Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbiology (Reading) ; 170(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39073411

RESUMEN

Mucormycosis is an emerging and deadly invasive fungal infection caused by fungi belonging to the Mucorales order. We investigated the myosin superfamily, which encompasses diverse actin-based motor proteins with various cellular functions. Specifically, the role of the Myo5B (ID 179665) protein from the myosin class V family in Mucor lusitanicus was explored by generating silencing phenotypes and null mutants corresponding to the myo5B gene. Silencing fungal transformants exhibited a markedly reduced growth rate and a nearly complete absence of sporulation compared to the wild-type strain. The myo5BΔ null mutant strain displayed atypical characteristics, including abnormally short septa and inflated hyphae. Notably, there were a majority of small yeast-like cells instead of filamentous hyphae in the mutant. These yeast-like cells cannot germinate normally, resulting in a loss of polarity. In vivo virulence assays conducted in the Galleria mellonella invertebrate model revealed that the myo5BΔ mutant strain was avirulent. These findings shed light on the crucial contributions of the Myo5B protein to the dimorphism and pathogenicity of M. lusitanicus. Therefore, the myosin V family is a potential target for future therapeutic interventions aimed at treating mucormycosis.


Asunto(s)
Proteínas Fúngicas , Hifa , Mucor , Hifa/crecimiento & desarrollo , Hifa/genética , Mucor/genética , Mucor/patogenicidad , Mucor/crecimiento & desarrollo , Virulencia , Animales , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Mucormicosis/microbiología , Mariposas Nocturnas/microbiología , Humanos , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/genética
2.
Biosystems ; 237: 105139, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336223

RESUMEN

Depending on the chemical energy from ATP hydrolysis, myosin V can drive the multistep and continuous coupled cycling process to transport cellular cargo to targeted regions. However, it is still obscure how the molecular memory induced by the multistep coupled transported process could regulate the dynamic behavior of the motor state of myosin V. Here, we propose a novel non-Markovian polymorphic mechanochemical model to investigate the effect of the molecular memory on the mechanic of noise attenuation of myosin V system. We first define an effective transition rate for a multistep coupled reaction process which is the function of memory and system states to transform equivalently the non-Markovian process into the classical Markov process. By noise decomposition technology, it is observed that both the intrinsic and extrinsic noises of the ADP-myosin V bound state (AM ⋅ ADP) exhibit a monotonically decreasing trend with lengthening the molecular memory. Molecular memory as a regulation factor can amplify the contribution of intrinsic noise to the overall noise while reducing the influence of extrinsic noise on the AM ⋅ ADP. Moreover, the modulation of molecular memory could induce stochastic focusing. These results indicate that the role of molecular memory in the myosin V state transition can not only offer a handle to maintain the robustness of the motion system but also serve as a paradigm for studying more complex molecular motors.


Asunto(s)
Miosina Tipo V , Miosina Tipo V/química , Miosina Tipo V/metabolismo , Comunicación Celular , Adenosina Trifosfato/metabolismo , Actinas/química
3.
Dev Cell ; 58(10): 847-865.e10, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37098350

RESUMEN

Nuclear envelope (NE) assembly defects cause chromosome fragmentation, cancer, and aging. However, major questions about the mechanism of NE assembly and its relationship to nuclear pathology are unresolved. In particular, how cells efficiently assemble the NE starting from vastly different, cell type-specific endoplasmic reticulum (ER) morphologies is unclear. Here, we identify a NE assembly mechanism, "membrane infiltration," that defines one end of a continuum with another NE assembly mechanism, "lateral sheet expansion," in human cells. Membrane infiltration involves the recruitment of ER tubules or small sheets to the chromatin surface by mitotic actin filaments. Lateral sheet expansion involves actin-independent envelopment of peripheral chromatin by large ER sheets that then extend over chromatin within the spindle. We propose a "tubule-sheet continuum" model that explains the efficient NE assembly from any starting ER morphology, the cell type-specific patterns of nuclear pore complex (NPC) assembly, and the obligatory NPC assembly defect of micronuclei.


Asunto(s)
Cromatina , Membrana Nuclear , Humanos , Citoesqueleto de Actina , Actinas , Envejecimiento
4.
Elife ; 112022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36331188

RESUMEN

Most of the components in the yeast secretory pathway have been studied, yet a high-resolution temporal timeline of their participation is lacking. Here, we define the order of acquisition, lifetime, and release of critical components involved in late secretion from the Golgi to the plasma membrane. Of particular interest is the timing of the many reported effectors of the secretory vesicle Rab protein Sec4, including the myosin-V Myo2, the exocyst complex, the lgl homolog Sro7, and the small yeast-specific protein Mso1. At the trans-Golgi network (TGN) Sec4's GEF, Sec2, is recruited to Ypt31-positive compartments, quickly followed by Sec4 and Myo2 and vesicle formation. While transported to the bud tip, the entire exocyst complex, including Sec3, is assembled on to the vesicle. Before fusion, vesicles tether for 5 s, during which the vesicle retains the exocyst complex and stimulates lateral recruitment of Rho3 on the plasma membrane. Sec2 and Myo2 are rapidly lost, followed by recruitment of cytosolic Sro7, and finally the SM protein Sec1, which appears for just 2 s prior to fusion. Perturbation experiments reveal an ordered and robust series of events during tethering that provide insights into the function of Sec4 and effector exchange.


Asunto(s)
Membrana Celular , Aparato de Golgi , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Membrana Celular/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vías Secretoras , Vesículas Secretoras/metabolismo , Aparato de Golgi/metabolismo
5.
Curr Biol ; 32(21): 4752-4761.e10, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36202103

RESUMEN

Secretory vesicle clusters transported on actin filaments by myosin V motors for local secretion underlie various cellular processes, such as neurotransmitter release at neuronal synapses,1 hyphal steering in filamentous fungi,2,3 and local cell wall digestion preceding the fusion of yeast gametes.4 During fission yeast Schizosaccharomyces pombe gamete fusion, the actin fusion focus assembled by the formin Fus1 concentrates secretory vesicles carrying cell wall digestive enzymes.5,6,7 The position and coalescence of the vesicle focus are controlled by local signaling and actin-binding proteins to prevent inappropriate cell wall digestion that would cause lysis,6,8,9,10 but the mechanisms of focusing have been elusive. Here, we show that the regulatory N terminus of Fus1 contains an intrinsically disordered region (IDR) that mediates Fus1 condensation in vivo and forms dense assemblies that exclude ribosomes. Fus1 lacking its IDR fails to concentrate in a tight focus and causes cell lysis during attempted cell fusion. Remarkably, the replacement of Fus1 IDR with a heterologous low-complexity region that forms molecular condensates fully restores Fus1 focusing and function. By contrast, the replacement of Fus1 IDR with a domain that forms more stable oligomers restores focusing but poorly supports cell fusion, suggesting that condensation is tuned to yield a selectively permeable structure. We propose that condensation of actin structures by an IDR may be a general mechanism for actin network organization and the selective local concentration of secretory vesicles.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Forminas , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Actinas/metabolismo , Fusión Celular , Schizosaccharomyces/metabolismo , Citoesqueleto de Actina/metabolismo
6.
Front Mol Biosci ; 9: 882989, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573735

RESUMEN

High-speed atomic force microscopy (HS-AFM) is a powerful technique to image the structural dynamics of biomolecules. We can obtain atomic-resolution structural information from the measured AFM image by superimposing a structural model on the image. We previously developed a flexible fitting molecular dynamics (MD) simulation method that allows for modest conformational changes when superimposed on an AFM image. In this study, for a molecular motor, myosin V (which changes its chemical state), we examined whether the conformationally distinct state in each HS-AFM image could be inferred via flexible fitting MD simulation. We first built models of myosin V bound to the actin filament in two conformational states, the "down-up" and "down-down" states. Then, for the previously obtained HS-AFM image of myosin bound to the actin filament, we performed flexible-fitting MD simulations using the two states. By comparing the fitting results, we inferred the conformational and chemical states from the AFM image.

7.
Traffic ; 23(7): 374-390, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35575181

RESUMEN

E-cadherin has a fundamental role in epithelial tissues by providing cell-cell adhesion. Polarised E-cadherin exocytosis to the lateral plasma membrane is central for cell polarity and epithelial homeostasis. Loss of E-cadherin secretion compromises tissue integrity and is a prerequisite for metastasis. Despite this pivotal role of E-cadherin secretion, the transport mechanism is still unknown. Here we identify Myosin V as the motor for E-cadherin secretion. Our data reveal that Myosin V and F-actin are required for the formation of a continuous apicolateral E-cadherin belt, the zonula adherens. We show by live imaging how Myosin V transports E-cadherin vesicles to the plasma membrane, and distinguish two distinct transport tracks: an apical actin network leading to the zonula adherens and parallel actin bundles leading to the basal-most region of the lateral membrane. E-cadherin secretion starts in endosomes, where Rab11 and Sec15 recruit Myosin V for transport to the zonula adherens. We also shed light on the endosomal sorting of E-cadherin by showing how Rab7 and Snx16 cooperate in moving E-cadherin into the Rab11 compartment. Thus, our data help to understand how polarised E-cadherin secretion maintains epithelial architecture and prevents metastasis.


Asunto(s)
Cadherinas/metabolismo , Miosina Tipo V/metabolismo , Actinas/metabolismo , Uniones Adherentes/metabolismo , Animales , Adhesión Celular , Endosomas/metabolismo , Exocitosis , Humanos , Metástasis de la Neoplasia/prevención & control
8.
Methods Mol Biol ; 2431: 239-247, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35412280

RESUMEN

Eukaryotic cells use microtubule-based vesicle transport to exchange molecules between compartments. Kinesin family members mediate all microtubule plus end-directed vesicle transport. Of the 45 kinesins expressed in humans, some 20 mediate microtubule plus-end directed vesicle transport. Here we describe a technique to visualize vesicle-bound kinesins in cultured hippocampal neurons. The method involves the expression of the vesicle-binding tail domain while minimizing the cytoplasmic pool. Using this approach drastically improves vesicle labeling compared to full-length kinesins. This tool is useful for systematically comparing the localization of different kinesins in the same cell type and for identifying cargo proteins that reside in vesicles moved by a specific kinesin family member. While we describe the assay in cultured hippocampal neurons, we expect it to be easily transferable to other eukaryotic cell types.


Asunto(s)
Cinesinas , Neuronas , Vesículas Citoplasmáticas/metabolismo , Hipocampo/metabolismo , Humanos , Cinesinas/metabolismo , Microscopía Fluorescente/métodos , Microtúbulos/metabolismo , Neuronas/metabolismo , Orgánulos/metabolismo
9.
Curr Genet ; 67(6): 865-869, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34110447

RESUMEN

A major question in cell biology is, how are organelles and macromolecular machines moved within a cell? The delivery of cargoes to the right place at the right time within a cell is critical to cellular health. Failure to do so is often catastrophic for animal physiology and results in diseases of the gut, brain, and skin. In budding yeast, a myosin V motor, Myo2, moves cellular materials from the mother cell into the growing daughter bud. Myo2-based transport ensures that cellular contents are shared during cell division. During transport, Myo2 is often linked to its cargo via cargo-specific adaptor proteins. This simple organism thus serves as a powerful tool to study how myosin V moves cargo, such as organelles. Some critical questions include how myosin V moves along the actin cytoskeleton, or how myosin V attaches to cargo in the mother. Other critical questions include how the cargo is released from myosin V when it reaches its final destination in the bud. Here, we review the mechanisms that regulate the vacuole-specific adaptor protein, Vac17, to ensure that Myo2 delivers the vacuole to the bud and releases it at the right place and the right time. Recent studies have revealed that Vac17 is regulated by ubiquitylation and phosphorylation events that coordinate its degradation and the detachment of the vacuole from Myo2. Thus, multiple post-translational modifications tightly coordinate cargo delivery with cellular events. It is tempting to speculate that similar mechanisms regulate other cargoes and molecular motors.


Asunto(s)
Miosina Tipo V/metabolismo , Vacuolas/metabolismo , Levaduras/fisiología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Fúngicas/metabolismo , Miosina Tipo V/genética , Fosforilación , Transporte de Proteínas , Proteolisis , Ubiquitinación
10.
Front Synaptic Neurosci ; 13: 650334, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935678

RESUMEN

Synaptic active zone (AZ) contains multiple specialized release sites for vesicle fusion. The utilization of release sites is regulated to determine spatiotemporal organization of the two main forms of synchronous release, uni-vesicular (UVR) and multi-vesicular (MVR). We previously found that the vesicle-associated molecular motor myosin V regulates temporal utilization of release sites by controlling vesicle anchoring at release sites in an activity-dependent manner. Here we show that acute inhibition of myosin V shifts preferential location of vesicle docking away from AZ center toward periphery, and results in a corresponding spatial shift in utilization of release sites during UVR. Similarly, inhibition of myosin V also reduces preferential utilization of central release sites during MVR, leading to more spatially distributed and temporally uniform MVR that occurs farther away from the AZ center. Using a modeling approach, we provide a conceptual framework that unites spatial and temporal functions of myosin V in vesicle release by controlling the gradient of release site release probability across the AZ, which in turn determines the spatiotemporal organization of both UVR and MVR. Thus myosin V regulates both temporal and spatial utilization of release sites during two main forms of synchronous release.

11.
Adv Biol Regul ; 79: 100787, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33541831

RESUMEN

A major question in cell biology is, how are organelles and large macromolecular complexes transported within a cell? Myosin V molecular motors play critical roles in the distribution of organelles, vesicles, and mRNA. Mis-localization of organelles that depend on myosin V motors underlie diseases in the skin, gut, and brain. Thus, the delivery of organelles to their proper destination is important for animal physiology and cellular function. Cargoes attach to myosin V motors via cargo specific adaptor proteins, which transiently bridge motors to their cargoes. Regulation of these adaptor proteins play key roles in the regulation of cargo transport. Emerging studies reveal that cargo adaptors play additional essential roles in the activation of myosin V, and the regulation of actin filaments. Here, we review how motor-adaptor interactions are controlled to regulate the proper loading and unloading of cargoes, as well as roles of adaptor proteins in the regulation of myosin V activity and the dynamics of actin filaments.


Asunto(s)
Miosina Tipo V/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animales , Humanos , Miosina Tipo V/genética , Orgánulos/genética , Orgánulos/metabolismo , Unión Proteica , Transporte de Proteínas
12.
Curr Biol ; 30(22): 4399-4412.e7, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32916113

RESUMEN

Cellular function requires molecular motors to transport cargoes to their correct intracellular locations. The regulated assembly and disassembly of motor-adaptor complexes ensures that cargoes are loaded at their origin and unloaded at their destination. In Saccharomyces cerevisiae, early in the cell cycle, a portion of the vacuole is transported into the emerging bud. This transport requires a myosin V motor, Myo2, which attaches to the vacuole via Vac17, the vacuole-specific adaptor protein. Vac17 also binds to Vac8, a vacuolar membrane protein. Once the vacuole is brought to the bud cortex via the Myo2-Vac17-Vac8 complex, Vac17 is degraded and the vacuole is released from Myo2. However, mechanisms governing dissociation of the Myo2-Vac17-Vac8 complex are not well understood. Ubiquitylation of the Vac17 adaptor at the bud cortex provides spatial regulation of vacuole release. Here, we report that ubiquitylation alone is not sufficient for cargo release. We find that a parallel pathway, which initiates on the vacuole, converges with ubiquitylation to release the vacuole from Myo2. Specifically, we show that Yck3 and Vps41, independent of their known roles in homotypic fusion and protein sorting (HOPS)-mediated vesicle tethering, are required for the phosphorylation of Vac17 in its Myo2 binding domain. These phosphorylation events allow ubiquitylated Vac17 to be released from Myo2 and Vac8. Our data suggest that Vps41 is regulating the phosphorylation of Vac17 via Yck3, a casein kinase I, and likely another unknown kinase. That parallel pathways are required to release the vacuole from Myo2 suggests that multiple signals are integrated to terminate organelle inheritance.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Fosforilación/fisiología , Unión Proteica , Receptores de Superficie Celular/metabolismo , Saccharomyces cerevisiae , Ubiquitinación/fisiología
13.
Traffic ; 21(11): 689-701, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32959500

RESUMEN

Neurons are specialized cells with a polarized geometry and several distinct subdomains that require specific complements of proteins. Delivery of transmembrane proteins requires vesicle transport, which is mediated by molecular motor proteins. The myosin V family of motor proteins mediates transport to the barbed end of actin filaments, and little is known about the vesicles bound by myosin V in neurons. We developed a novel strategy to visualize myosin V-labeled vesicles in cultured hippocampal neurons and systematically characterized the vesicle populations labeled by myosin Va and Vb. We find that both myosins bind vesicles that are polarized to the somatodendritic domain where they undergo bidirectional long-range transport. A series of two-color imaging experiments showed that myosin V specifically colocalized with two different vesicle populations: vesicles labeled with the transferrin receptor and vesicles labeled by low-density lipoprotein receptor. Finally, coexpression with Kinesin-3 family members found that myosin V binds vesicles concurrently with KIF13A or KIF13B, supporting the hypothesis that coregulation of kinesins and myosin V on vesicles is likely to play an important role in neuronal vesicle transport. We anticipate that this new assay will be applicable in a broad range of cell types to determine the function of myosin V motor proteins.


Asunto(s)
Miosina Tipo V , Citoesqueleto de Actina , Cinesinas , Miosinas , Neuronas , Orgánulos
14.
J R Soc Interface ; 17(165): 20200029, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32259459

RESUMEN

An analytical theory is presented for the dynamics of myosin-V molecular motor, where both ATP-dependent and ATP-independent steppings are taken into account. Specifically, the dependences of velocity, run length and unbinding rate upon both forward and backward loads and ATP concentration are studied, explaining quantitatively the diverse available single-molecule data and providing predicted results. The results show that the unbinding rate increases with the increase of ATP concentration and levels off at both low and high ATP concentrations. More interestingly, at an ATP concentration that is not very low, the unbinding rate exhibits characteristics of a catch-slip bond under backward load, with the unbinding rate decreasing rapidly with the increase of the backward load in the range smaller than about 2.5 pN and then increasing slowly with the further increase of the backward load. By contrast, under forward load the unbinding rate exhibits a slip-bond characteristic.


Asunto(s)
Actinas , Adenosina Trifosfato
15.
Elife ; 92020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31939739

RESUMEN

The molecular motor myosin V transports cargo by stepping on actin filaments, executing a random diffusive search for actin binding sites at each step. A recent experiment suggests that the joint between the myosin lever arms may not rotate freely, as assumed in earlier studies, but instead has a preferred angle giving rise to structurally constrained diffusion. We address this controversy through comprehensive analytical and numerical modeling of myosin V diffusion and stepping. When the joint is constrained, our model reproduces the experimentally observed diffusion, allowing us to estimate bounds on the constraint energy. We also test the consistency between the constrained diffusion model and previous measurements of step size distributions and the load dependence of various observable quantities. The theory lets us address the biological significance of the constrained joint and provides testable predictions of new myosin behaviors, including the stomp distribution and the run length under off-axis force.


Asunto(s)
Miosina Tipo V , Actinas/química , Actinas/metabolismo , Difusión , Cinética , Modelos Moleculares , Miosina Tipo V/química , Miosina Tipo V/metabolismo , Miosina Tipo V/fisiología , Unión Proteica , Conformación Proteica
16.
J Cell Sci ; 133(4)2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-31964706

RESUMEN

The actin cytoskeleton and active membrane trafficking machinery are essential for polarized cell growth. To understand the interactions between myosin XI, vesicles and actin filaments in vivo, we performed fluorescence recovery after photobleaching and showed that the dynamics of myosin XIa at the tip of the spreading earthmoss Physcomitrella patens caulonemal cells are actin-dependent and that 50% of myosin XI is bound to vesicles. To obtain single-particle information, we used variable-angle epifluorescence microscopy in protoplasts to demonstrate that protein myosin XIa and VAMP72-labeled vesicles localize in time and space over periods lasting only a few seconds. By tracking data with Hidden Markov modeling, we showed that myosin XIa and VAMP72-labeled vesicles exhibit short runs of actin-dependent directed transport. We also found that the interaction of myosin XI with vesicles is short-lived. Together, this vesicle-bound fraction, fast off-rate and short average distance traveled seem be crucial for the dynamic oscillations observed at the tip, and might be vital for regulation and recycling of the exocytosis machinery, while simultaneously promoting vesicle focusing and vesicle secretion at the tip, necessary for cell wall expansion.


Asunto(s)
Actinas , Bryopsida , Citoesqueleto de Actina , Actinas/genética , Bryopsida/genética , Exocitosis , Miosinas/genética
17.
J Proteomics ; 212: 103549, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31698103

RESUMEN

Vertebrates usually have three class V myosin paralogues (MyoV) to control membrane trafficking in the actin-rich cell cortex, but their functional overlapping or differentiation through cargoes selectivity is yet only partially understood. In this work, we reveal that the globular tail domain of MyoVc binds to the active form of small GTPase Rab3A with nanomolar affinity, a feature shared with MyoVa but not with MyoVb. Using molecular docking analyses guided by chemical cross-linking restraints, we propose a model to explain how Rab3A selectively recognizes MyoVa and MyoVc via a distinct binding site from that used by Rab11A. The MyoVa/c binding interface involves multiple residues from both lobules (I and II) and the short helix at the α2-α3 link region, which is conserved between MyoVa and MyoVc, but not in MyoVb. This motif is also responsible for the selective binding of RILPL2 by MyoVa and potentially MyoVc. Together, these findings support the selective recruitment of MyoVa and MyoVc to exocytic pathways via Rab3A and expand our knowledge about the functional evolution of class V myosins. SIGNIFICANCE: Hormone secretion, neurotransmitter release, and cytoplasm membrane recycling are examples of processes that rely on the interaction of molecular motors and Rab GTPases to regulate the intracellular trafficking and tethering of vesicles. Defects in these proteins may cause neurological impairment, immunodeficiency, and other severe disorders, being fatal in some cases. Despite their crucial roles, little is known about how these molecular motors are selectively recruited by specific members of the large family of Rab GTPases. In this study, we unveil the interaction between the actin-based molecular motor Myosin Vc and the small GTPase Rab3A, a key coordinator of vesicle trafficking and exocytosis in mammalian cells. Moreover, we propose a model for their recognition and demonstrate that Rab3A specifically binds to the globular tail of Myosins Va and Vc, but not of Myosin Vb, advancing our knowledge about the molecular basis for the selective recruitment of class V myosins by Rab GTPases.


Asunto(s)
Exocitosis , Miosina Tipo V/química , Proteína de Unión al GTP rab3A/química , Actinas/metabolismo , Animales , Transporte Biológico , Línea Celular , Haplorrinos , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular/métodos , Miosina Tipo V/aislamiento & purificación , Miosina Tipo V/metabolismo , Unión Proteica , Homología de Secuencia de Aminoácido , Proteína de Unión al GTP rab3A/aislamiento & purificación , Proteína de Unión al GTP rab3A/metabolismo
18.
Neural Regen Res ; 14(4): 566-569, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30632490

RESUMEN

Membrane trafficking processes are presumably vital for axonal regeneration after injury, but mechanistic understanding in this regard has been sparse. A recent loss-of-function screen had been carried out for factors important for axonal regeneration by cultured cortical neurons and the results suggested that the activity of a number of Rab GTPases might act to restrict axonal regeneration. A loss of Rab27b, in particular, is shown to enhance axonal regeneration in vitro, as well as in C. elegans and mouse central nervous system injury models in vivo. Possible mechanisms underlying this new finding, which has important academic and translational implication, are discussed.

19.
Small GTPases ; 10(2): 111-121, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-28394692

RESUMEN

Spir actin nucleators and myosin V motor proteins were recently discovered to coexist in a protein complex. The direct interaction allows the coordinated activation of actin motor proteins and actin filament track generation at vesicle membranes. By now the cooperation of myosin V (MyoV) motors and Spir actin nucleation function has only been shown in the exocytic transport of Rab11 vesicles in metaphase mouse oocytes. Next to Rab11, myosin V motors however interact with a variety of Rab GTPases including Rab3, Rab8 and Rab10. As a common theme most of the MyoV interacting Rab GTPases function at different steps along the exocytic transport routes. We here summarize the different transport functions of class V myosins and provide as proof of principle data showing a colocalization of Spir actin nucleators and MyoVa at Rab8a vesicles. This suggests that besides Rab11/MyoV transport also the Rab8/MyoV and possibly other MyoV transport processes recruit Spir actin filament nucleation function.


Asunto(s)
Actinas/metabolismo , Miosina Tipo V/metabolismo , Transporte Biológico , Humanos , Proteínas de Unión al GTP rho/metabolismo
20.
Elife ; 72018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30320552

RESUMEN

Synaptic vesicle fusion occurs at specialized release sites at the active zone. How refilling of release sites with new vesicles is regulated in central synapses remains poorly understood. Using nanoscale-resolution detection of individual release events in rat hippocampal synapses we found that inhibition of myosin V, the predominant vesicle-associated motor, strongly reduced refilling of the release sites during repetitive stimulation. Single-vesicle tracking revealed that recycling vesicles continuously shuttle between a plasma membrane pool and an inner pool. Vesicle retention at the membrane pool was regulated by neural activity in a myosin V dependent manner. Ultrastructural measurements of vesicle occupancy at the plasma membrane together with analyses of single-vesicle trajectories during vesicle shuttling between the pools suggest that myosin V acts as a vesicle tether at the plasma membrane, rather than a motor transporting vesicles to the release sites, or directly regulating vesicle exocytosis.


Asunto(s)
Membrana Celular/metabolismo , Miosina Tipo V/metabolismo , Neurotransmisores/metabolismo , Sinapsis/metabolismo , Animales , Hipocampo/metabolismo , Modelos Biológicos , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Transporte de Proteínas , Ratas , Vesículas Sinápticas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA