and favorable electrochemical properties. Using such sensors, it is possible to study physiological mechanisms at the cellular, tissue, and organ levels and determine the state of health and diseases. In this review, we highlight recent advances in the application of electrochemical sensors for measuring neurotransmitters, oxygen, ascorbate, drugs, pH values, and other analytes in vivo. The evolution of electrochemical sensors is discussed, with a particular focus on the development of significant fabrication schemes. Finally, we highlight the extensive applications of electrochemical sensors in medicine and biological science.

13.
Electrophoresis ; 43(18-19): 1920-1933, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35904497

RESUMEN

Dielectrophoresis (DEP) is an AC electrokinetic effect mainly used to manipulate cells. Smaller particles, like virions, antibodies, enzymes, and even dye molecules can be immobilized by DEP as well. In principle, it was shown that enzymes are active after immobilization by DEP, but no quantification of the retained activity was reported so far. In this study, the activity of the enzyme horseradish peroxidase (HRP) is quantified after immobilization by DEP. For this, HRP is immobilized on regular arrays of titanium nitride ring electrodes of 500 nm diameter and 20 nm widths. The activity of HRP on the electrode chip is measured with a limit of detection of 60 fg HRP by observing the enzymatic turnover of Amplex Red and H2 O2 to fluorescent resorufin by fluorescence microscopy. The initial activity of the permanently immobilized HRP equals up to 45% of the activity that can be expected for an ideal monolayer of HRP molecules on all electrodes of the array. Localization of the immobilizate on the electrodes is accomplished by staining with the fluorescent product of the enzyme reaction. The high residual activity of enzymes after AC field induced immobilization shows the method's suitability for biosensing and research applications.


Asunto(s)
Enzimas Inmovilizadas , Electrodos , Peroxidasa de Rábano Silvestre
14.
Small ; 18(22): e2200053, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35527345

RESUMEN

The further development of neurochips requires high-density and high-resolution recordings that also allow neuronal signals to be observed over a long period of time. Expanding fields of network neuroscience and neuromorphic engineering demand the multiparallel and direct estimations of synaptic weights, and the key objective is to construct a device that also records subthreshold events. Recently, 3D nanostructures with a high aspect ratio have become a particularly suitable interface between neurons and electronic devices, since the excellent mechanical coupling to the neuronal cell membrane allows very high signal-to-noise ratio recordings. In the light of an increasing demand for a stable, noninvasive and long-term recording at subthreshold resolution, a combination of vertical nanostraws with nanocavities is presented. These structures provide a spontaneous tight coupling with rat cortical neurons, resulting in high amplitude sensitivity and postsynaptic resolution capability, as directly confirmed by combined patch-clamp and microelectrode array measurements.


Asunto(s)
Neuronas , Potenciales de Acción , Animales , Membrana Celular , Microelectrodos , Neuronas/fisiología , Ratas , Relación Señal-Ruido
15.
Electrophoresis ; 43(12): 1309-1321, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35307846

RESUMEN

The use of alternating current (AC) electrokinetic forces, like dielectrophoresis and AC electroosmosis, as a simple and fast method to immobilize sub-micrometer objects onto nanoelectrode arrays is presented. Due to its medical relevance, the influenza virus is chosen as a model organism. One of the outstanding features is that the immobilization of viral material to the electrodes can be achieved permanently, allowing subsequent handling independently from the electrical setup. Thus, by using merely electric fields, we demonstrate that the need of prior chemical surface modification could become obsolete. The accumulation of viral material over time is observed by fluorescence microscopy. The influences of side effects like electrothermal fluid flow, causing a fluid motion above the electrodes and causing an intensity gradient within the electrode array, are discussed. Due to the improved resolution by combining fluorescence microscopy with deconvolution, it is shown that the viral material is mainly drawn to the electrode edge and to a lesser extent to the electrode surface. Finally, areas of application for this functionalization technique are presented.


Asunto(s)
Electroósmosis , Orthomyxoviridae , Electricidad , Electrodos , Microscopía Fluorescente
16.
Adv Mater ; 34(13): e2109108, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35062041

RESUMEN

The number of active sites and their intrinsic activity are key factors in designing high-performance catalysts for the oxygen evolution reaction (OER). The synthesis, properties, and in-depth characterization of a homogeneous CoNiFeCu catalyst are reported, demonstrating that multimetal synergistic effects improve the OER kinetics and the intrinsic activity. In situ carbon corrosion and Cu leaching during the OER lead to an enhanced electrochemically active surface area, providing favorable conditions for improved electronic interaction between the constituent metals. After activation, the catalyst exhibits excellent activity with a low overpotential of 291.5 ± 0.5 mV at 10 mA cm-2 and a Tafel slope of 43.9 mV dec-1 . It shows superior stability compared to RuO2 in 1 m KOH, which is even preserved for 120 h at 500 mA cm-2 in 7 m KOH at 50 °C. Single particles of this CoNiFeCu after their placement on nanoelectrodes combined with identical location transmission electron microscopy before and after applying cyclic voltammetry are investigated. The improved catalytic performance is due to surface carbon corrosion and Cu leaching. The proposed catalyst design strategy combined with the unique single-nanoparticle technique contributes to the development and characterization of high-performance catalysts for electrochemical energy conversion.

17.
Chemistry ; 28(3): e202103964, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-34850460

RESUMEN

A label-free and fast approach for positive electrochemiluminescence (ECL) imaging of single cells by bipolar nanoelectrode array is proposed. The reduction of oxygen at a platinized gold nanoelectrode array in a closed bipolar electrochemical system is coupled with an oxidative ECL process at the anodic side. For elevating the ECL imaging contrast of single cells, a driving voltage of -2.0 V is applied to in situ generate oxygen confined beneath cells that is subsequently used for ECL imaging at 1.1 V. High oxygen concentration in the confined space resulting from steric hindrance generates prominent oxygen reduction current at the cathodic side and higher ECL intensity at the anodic side, allowing positive ECL imaging of the cells adhesion region with excellent contrast. Cell morphology and adhesion strength can be successfully imaged with high image acquisition rate. This approach opens a new avenue for label-free imaging of single cells.


Asunto(s)
Técnicas Biosensibles , Adhesión Celular , Técnicas Electroquímicas , Electrodos , Humanos , Mediciones Luminiscentes
18.
Angew Chem Int Ed Engl ; 60(43): 23444-23450, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34411401

RESUMEN

Co3 O4 nanocubes are evaluated concerning their intrinsic electrocatalytic activity towards the oxygen evolution reaction (OER) by means of single-entity electrochemistry. Scanning electrochemical cell microscopy (SECCM) provides data on the electrocatalytic OER activity from several individual measurement areas covering one Co3 O4 nanocube of a comparatively high number of individual particles with sufficient statistical reproducibility. Single-particle-on-nanoelectrode measurements of Co3 O4 nanocubes provide an accelerated stress test at highly alkaline conditions with current densities of up to 5.5 A cm-2 , and allows to derive TOF values of up to 2.8×104  s-1 at 1.92 V vs. RHE for surface Co atoms of a single cubic nanoparticle. Obtaining such high current densities combined with identical-location transmission electron microscopy allows monitoring the formation of an oxy(hydroxide) surface layer during electrocatalysis. Combining two independent single-entity electrochemistry techniques provides the basis for elucidating structure-activity relations of single electrocatalyst nanoparticles with well-defined surface structure.

19.
J Phys Chem C Nanomater Interfaces ; 125(9): 5110-5115, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-34178204

RESUMEN

We have studied the dissociative adsorption of hydrogen under high coverage conditions of adsorbed hydrogen on Pd and Pt nanoislands supported on Au(111) using Density Functional Theory calculations. The results reveal that for Pd/Au(111), the free energy of hydrogen adsorption ΔG is close to 0 kJ/mol when the coverage of adsorbed hydrogen is near 1 ML, where the available catalytic sites are located at the edges of the Pd nanoislands. In the case of Pt/Au(111), ΔG ≈ 0 kJ/mol under a broad range of hydrogen coverage conditions, from 1 ML to 3 ML, depending on the size of the Pt nanoislands. This is the case because the available catalytic sites are located at both the steps and terraces of Pt nanoislands. These findings indicate that Au surfaces with Pd or Pt nanoislands offer catalytic sites with ΔG ≈ 0 for hydrogen reactions, one key factor for an ideal electrocatalyst for hydrogen reactions.

20.
Adv Biol (Weinh) ; 5(7): e2100484, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33969641

RESUMEN

Microdevices composed of microwell arrays integrating nanoelectrodes (OptoElecWell) are developed to achieve dual high-resolution optical and electrochemical detections on single Saccharomyces cerevisiae yeast cells. Each array consists of 1.6 × 105 microwells measuring 8 µm in diameter and 5 µm height, with a platinum nanoring electrode for in situ electrochemistry, all integrated on a transparent thin wafer for further high-resolution live-cell imaging. After optimizing the filling rate, 32% of cells are effectively trapped within microwells. This allows to analyse S. cerevisiae metabolism associated with basal respiration while simultaneously measuring optically other cellular parameters. In this study, the impact of glucose concentration on respiration and intracellular rheology is focused. It is found that while the oxygen uptake rate decreases with increasing glucose concentration, diffusion of tracer nanoparticles increases. The OptoElecWell-based respiration methodology provides similar results compared to the commercial gold-standard Seahorse XF analyzer, while using 20 times fewer biological samples, paving the way to achieve single cell metabolomics. In addition, it facilitates an optical route to monitor the contents within single cells. The proposed device, in combination with the dual detection analysis, opens up new avenues for measuring cellular metabolism, and relating it to cellular physiological indicators at single cell level.


Asunto(s)
Saccharomyces cerevisiae , Saccharomycetales , Electrodos , Oxígeno , Reología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA