Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 185: 113242, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915434

RESUMEN

The urge to meet the ever-growing needs of sensing technology has spurred research to look for new alternatives to traditional analytical methods. In this scenario, the glucometer is the flagship of commercial electrochemical sensing platforms, combining selectivity, reliability and portability. However, other types of enzyme-based biosensors seldom achieve the market, in spite of the large and increasing number of publications. The reasons behind their commercial limitations concern enzyme denaturation, and the high costs associated with procedures for their extraction and purification. In this sense, biomimetic materials that seek to imitate the desired properties of natural enzymes and biological systems have come out as an appealing path for robust and sensitive electrochemical biosensors. We herein portray the historical background of these biomimicking materials, covering from their beginnings until the most impactful applications in the field of electrochemical sensing platforms. Throughout the discussion, we present and critically appraise the major benefits and the most significant drawbacks offered by the bioinspired systems categorized as Nanozymes, Synzymes, Molecularly Imprinted Polymers (MIPs), Nanochannels, and Metal Complexes. Innovative strategies of fabrication and challenging applications are further reviewed and evaluated. In the end, we ponder over the prospects of this emerging field, assessing the most critical issues that shall be faced in the coming decade.


Asunto(s)
Técnicas Biosensibles , Impresión Molecular , Biomimética , Técnicas Electroquímicas , Polímeros , Reproducibilidad de los Resultados
2.
ACS Appl Mater Interfaces ; 12(25): 28148-28157, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32449855

RESUMEN

Solid-state nanochannels have attracted substantial attention of the scientific community due to their remarkable control of ionic transport and the feasibility to regulate the iontronic output by different stimuli. Most of the developed nanodevices are subjected to complex modification methods or show functional responsiveness only in moderate-ionic-strength solutions. Within this project, we present a nanofluidic device with enhanced ionic current rectification properties attained by a simple one-step functionalization of single bullet-shaped polyethylene terephthalate (PET) nanochannels with polyaniline (PANI) that can work in high-ionic-strength solutions. The integration of PANI also introduces a broad pH sensitivity, which makes it possible to modulate the ionic transport behavior between anion-selective and cation-selective regimes depending on the pH range. Since PANI is an electrochemically active polymer, ionic transport also becomes dependent on the presence of redox stimuli in solution. We demonstrate that PANI-functionalized single-nanochannel membranes function as an efficient salinity gradient-based energy conversion device even in acidic concentrated salt solutions, opening the door to applications under a variety of novel operating conditions.

3.
Adv Mater ; 31(37): e1901483, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31267585

RESUMEN

Solid-state nanopores are fascinating objects that enable the development of specific and efficient chemical and biological sensors, as well as the investigation of the physicochemical principles ruling the behavior of biological channels. The great variety of biological nanopores that nature provides regulates not only the most critical processes in the human body, including neuronal communication and sensory perception, but also the most important bioenergetic process on earth: photosynthesis. This makes them an exhaustless source of inspiration toward the development of more efficient, selective, and sophisticated nanopore-based nanofluidic devices. The key point responsible for the vibrant and exciting advance of solid nanopore research in the last decade has been the simultaneous combination of advanced fabrication nanotechnologies to tailor the size, geometry, and application of novel and creative approaches to confer the nanopore surface specific functionalities and responsiveness. Here, the state of the art is described in the following critical areas: i) theory, ii) nanofabrication techniques, iii) (bio)chemical functionalization, iv) construction of nanofluidic actuators, v) nanopore (bio)sensors, and vi) commercial aspects. The plethora of potential applications once envisioned for solid-state nanochannels is progressively and quickly materializing into new technologies that hold promise to revolutionize the everyday life.

4.
ACS Appl Mater Interfaces ; 11(33): 30001-30009, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31335118

RESUMEN

The design of an electrochemically addressable nanofluidic diode is proposed, which allows tunable and nanofluidic operations via redox gating under electrochemical control. The fabrication process involves the modification of an asymmetric gold-coated solid-state nanopore with a thin layer of a redox polymer, poly(vinylferrocene) (PVFc). The composite nanochannel acts as a gate electrode by changing the electrochemical state and, consequently, the conversion/switching of ferrocene into ferricenium units upon the application of different voltages. It is shown that the electrochemical input accurately controls the surface charge density of the nanochannel walls with a predictable concomitant effect on the rectification properties. PVFc-based nanofluidic devices are able to discriminate the passage of anionic species through the nanochannel in a qualitative and quantitative manner by simply switching the redox potential of the PVFc layer. Experimental data confirmed that a rapid and reversible modulation of the ionic transport regimes can be easily attained by changing the applied potential. This applied potential plays the role of the gate voltage (Vg) in field-effect transistors (FET), so these nanofluidic channels behave as ionic FETs. Depending on the Vg values, the iontronic behavior can be switched between ohmic and diode-like regimes. We believe that this system illustrates the potential of redox-active polymers integrated into nanofluidic devices as plausible, simple, and versatile platforms to create electrochemically addressable nanofluidic devices for multiple applications.

5.
Nano Lett ; 18(5): 3303-3310, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29697265

RESUMEN

Molecular design of biosensors based on enzymatic processes taking place in nanofluidic elements is receiving increasing attention by the scientific community. In this work, we describe the construction of novel ultrasensitive enzymatic nanopore biosensors employing "reactive signal amplifiers" as key elements coupled to the transduction mechanism. The proposed framework offers innovative design concepts not only to amplify the detected ionic signal and develop ultrasensitive nanopore-based sensors but also to construct nanofluidic diodes displaying specific chemo-reversible rectification properties. The integrated approach is demonstrated by electrostatically assembling poly(allylamine) on the anionic pore walls followed by the assembly of urease. We show that the cationic weak polyelectrolyte acts as a "reactive signal amplifier" in the presence of local pH changes induced by the enzymatic reaction. These bioinduced variations in proton concentration ultimately alter the protonation degree of the polyamine resulting in amplifiable, controlled, and reproducible changes in the surface charge of the pore walls, and consequently on the generated ionic signals. The "iontronic" response of the as-obtained devices is fully reversible, and nanopores are reused and assayed with different urea concentrations, thus ensuring reliable design. The limit of detection (LOD) was 1 nM. To the best of our knowledge, this value is the lowest LOD reported to date for enzymatic urea detection. In this context, we envision that this approach based on the use of "reactive signal amplifiers" into solid-state nanochannels will provide new alternatives for the molecular design of highly sensitive nanopore biosensors as well as (bio)chemically addressable nanofluidic elements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA