Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38674941

RESUMEN

Stereolithography has emerged as a recent method in fabricating complex structures with high accuracy. Components using resin have poorer properties. The current study investigates the improvement in the properties of nano-graphite composites fabricated by the SLA technique. The properties are compared for plain resin and 0.2%, 0.5%, 1%, 3%, and 5% (w/v) of nano-graphite mixed with the UV-curable resin. Various analyses were conducted, including viscosity, UV spectroscopy, moisture content, water absorption, gel content, tensile, bending, hardness testing, and microscopic characterization. The results from the experiments showed a difference in the results of each percentage of the specimen tested, such as the specimen property, which shows that the greater the percentage of nano-graphite added (5%), the opaquer the specimen will appear and less light will be reflected. Viscosity testing shows that the greater the percentage of nano-graphite added to the resin, the greater the viscosity. UV spectroscopy testing produced information about the electronic structure and the structure of molecules, such as their composition, purity, and concentration. Observations from the moisture content analysis found that the moisture content in specimens with higher percentages of nano-graphite affected physical and mechanical properties, leading to easier warping, cracking, decreased strength, etc. Tensile and bending testing shows that the greater the percentage of nano-graphite added, the greater the effect on physical and mechanical properties, including fracture. However, certain tests did not consistently yield significant variations among specimens when different percentages of nano-graphite were added, as particularly evident in chemical resistance testing. This study offers valuable insights into the application of nano-graphite composites fabricated via the SLA method.

2.
Molecules ; 28(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38067550

RESUMEN

The double-layer PVDF-PVC (D-PP/PP) super-hydrophobic composite membrane was prepared by the coating immersion phase separation method to enhance the mechanical properties of the composite membrane. The D-PP/PP super-hydrophobic membrane was prepared using the casting solution concentration of 12 wt% PVDF-PVC composite membrane as basement and 4% casting of PVDF-PVC coating. The contact angle of the D-PP/PP membrane was 150.4 ± 0.3°, and the scanning electron microscope showed that the surface of the D-PP/PP membrane was covered by a cross-linked micro-nano microsphere. The mechanical properties showed that the maximum tensile force of the D-PP/PP composite membrane was 2.34 N, which was 19.4% higher than that of PVDF-PVC (1.96 N). Nano-graphite was added to the coating layer in the experiment. The prepared double-layer PVDF-PVC-nano-graphite/PVDF-PVC (D-PPG/PP) composite membrane reached 153.7 ± 0.5°, the contact angle increasing by 3.3°. The SEM comparison showed that the D-PPG/PP composite membrane had a more obvious micro-nano level microsphere layer. The mechanical properties are also superior. By preparing the D-PP/PP membrane, the mechanical properties of the membrane were improved, and the super-hydrophobic property of the coating was also obtained. At the same time, it was found that adding nano-graphite to the coating layer can better improve the hydrophobic, mechanical, and self-cleaning properties of the D-PP/PP composite membrane.

3.
Nanotechnology ; 33(41)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35785757

RESUMEN

Improving the thruster efficiency is a crucial challenge for the development of space electric propulsion systems, especially advanced air-breathing thrusters utilizing the surrounding rarefied atmosphere as fuel. A significant reduction in thruster power consumption can be achieved by using field emission (FE) cathodes that do not require heating and have the highest energy efficiency. In this work, we study FE from nano-graphite thin films, consisting of carbon nanostructures with a high aspect ratio, and demonstrate their suitability for use in the space electric propulsion systems. The films shown appropriate FE characteristics in a wide range of gas pressures at high current loads in constant and pulsed operation modes. Based on the obtained experimental results, nano-graphite cathodes were employed for the design of an electron gun with increased reliability and minimized energy losses associated with electron extraction. The possibility of using such a gun in a specific air-breathing satellite operating in low Earth orbits is demonstrated.

4.
Materials (Basel) ; 15(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897580

RESUMEN

Reducing the particle size of active material is an effective solution to the poor rate performance of the lithium-ion battery. In this study, we proposed a facile strategy for the preparation of nano-graphite as an anode for a lithium-ion battery via the rapid mechanical pulverization method. It is the first time that diamond particle was selected as the medium to achieve high preparation efficiency and low energy consumption. The as-prepared nano-graphite with the size from 10 to 300 nm displays an intact structure and high specific surface area. The introduced oxygen atoms increased the wettability of nano-graphite electrode and lowered its polarization. The nano-graphite prepared from three hours of grinding shows an excellent reversible capacity of 191 mAh g-1, at a rate of 5 C, after 480 cycles, along with an increase of 86% in capacity, at 1 C, in comparison with pristine graphite. The highlight of this strategy is to optimize the current preparation method. The good electrochemical performance comes from the combined effect of nano-scale particle size, large specific surface area, and continuous mesopores.

5.
Water Res ; 201: 117288, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34107360

RESUMEN

An environmentally friendly and efficient catalyst is important for the persulfate activation and pollutants removal from water. In this study, nano-graphite (NG) prepared by detonation method, was firstly applied as the superb carbon catalyst to activate peroxydisulfate (PDS) for the degradation of bisphenol S (BPS) via a non-radical pathway. Results showed that NG had a very high catalytic performance and degraded most of BPS within 20.0 min, out-performing many popular metal-based catalysts. The doped N atoms (i.e. graphitic N and pyridinic N) in NG were identified as the possible reactive sites for the PDS activation. It is proposed that PDS could form the metastable surface-bound PDS complexes on the NG surface, which promoted the BPS degradation. The NG/PDS system had a strong anti-interference ability for the environmental background substances and a wide operative pH range, so it had a good application prospect in the actual wastewater environment. This study not only provides an efficient method for the removal of bisphenol pollutants, but also deepens the insight into the reaction mechanisms.


Asunto(s)
Grafito , Catálisis , Fenoles , Sulfonas , Aguas Residuales
6.
Materials (Basel) ; 15(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35009436

RESUMEN

Nano graphite platelets (NGPs) belong to the carbon family and have a huge impact on the construction industry. NGPs are used as multi-functional fillers and have the potential to develop reinforcing within cementitious composites. In this paper, NGPs were incorporated in cementitious composites to investigate the effects of NGPs on the fresh, mechanical, durability, and microstructural properties of concrete. Five mixes were prepared with intrusion of NGPs (0%, 0.5%, 1.5%, 3%, and 5% by weight of cement). The properties studied involved workability, air content, hardened density, compressive strength, tensile strength, flexural strength, sorptivity, ultrasonic pulse velocity (UPV), water absorption, and external sulfate attack. The workability and percent air content decrease by 22.5% and 33.8%, respectively, for concrete with 5% NGPs compared to the control mix. The specimens containing 5% of NGPs revealed the hardened density, compressive, tensile, and flexural strength to increase by 11.4%, 38.5%, 31.6%, and 44.34%, respectively, compared to the control mix. The results revealed that the incorporation of 5%NGPs in cementitious composites reduces the sorptivity and water absorption by 32.2% and 73.9%, respectively, whereas, it increases the UPV value by 7.5% compared to the control mix. Furthermore, the incorporation of NGPs provided better resistance against external sulfate attacks. SEM-EDX spectroscopy was carried out to investigate its microstructural analysis.

7.
Polymers (Basel) ; 11(3)2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30960533

RESUMEN

The aim of the study was to improve the electrical and thermal conductivity of the polylactic acid/wood flour/thermoplastic polyurethane composites by Fused Deposition Modeling (FDM). The results showed that, when the addition amount of nano-graphite reached 25 pbw, the volume resistivity of the composites decreased to 108 Ω·m, which was a significant reduction, indicating that the conductive network was already formed. It also had good thermal conductivity, mechanical properties, and thermal stability. The adding of the redox graphene (rGO) combined with graphite into the composites, compared to the tannic acid-functionalized graphite or the multi-walled carbon nanotubes, can be an effective method to improve the performance of the biocomposites, because the resistivity reduced by one order magnitude and the thermal conductivity increased by 25.71%. Models printed by FDM illustrated that the composite filaments have a certain flexibility and can be printed onto paper or flexible baseplates.

8.
J Hazard Mater ; 351: 250-259, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29550559

RESUMEN

Graphite-like material is widely used for preparing various electrodes for wastewater treatment. To enhance the electrochemical degradation efficiency of Nano-graphite (Nano-G) anode, RuO2-TiO2/Nano-G composite anode was prepared through the sol-gel method and hot-press technology. RuO2-TiO2/Nano-G composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N2 adsorption-desorption. Results showed that RuO2, TiO2 and Nano-G were composited successfully, and RuO2 and TiO2 nanoparticles were distributed uniformly on the surface of Nano-G sheet. Specific surface area of RuO2-TiO2/Nano-G composite was higher than that of TiO2/Nano-G composite and Nano-G. Electrochemical performances of RuO2-TiO2/Nano-G anode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy. RuO2-TiO2/Nano-G anode was applied to electrochemical degradation of ceftriaxone. The generation of hydroxyl radical (OH) was measured. Results demonstrated that RuO2-TiO2/Nano-G anode displayed enhanced electrochemical degradation efficiency towards ceftriaxone and yield of OH, which is derived from the synergetic effect between RuO2, TiO2 and Nano-G, which enhance the specific surface area, improve the electrochemical oxidation activity and lower the charge transfer resistance. Besides, the possible degradation intermediates and pathways of ceftriaxone sodium were identified. This study may provide a viable and promising prospect for RuO2-TiO2/Nano-G anode towards effective electrochemical degradation of antibiotics from wastewater.

9.
J Colloid Interface Sci ; 508: 455-461, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28858655

RESUMEN

In this article, a novel aptasensor was fabricated by modifying carbon dots (CDs) with adenosine aptamer (CDs-aptamer) for sensitive, selective and quantitative detection of adenosine (AD). When nano-graphite (NG) as an energy acceptor was added into the CDs-aptamer (energy donor) solution, the fluorescence of CDs-aptamer was quenched due to fluorescence resonance energy transfer (FRET). When AD was present in the solution of CDs-aptamer/NG, the process of FRET was inhibited because of the specific combination between AD and AD aptamer. As a result, the fluorescence of CDs-aptamer was restored due to the dissociation of CDs-aptamer from NG and its change was proportional to the AD concentration. Under the optimized conditions, a linear range was found to be 2-50nM for the detection of AD with a detection limit of 0.63nM. Furthermore, the application of the proposed approach was demonstrated in real sample with satisfying results and it showed promise in diagnostic purpose.

10.
Nanoscale Res Lett ; 12(1): 167, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28274088

RESUMEN

Different chemical formulations for the synthesis of highly intercalated graphite bisulfate have been tested. In particular, nitric acid, potassium nitrate, potassium dichromate, potassium permanganate, sodium periodate, sodium chlorate, and hydrogen peroxide have been used in this synthesis scheme as the auxiliary reagent (oxidizing agent). In order to evaluate the presence of delamination, and pre-expansion phenomena, and the achieved intercalation degree in the prepared samples, the obtained graphite intercalation compounds have been characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR), micro-Raman spectroscopy (µ-RS), and thermal analysis (TGA). Delamination and pre-expansion phenomena were observed only for nitric acid, sodium chlorate, and hydrogen peroxide, while the presence of strong oxidizers (KMnO4, K2Cr2O7) led to stable graphite intercalation compounds. The largest content of intercalated bisulfate is achieved in the intercalated compounds obtained from NaIO4 and NaClO3.

11.
Chemosphere ; 164: 421-429, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27599008

RESUMEN

In order to improve the electro-catalytic activity and catalytic reaction rate of graphite-like material, Tin dioxide-Titanium dioxide/Nano-graphite (SnO2-TiO2/Nano-G) composite was synthesized by a sol-gel method and SnO2-TiO2/Nano-G electrode was prepared in hot-press approach. The composite was characterized by X-ray photoelectron spectroscopy, fourier transform infrared, Raman, N2 adsorption-desorption, scanning electrons microscopy, transmission electron microscopy and X-ray diffraction. The electrochemical performance of the SnO2-TiO2/Nano-G anode electrode was investigated via cyclic voltammetry and electrochemical impedance spectroscopy. The electro-catalytic performance was evaluated by the degradation of ceftriaxone sodium and the yield of ·OH radicals in the reaction system. The results demonstrated that TiO2, SnO2 and Nano-G were composited successfully, and TiO2 and SnO2 particles dispersed on the surface and interlamination of the Nano-G uniformly. The specific surface area of SnO2 modified anode was higher than that of TiO2/Nano-G anode and the degradation rate of ceftriaxone sodium within 120 min on SnO2-TiO2/Nano-G electrode was 98.7% at applied bias of 2.0 V. The highly efficient electro-chemical property of SnO2-TiO2/Nano-G electrode was attributed to the admirable conductive property of the Nano-G and SnO2-TiO2/Nano-G electrode. Moreover, the contribution of reactive species ·OH was detected, indicating the considerable electro-catalytic activity of SnO2-TiO2/Nano-G electrode.


Asunto(s)
Ceftriaxona/química , Técnicas Electroquímicas , Grafito/química , Compuestos de Estaño/química , Titanio/química , Catálisis , Electrodos , Espectroscopía de Fotoelectrones , Difracción de Rayos X
12.
J Hazard Mater ; 315: 1-10, 2016 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-27149660

RESUMEN

Nano-graphite(Nano-G)/TiO2 composite photoelectrode was fabricated via sol-gel reaction, followed by the hot-press approach. The morphology, structure and light absorption capability of composite was characterized by various characterizations. The photoelectrochemical property and photoelectrocatalytic(PEC) activity of photoelectrode were also investigated. Results revealed that anatase TiO2 nanoparticles with an average diameter of 10nm were dispersed uniformly on the thickness of 2-3nm Nano-G, and TiOC bond was formed. The absorption edge of Nano-G/TiO2 photoelectrode was red-shifted towards low energy region and the enhanced visible light absorption was obtained. The charge transfer resistance of Nano-G/TiO2 photoelectrode was significantly decreased after the addition of Nano-G. And its transient photoinduced current was 10.5 times the value achieved using TiO2 electrode. Nano-G/TiO2 photoelectrode displayed greatly enhanced PEC activity of 99.2% towards the degradation of phenol, which was much higher than the 29.1% and 58.3% degradation seen on TiO2 and Nano-G electrode, respectively. The highly efficient and stable PEC activity of Nano-G/TiO2 photoelectrode was attributed to the synergy effect between photocatalysis and electrocatalysis, as well as enhanced light absorption ability and higher separation efficiency of photogenerated charge carriers. Moreover, contribution of series of reactive species to the PEC degradation of Nano-G/TiO2 photoelectrode was determined.

13.
Toxicol In Vitro ; 30(1 Pt B): 476-85, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26381085

RESUMEN

Carbon nanotubes (CNT) and nano-graphite (NG) are graphene-based nanomaterials which share exceptional physicochemical properties, but whose health impacts are unfortunately still not well understood. On the other hand, carbon black (CB) is a conventional and widely studied material. The comparison of these three carbon-based nanomaterials is thus of great interest to improve our understanding of their toxicity. An acid functionalization was carried out on CNT, NG and CB so that, after a thorough characterization, their impacts on RAW 264.7 macrophages could be compared for a similar surface chemistry (15 to 120 µg·mL(-1) nanomaterials, 90-min to 24-h contact). Functionalized nanomaterials triggered a weak cytotoxicity similar to the pristine nanomaterials. Acid functionalization increased the pro-inflammatory response except for CB which did not trigger any TNF-α production before or after functionalization, and seemed to strongly decrease the oxidative stress. The toxicological impact of acid functionalization appeared thus to follow a similar trend whatever the carbon-based nanomaterial. At equivalent dose expressed in surface and equivalent surface chemistry, the toxicological responses from murine macrophages to NG were higher than for CNT and CB. It seemed to correspond to the hypothesis of a platelet and fiber paradigm.


Asunto(s)
Grafito/toxicidad , Nanotubos de Carbono/toxicidad , Hollín/toxicidad , Ácidos , Animales , Células Cultivadas , Ratones , Propiedades de Superficie
14.
Biosens Bioelectron ; 65: 16-22, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25461133

RESUMEN

This paper describes a novel approach utilizing nano-graphite-aptamer hybrid and DNase I for the amplified detection of ochratoxin A (OTA) for the first time. Nano-graphite can effectively quench the fluorescence of carboxyfluorescein (FAM) labeled OTA specific aptamer due to their strong π-π; stacking interactions; while upon OTA addition, it will bind with aptamer to fold into an OTA-aptamerG-quadruplex structure, which does not adsorb on the surface of nano-graphite and thus retains the dye fluorescence. Meanwhile, the G-quadruplex structure can be cleaved by DNase I, and in such case OTA is delivered from the complex. The released OTA then binds other FAM-labeled aptamers on the nano-graphite surface, and touches off another target recycling, resulting in the successive release of dye-labeled aptamers from the nano-graphite, which leads to significant amplification of the signal. Under the optimized conditions, the present amplified sensing system exhibits high sensitivity toward OTA with a limit of detection of 20nM (practical measurement), which is about 100-fold higher than that of traditional unamplified homogeneous assay. Our developed method also showed high selectivity against other interference molecules and can be applied for the detection of OTA in real red wine samples. The proposed assay is simple, cost-effective, and might open a door for the development of new assays for other biomolecules. This aptasensor is of great practical importance in food safety and could be widely extended to the detection of other toxins by replacing the sequence of the recognition aptamer.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Fluoresceínas/química , Colorantes Fluorescentes/química , Micotoxinas/análisis , Ocratoxinas/análisis , Vino/análisis , Catálisis , Desoxirribonucleasa I/química , Grafito/química , Límite de Detección , Nanoestructuras/química , Espectrometría de Fluorescencia/métodos
15.
Biosens Bioelectron ; 58: 276-81, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24657649

RESUMEN

This paper describes a novel approach utilizing nano-graphite-DNA hybrid and DNase I for the amplified detection of silver(I) ion in aqueous solutions for the first time. Nano-graphite can effectively quench the fluorescence of dye-labeled cytosine-rich single-stranded DNA due to its strong π-π stacking interactions; however, in the presence of Ag(+), C-Ag(+)-C coordination induces the probe to fold into a hairpin structure, which does not adsorb on the surface of nano-graphite and thus retains the dye fluorescence. Meanwhile, the hairpin structure can be cleaved by DNase I, and in such case Ag(+) is delivered from the complex. The released Ag(+) then binds other dye-labeled single-stranded DNA on the nano-graphite surface, and touches off another target recycling, resulting in the successive release of dye-labeled single-stranded DNA from the nano-graphite, which leads to significant amplification of the signal. The present magnification sensing system exhibits high sensitivity toward Ag(+) with a limit of detection of 0.3nM (S/N=3), which is much lower than the standard for Ag(+) in drinking water recommended by the Environmental Protection Agency (EPA). The selectivity of the sensor for Ag(+) against other biologically and environmentally related metal ions is outstanding due to the high specificity of C-Ag(+)-C formation. Moreover, the sensing system is used for the determination of Ag(+) in river water samples with satisfying results. The proposed assay is simple, cost-effective, and might open the door for the development of new assays for other metal ions or biomolecules.


Asunto(s)
ADN/química , Desoxirribonucleasa I/química , Grafito/química , Nanocompuestos/química , Plata/análisis , Espectrometría de Fluorescencia/métodos , Contaminantes Químicos del Agua/análisis , ADN/ultraestructura , Iones , Nanocompuestos/ultraestructura , Soluciones/análisis , Agua/química
16.
Beilstein J Nanotechnol ; 4: 493-500, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24062975

RESUMEN

The development of new types of light sources is necessary in order to meet the growing demands of consumers and to ensure an efficient use of energy. The cathodoluminescence process is still under-exploited for light generation because of the lack of cathodes suitable for the energy-efficient production of electron beams and appropriate phosphor materials. In this paper we propose a nano-graphite film material as a highly efficient cold cathode, which is able to produce high intensity electron beams without energy consumption. The nano-graphite film material was produced by using chemical vapor deposition techniques. Prototypes of cathodoluminescent lamp devices with a construction optimized for the usage of nano-graphite cold cathodes were developed, manufactured and tested. The results indicate prospective advantages of this type of lamp and the possibility to provide advanced power efficiency as well as enhanced spectral and other characteristics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA