Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
EMBO Rep ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242777

RESUMEN

Plants evolve nucleotide-binding leucine-rich repeat receptors (NLRs) to induce immunity. Activated coiled-coil (CC) domain containing NLRs (CNLs) oligomerize and form apparent cation channels promoting calcium influx and cell death, with the alpha-1 helix of the individual CC domains penetrating the plasma membranes. Some CNLs are characterized by putative N-myristoylation and S-acylation sites in their CC domain, potentially mediating permanent membrane association. Whether activated Potentially Membrane Localized NLRs (PMLs) mediate cell death and calcium influx in a similar way is unknown. We uncovered the cell-death function at the vacuole of an atypical but conserved Arabidopsis PML, PML5, which has a significant deletion in its CCG10/GA domain. Active PML5 oligomers localize in Golgi membranes and the tonoplast, alter vacuolar morphology, and induce cell death, with the short N-terminus being sufficient. Mutant analysis supports a potential role of PMLs in plant immunity. PML5-like deletions are found in several Brassicales paralogs, pointing to the evolutionary importance of this innovation. PML5, with its minimal CC domain, represents the first identified CNL utilizing vacuolar-stored calcium for cell death induction.

2.
Structure ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39208793

RESUMEN

N-myristoyltransferases (NMTs) catalyze essential acylations of N-terminal alpha or epsilon amino groups of glycines or lysines. Here, we reveal that peptides tightly fitting the optimal glycine recognition pattern of human NMTs are potent prodrugs relying on a single-turnover mechanism. Sequence scanning of the inhibitory potency of the series closely reflects NMT glycine substrate specificity rules, with the lead inhibitor blocking myristoylation by NMTs of various species. We further redesigned the series based on the recently recognized lysine-myristoylation mechanism by taking advantage of (1) the optimal peptide chassis and (2) lysine side chain mimicry with unnatural enantiomers. Unlike the lead series, the inhibitory properties of the new compounds rely on the protonated state of the side chain amine, which stabilizes a salt bridge with the catalytic base at the active site. Our study provides the basis for designing first-in-class NMT inhibitors tailored for infectious diseases and alternative active site targeting.

3.
J Huntingtons Dis ; 13(3): 267-277, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38995796

RESUMEN

 Huntington's disease (HD) is a devastating neurodegenerative disorder characterized by impaired motor function and cognitive decline, ultimately leading to death. HD is caused by a polyglutamine expansion in the N-terminal region of the huntingtin (HTT) protein, which is linked to decreased HTT turnover, increased HTT proteolysis, increased HTT aggregation, and subsequent neuronal death. In this review, we explore the mechanism of the protective effect of blocking HTT proteolysis at D586, which has been shown to rescue the HD phenotype in HD mouse models. Until recently, the mechanism remained unclear. Herein, we discuss how blocking HTT proteolysis at D586 promotes HTT turnover by correcting autophagy, and making HTT a better autophagy substrate, through post-translational myristoylation of HTT at G553.


Asunto(s)
Autofagia , Proteína Huntingtina , Enfermedad de Huntington , Procesamiento Proteico-Postraduccional , Proteolisis , Enfermedad de Huntington/metabolismo , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Autofagia/fisiología , Humanos , Animales , Ácido Mirístico/metabolismo
4.
Mol Med ; 30(1): 102, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009982

RESUMEN

BACKGROUND: Acute monocytic leukemia-M5 (AML-M5) remains a challenging disease due to its high morbidity and poor prognosis. In addition to the evidence mentioned earlier, several studies have shown that programmed cell death (PCD) serves a critical function in treatment of AML-M5. However, the role and relationship between ferroptosis and necroptosis in AML-M5 remains unclear. METHODS: THP-1 cells were mainly treated with Erastin and IMP-366. The changes of ferroptosis and necroptosis levels were detected by CCK-8, western blot, quantitative real-time PCR, and electron microscopy. Flow cytometry was applied to detect the ROS and lipid ROS levels. MDA, 4-HNE, GSH and GSSG were assessed by ELISA kits. Intracellular distribution of FSP1 was studied by immunofluorescent staining and western blot. RESULTS: The addition of the myristoylation inhibitor IMP-366 to erastin-treated acute monocytic leukemia cell line THP-1 cell not only resulted in greater susceptibility to ferroptosis characterized by lipid peroxidation, glutathione (GSH) depletion and mitochondrial shrinkage, as the FSP1 position on membrane was inhibited, but also increased p-RIPK1 and p-MLKL protein expression, as well as a decrease in caspase-8 expression, and triggered the characteristic necroptosis phenomena, including cytoplasmic translucency, mitochondrial swelling, membranous fractures by FSP1 migration into the nucleus via binding importin α2. It is interesting to note that ferroptosis inhibitor fer-1 reversed necroptosis. CONCLUSION: We demonstrated that inhibition of myristoylation by IMP-366 is capable of switching ferroptosis and ferroptosis-dependent necroptosis in THP-1 cells. In these findings, FSP1-mediated ferroptosis and necroptosis are described as alternative mechanisms of PCD of THP-1 cells, providing potential therapeutic strategies and targets for AML-M5.


Asunto(s)
Ferroptosis , Necroptosis , Humanos , Acrilamidas , Apoptosis , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas de Complejo Poro Nuclear , Piperazinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Unión al ARN , Sulfonamidas , Células THP-1
5.
Pathogens ; 13(7)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39057827

RESUMEN

Many picornaviruses require the myristoylation of capsid proteins for viral replication. Myristoylation is a site-specific lipidation to the N-terminal G residue of viral proteins, which is catalyzed by the ubiquitous eukaryotic enzyme N-myristoyltransferase (NMT) by allocating the myristoyl group to the N-terminal G residue. IMP-1088 and DDD85646 are two inhibitors that can deprive NMT biological functions. Whether Senecavirus A (SVA) uses NMT to modify VP0 and regulate viral replication remains unclear. Here, we found that NMT inhibitors could inhibit SVA replication. NMT1 knock-out in BHK-21 cells significantly suppressed viral replication. In contrast, the overexpression of NMT1 in BHK-21 cells benefited viral replication. These results indicated that VP0 is a potential NMT1 substrate. Moreover, we found that the myristoylation of SVA VP0 was correlated to the subcellular distribution of this protein in the cytoplasm. Further, we evaluated which residues at the N-terminus of VP0 are essential for viral replication. The substitution of N-terminal G residue, the myristoylation site of VP0, produced a nonviable virus. The T residue at the fifth position of the substrates facilitates the binding of the substrates to NMT. And our results showed that the T residue at the fifth position of VP0 played a positive role in SVA replication. Taken together, we demonstrated that SVA VP0 myristoylation plays an essential role in SVA replication.

6.
J Transl Med ; 22(1): 431, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715059

RESUMEN

BACKGROUND: In humans, two ubiquitously expressed N-myristoyltransferases, NMT1 and NMT2, catalyze myristate transfer to proteins to facilitate membrane targeting and signaling. We investigated the expression of NMTs in numerous cancers and found that NMT2 levels are dysregulated by epigenetic suppression, particularly so in hematologic malignancies. This suggests that pharmacological inhibition of the remaining NMT1 could allow for the selective killing of these cells, sparing normal cells with both NMTs. METHODS AND RESULTS: Transcriptomic analysis of 1200 NMT inhibitor (NMTI)-treated cancer cell lines revealed that NMTI sensitivity relates not only to NMT2 loss or NMT1 dependency, but also correlates with a myristoylation inhibition sensitivity signature comprising 54 genes (MISS-54) enriched in hematologic cancers as well as testis, brain, lung, ovary, and colon cancers. Because non-myristoylated proteins are degraded by a glycine-specific N-degron, differential proteomics revealed the major impact of abrogating NMT1 genetically using CRISPR/Cas9 in cancer cells was surprisingly to reduce mitochondrial respiratory complex I proteins rather than cell signaling proteins, some of which were also reduced, albeit to a lesser extent. Cancer cell treatments with the first-in-class NMTI PCLX-001 (zelenirstat), which is undergoing human phase 1/2a trials in advanced lymphoma and solid tumors, recapitulated these effects. The most downregulated myristoylated mitochondrial protein was NDUFAF4, a complex I assembly factor. Knockout of NDUFAF4 or in vitro cell treatment with zelenirstat resulted in loss of complex I, oxidative phosphorylation and respiration, which impacted metabolomes. CONCLUSIONS: Targeting of both, oxidative phosphorylation and cell signaling partly explains the lethal effects of zelenirstat in select cancer types. While the prognostic value of the sensitivity score MISS-54 remains to be validated in patients, our findings continue to warrant the clinical development of zelenirstat as cancer treatment.


Asunto(s)
Aciltransferasas , Neoplasias , Fosforilación Oxidativa , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Línea Celular Tumoral , Fosforilación Oxidativa/efectos de los fármacos , Aciltransferasas/metabolismo , Ácido Mirístico/metabolismo , Proteómica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Multiómica
7.
Redox Biol ; 73: 103176, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38705094

RESUMEN

Excitotoxicity is a prevalent pathological event in neurodegenerative diseases. The involvement of ferroptosis in the pathogenesis of excitotoxicity remains elusive. Transcriptome analysis has revealed that cytoplasmic reduced nicotinamide adenine dinucleotide phosphate (NADPH) levels are associated with susceptibility to ferroptosis-inducing compounds. Here we show that exogenous NADPH, besides being reductant, interacts with N-myristoyltransferase 2 (NMT2) and upregulates the N-myristoylated ferroptosis suppressor protein 1 (FSP1). NADPH increases membrane-localized FSP1 and strengthens resistance to ferroptosis. Arg-291 of NMT2 is critical for the NADPH-NMT2-FSP1 axis-mediated suppression of ferroptosis. This study suggests that NMT2 plays a pivotal role by bridging NADPH levels and neuronal susceptibility to ferroptosis. We propose a mechanism by which the NADPH regulates N-myristoylation, which has important implications for ferroptosis and disease treatment.


Asunto(s)
Ferroptosis , NADP , Humanos , NADP/metabolismo , Animales , Aciltransferasas/metabolismo , Aciltransferasas/genética , Ratones , Procesamiento Proteico-Postraduccional
8.
Plant Mol Biol ; 114(3): 57, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743266

RESUMEN

A high concentration of sodium (Na+) is the primary stressor for plants in high salinity environments. The Salt Overly Sensitive (SOS) pathway is one of the best-studied signal transduction pathways, which confers plants the ability to export too much Na+ out of the cells or translocate the cytoplasmic Na+ into the vacuole. In this study, the Salt Overly Sensitive3 (MpSOS3) gene from Pongamia (Millettia pinnata Syn. Pongamia pinnata), a semi-mangrove, was isolated and characterized. The MpSOS3 protein has canonical EF-hand motifs conserved in other calcium-binding proteins and an N-myristoylation signature sequence. The MpSOS3 gene was significantly induced by salt stress, especially in Pongamia roots. Expression of the wild-type MpSOS3 but not the mutated nonmyristoylated MpSOS3-G2A could rescue the salt-hypersensitive phenotype of the Arabidopsis sos3-1 mutant, which suggested the N-myristoylation signature sequence of MpSOS3 was required for MpSOS3 function in plant salt tolerance. Heterologous expression of MpSOS3 in Arabidopsis accumulated less H2O2, superoxide anion radical (O2-), and malondialdehyde (MDA) than wild-type plants, which enhanced the salt tolerance of transgenic Arabidopsis plants. Under salt stress, MpSOS3 transgenic plants accumulated a lower content of Na+ and a higher content of K+ than wild-type plants, which maintained a better K+/Na+ ratio in transgenic plants. Moreover, no development and growth discrepancies were observed in the MpSOS3 heterologous overexpression plants compared to wild-type plants. Our results demonstrated that the MpSOS3 pathway confers a conservative salt-tolerant role and provided a foundation for further study of the SOS pathway in Pongamia.


Asunto(s)
Arabidopsis , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Tolerancia a la Sal , Plantas Tolerantes a la Sal , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloruro de Sodio/farmacología , Secuencia de Aminoácidos , Filogenia , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Estrés Salino/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo
9.
Talanta ; 276: 126300, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38795647

RESUMEN

N-myristoylation is one of the most widespread and important lipidation in eukaryotes and some prokaryotes, which is formed by covalently attaching various fatty acids (predominantly myristic acid C14:0) to the N-terminal glycine of proteins. Disorder of N-myristoylation is critically implicated in numerous physiological and pathological processes. Here, we presented a method for purification and comprehensive characterization of endogenous, intact N-glycine lipid-acylated peptides, which combined the negative selection method for N-terminome and the nanographite fluoride-based solid-phase extraction method (NeS-nGF SPE). After optimizing experimental conditions, we conducted the first global profiling of the endogenous and heterogeneous modification states for N-terminal glycine, pinpointing the precise sites and their associated lipid moieties. Totally, we obtained 76 N-glycine lipid-acylated peptides, including 51 peptides with myristate (C14:0), 10 with myristoleate (C14:1), 6 with tetradecadienoicate (C14:2), 5 with laurate (C12:0) and 4 with lauroleate (C12:1). Therefore, our proteomic methodology could significantly facilitate precise and in-depth analysis of the endogenous N-myristoylome and its heterogeneity.


Asunto(s)
Ácido Mirístico , Extracción en Fase Sólida , Extracción en Fase Sólida/métodos , Ácido Mirístico/química , Ácido Mirístico/análisis , Proteómica/métodos , Fluoruros/química , Fluoruros/análisis , Glicina/química , Glicina/análisis , Péptidos/química , Péptidos/análisis
10.
Yeast ; 41(5): 315-329, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38444057

RESUMEN

Lipid binding domains and protein lipidations are essential features to recruit proteins to intracellular membranes, enabling them to function at specific sites within the cell. Membrane association can also be exploited to answer fundamental and applied research questions, from obtaining insights into the understanding of lipid metabolism to employing them for metabolic engineering to redirect fluxes. This review presents a broad catalog of membrane binding strategies focusing on the plasma membrane of Saccharomyces cerevisiae. Both lipid binding domains (pleckstrin homology, discoidin-type C2, kinase associated-1, basic-rich and bacterial phosphoinositide-binding domains) and co- and post-translational lipidations (prenylation, myristoylation and palmitoylation) are introduced as tools to target the plasma membrane. To provide a toolset of membrane targeting modules, respective candidates that facilitate plasma membrane targeting are showcased including their in vitro and in vivo properties. The relevance and versatility of plasma membrane targeting modules are further highlighted by presenting a selected set of use cases.


Asunto(s)
Membrana Celular , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Membrana Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Transporte de Proteínas , Metabolismo de los Lípidos
11.
Plant J ; 118(5): 1455-1474, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38394181

RESUMEN

Class I glutaredoxins (GRXs) are catalytically active oxidoreductases and considered key proteins mediating reversible glutathionylation and deglutathionylation of protein thiols during development and stress responses. To narrow in on putative target proteins, it is mandatory to know the subcellular localization of the respective GRXs and to understand their catalytic activities and putative redundancy between isoforms in the same compartment. We show that in Arabidopsis thaliana, GRXC1 and GRXC2 are cytosolic proteins with GRXC1 being attached to membranes through myristoylation. GRXC3 and GRXC4 are identified as type II membrane proteins along the early secretory pathway with their enzymatic function on the luminal side. Unexpectedly, neither single nor double mutants lacking both GRXs isoforms in the cytosol or the ER show phenotypes that differ from wild-type controls. Analysis of electrostatic surface potentials and clustering of GRXs based on their electrostatic interaction with roGFP2 mirrors the phylogenetic classification of class I GRXs, which clearly separates the cytosolic GRXC1 and GRXC2 from the luminal GRXC3 and GRXC4. Comparison of all four studied GRXs for their oxidoreductase function highlights biochemical diversification with GRXC3 and GRXC4 being better catalysts than GRXC1 and GRXC2 for the reduction of bis(2-hydroxyethyl) disulfide. With oxidized roGFP2 as an alternative substrate, GRXC1 and GRXC2 catalyze the reduction faster than GRXC3 and GRXC4, which suggests that catalytic efficiency of GRXs in reductive reactions depends on the respective substrate. Vice versa, GRXC3 and GRXC4 are faster than GRXC1 and GRXC2 in catalyzing the oxidation of pre-reduced roGFP2 in the reverse reaction.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Citosol , Glutarredoxinas , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimología , Citosol/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Vías Secretoras , Filogenia
12.
Prostate ; 84(3): 254-268, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37905842

RESUMEN

BACKGROUND: Even though prostate cancer (PCa) patients initially respond to androgen deprivation therapy, some will eventually develop castration resistant prostate cancer (CRPC). Androgen receptor (AR) mediated cell signaling is a major driver in the progression of CRPC while only a fraction of PCa becomes AR negative. This study aimed to understand the regulation of AR levels by N-myristoyltransferase in PCa cells. METHODS: Two enantiomers, (1S,2S)- d-NMAPPD and (1R,2R)- d-NMAPPD (LCL4), were characterized by various methods (1 H and 13 C NMR, UHPLC, high-resolution mass spectra, circular dichroism) and evaluated for the ability to bind to N-myristoyltransferase 1 (NMT1) using computational docking analysis. structure-activity relationship analysis of these compounds led to the synthesis of (1R,2R)-LCL204 and evaluation as a potential NMT1 inhibitor utilizing the purified full length NMT1 enzyme. The NMT inhibitory activity wase determined by Click chemistry and immunoblotting. Regulation of NMT1 on tumor growth was evaluated in a xenograft tumor model. RESULTS: (1R,2R)- d-NMAPPD, but not its enantiomer (1S,2S)- d-NMAPPD, inhibited NMT1 activity and reduced AR protein levels. (1R,2R)-LCL204, a derivative of (1R,2R)- d-NMAPPD, inhibited global protein myristoylation. It also suppressed protein levels, nuclear translocation, and transcriptional activity of AR full-length or variants in PCa cells. This was due to enhanced ubiquitin and proteasome-mediated degradation of AR. Knockdown of NMT1 levels inhibited tumor growth and proliferation of cancer cells. CONCLUSION: Inhibitory efficacy on N-myristoyltransferase activity by d-NMAPPD is stereospecific. (1R,2R)-LCL204 reduced global N-myristoylation and androgen receptor protein levels at low micromolar concentrations in prostate cancer cells. pharmacological inhibition of NMT1 enhances ubiquitin-mediated proteasome degradation of AR. This study illustrates a novel function of N-myristoyltransferase and provides a potential strategy for treatment of CRPC.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/metabolismo , Andrógenos , Neoplasias de la Próstata Resistentes a la Castración/patología , Antagonistas de Andrógenos , Complejo de la Endopetidasa Proteasomal , Ubiquitinas , Línea Celular Tumoral
13.
Brain ; 147(4): 1436-1456, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37951597

RESUMEN

The acyl-CoA-binding domain-containing protein 6 (ACBD6) is ubiquitously expressed, plays a role in the acylation of lipids and proteins and regulates the N-myristoylation of proteins via N-myristoyltransferase enzymes (NMTs). However, its precise function in cells is still unclear, as is the consequence of ACBD6 defects on human pathophysiology. Using exome sequencing and extensive international data sharing efforts, we identified 45 affected individuals from 28 unrelated families (consanguinity 93%) with bi-allelic pathogenic, predominantly loss-of-function (18/20) variants in ACBD6. We generated zebrafish and Xenopus tropicalis acbd6 knockouts by CRISPR/Cas9 and characterized the role of ACBD6 on protein N-myristoylation with myristic acid alkyne (YnMyr) chemical proteomics in the model organisms and human cells, with the latter also being subjected further to ACBD6 peroxisomal localization studies. The affected individuals (23 males and 22 females), aged 1-50 years, typically present with a complex and progressive disease involving moderate-to-severe global developmental delay/intellectual disability (100%) with significant expressive language impairment (98%), movement disorders (97%), facial dysmorphism (95%) and mild cerebellar ataxia (85%) associated with gait impairment (94%), limb spasticity/hypertonia (76%), oculomotor (71%) and behavioural abnormalities (65%), overweight (59%), microcephaly (39%) and epilepsy (33%). The most conspicuous and common movement disorder was dystonia (94%), frequently leading to early-onset progressive postural deformities (97%), limb dystonia (55%) and cervical dystonia (31%). A jerky tremor in the upper limbs (63%), a mild head tremor (59%), parkinsonism/hypokinesia developing with advancing age (32%) and simple motor and vocal tics were among other frequent movement disorders. Midline brain malformations including corpus callosum abnormalities (70%), hypoplasia/agenesis of the anterior commissure (66%), short midbrain and small inferior cerebellar vermis (38% each) as well as hypertrophy of the clava (24%) were common neuroimaging findings. Acbd6-deficient zebrafish and Xenopus models effectively recapitulated many clinical phenotypes reported in patients including movement disorders, progressive neuromotor impairment, seizures, microcephaly, craniofacial dysmorphism and midbrain defects accompanied by developmental delay with increased mortality over time. Unlike ACBD5, ACBD6 did not show a peroxisomal localization and ACBD6-deficiency was not associated with altered peroxisomal parameters in patient fibroblasts. Significant differences in YnMyr-labelling were observed for 68 co- and 18 post-translationally N-myristoylated proteins in patient-derived fibroblasts. N-myristoylation was similarly affected in acbd6-deficient zebrafish and X. tropicalis models, including Fus, Marcks and Chchd-related proteins implicated in neurological diseases. The present study provides evidence that bi-allelic pathogenic variants in ACBD6 lead to a distinct neurodevelopmental syndrome accompanied by complex and progressive cognitive and movement disorders.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Trastornos del Movimiento , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Animales , Femenino , Humanos , Masculino , Transportadoras de Casetes de Unión a ATP , Discapacidad Intelectual/genética , Trastornos del Movimiento/genética , Malformaciones del Sistema Nervioso/genética , Trastornos del Neurodesarrollo/genética , Temblor , Pez Cebra , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad
14.
In Vivo ; 38(1): 107-113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38148048

RESUMEN

BACKGROUND/AIM: Bone resolution due to tumor invasion often occurs on the surface of the jaw and is important for clinical prognosis. Although cytokines, such as TNF-α are known to impair osteoblasts, the underlying mechanism remains unclear. Protein myristoylation, a post-translational modification, plays an important role in the development of immune responses and cancerization of cells. A clear understanding of the mechanisms underlying this involvement will provide insights into molecular-targeted therapies. N-myristoyltransferase1 (NMT1), a specific enzyme involved in myristoylation, is expressed in cancer cells and in other normal cells, suggesting that changes in myristoylation may result from the regulation of NMT1 in cancer cells. MATERIALS AND METHODS: Using newly emerging state-of-the-art techniques such as the Click-it assay, RNA interference, mass spectrometry, immunoprecipitation, immunocytochemistry, and western blotting, the expression of myristoylated proteins and the role of TNF-α stimulation on NMT1 and Sorbs2 binding were evaluated in a murine osteoblastic cell line (MC3T3-E1). RESULTS: The expression of myristoylated proteins was detected; however, TNF-α stimulation resulted in their inhibition in MC3T3-E1 cells. The expression of NMT1 also increased. Immunoprecipitation and mass spectrometry identified Sorbs2 as a novel binding protein of NMT1, which upon TNF-α stimulation, inhibited myristoylation. CONCLUSION: The binding between NMT1 and Sorbs2 can regulate myristoylation, and NMT1 can be considered as a potential target molecule for tumor invasion.


Asunto(s)
Neoplasias , Factor de Necrosis Tumoral alfa , Humanos , Animales , Ratones , Factor de Necrosis Tumoral alfa/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Ácido Mirístico/metabolismo , Osteoblastos/metabolismo , Proteínas de Unión al ARN , Proteínas Adaptadoras Transductoras de Señales/metabolismo
15.
Front Oncol ; 13: 1229747, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074687

RESUMEN

Introduction: The use of microorganisms as drug delivery systems to treat cancer has expanded recently, including FDA approval of certain viruses as oncolytics. Microorganisms have several unique benefits compared to traditional pharmacologic agents including dose independence, the ability to produce therapeutic proteins locally within the tumor, and simplicity of administration. However, current microbial delivery systems such as AAV9 and herpes virus have limited cassette sizes, minimal cancer cell selectivity, and low innate cytotoxicity. To address these issues, we sought to generate a strain of Shigella flexneri to selectively internalize into glioblastoma (GBM) brain tumor cells as an initial step to generating a bacterial-based drug delivery system. Methods: We generated S. flexneri that selectively internalize into GBM cells using iterative co-cultured assays. Results: After 50 rounds of co-culture, the new strain infected 95 percent of GBM cells in 2 hours. GBM-infecting Shigella demonstrate a 124-fold preference for internalizing in nine different GBM cell lines compared to Normal Astrocytes (NA) controls. Additionally, we developed an in-cell western to identify GBM-infecting Shigella clones that preferentially internalize in patient samples without iterative co-culture. Finally, we demonstrate internalization into GBM cells is mediated via a factor modified by myristoylation. Discussion: In conclusion, here we present a novel bacterial platform that preferentially internalizes in brain tumor cells. This system provides numerous potential benefits over current interventions and other microbial strategies for treating brain tumors.

17.
JACC Basic Transl Sci ; 8(10): 1263-1282, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38094695

RESUMEN

Protein diversity can increase via N-myristoylation, adding myristic acid to an N-terminal glycine residue. In a murine model of pressure overload, knockdown of cardiac N-myristoyltransferase 2 (NMT2) by adeno-associated virus 9 exacerbated cardiac dysfunction, remodeling, and failure. Click chemistry-based quantitative chemical proteomics identified substrate proteins of N-myristoylation in cardiac myocytes. N-myristoylation of MARCKS regulated angiotensin II-induced cardiac pathological hypertrophy by preventing activations of Ca2+/calmodulin-dependent protein kinase II and histone deacetylase 4 and histone acetylation. Gene transfer of NMT2 to the heart reduced cardiac dysfunction and failure, suggesting targeting N-myristoylation through NMT2 could be a potential therapeutic approach for preventing cardiac remodeling and heart failure.

18.
Mol Cell Proteomics ; 22(12): 100677, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37949301

RESUMEN

Proteins can be modified by lipids in various ways, for example, by myristoylation, palmitoylation, farnesylation, and geranylgeranylation-these processes are collectively referred to as lipidation. Current chemical proteomics using alkyne lipids has enabled the identification of lipidated protein candidates but does not identify endogenous lipidation sites and is not readily applicable to in vivo systems. Here, we introduce a proteomic methodology for global analysis of endogenous protein N-terminal myristoylation sites that combines liquid-liquid extraction of hydrophobic lipidated peptides with liquid chromatography-tandem mass spectrometry using a gradient program of acetonitrile in the high concentration range. We applied this method to explore myristoylation sites in HeLa cells and identified a total of 75 protein N-terminal myristoylation sites, which is more than the number of high-confidence myristoylated proteins identified by myristic acid analog-based chemical proteomics. Isolation of myristoylated peptides from HeLa digests prepared with different proteases enabled the identification of different myristoylated sites, extending the coverage of N-myristoylome. Finally, we analyzed in vivo myristoylation sites in mouse tissues and found that the lipidation profile is tissue-specific. This simple method (not requiring chemical labeling or affinity purification) should be a promising tool for global profiling of protein N-terminal myristoylation.


Asunto(s)
Proteínas , Proteómica , Humanos , Animales , Ratones , Ácido Mirístico/química , Ácido Mirístico/metabolismo , Células HeLa , Proteínas/metabolismo , Péptidos/metabolismo , Extracción Líquido-Líquido , Procesamiento Proteico-Postraduccional
20.
Plant Physiol Biochem ; 203: 108003, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37717348

RESUMEN

Plasma membrane-associated Cation-binding Protein 1 (PCaP1) belongs to the plant-unique DREPP protein family with largely unknown biological functions but ascertained roles in plant development and calcium (Ca2+) signaling. PCaP1 is anchored to the plasma membrane via N-myristoylation and a polybasic cluster, and its N-terminal region can bind Ca2+/calmodulin (CaM). However, the molecular determinants of PCaP1-Ca2+-CaM interaction and the functional impact of myristoylation in the complex formation and Ca2+ sensitivity of CaM remained to be elucidated. Herein, we investigated the direct interaction between Arabidopsis PCaP1 (AtPCaP1) and CaM1 (AtCaM1) using both myristoylated and non-myristoylated peptides corresponding to the N-terminal region of AtPCaP1. ITC analysis showed that AtCaM1 forms a high affinity 1:1 complex with AtPCaP1 peptides and the interaction is strictly Ca2+-dependent. Spectroscopic and kinetic Ca2+ binding studies showed that the myristoylated peptide dramatically increased the Ca2+-binding affinity of AtCaM1 and slowed the Ca2+ dissociation rates from both the C- and N-lobes, thus suggesting that the myristoylation modulates the mechanism of AtPCaP1 recognition by AtCaM1. Furthermore, NMR and CD spectroscopy revealed that the structure of both the N- and C-lobes of Ca2+-AtCaM1 changes markedly in the presence of the myristoylated AtPCaP1 peptide, which assumes a helical structure in the final complex. Overall, our results indicate that AtPCaP1 biological function is strictly related to the presence of multiple ligands, i.e., the myristoyl moiety, Ca2+ ions and AtCaM1 and only a full characterization of their equilibria will allow for a complete molecular understanding of the putative role of PCaP1 as signal protein.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA