Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 474: 134620, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38820753

RESUMEN

Plants are widely existing in the environments and have been considered as potential sentinel species of toxic chemicals' exposure. In this study, the deadly toxic chemicals of three nitrogen mustards (NMs, including NH1, NH2 and NH3) were selected as the investigated targets. First, the reactivities of common endogenous plant components with NMs were examined in vitro. Then, the model plant Nicotiana benthamiana Domin was exposed to NMs. Three γ-aminobutyric acid-nitrogen mustard adducts (GABA-NMs) were identified in the living plant by high resolution mass spectrometry and comparison with the synthesized references. A sensitive detection method with the limits of quantification of 0.0500 ng mL-1 was developed using ultrahigh performance liquid chromatography-triple quadrupole mass spectrometry. The GABA-NMs could be detected after 120 days of the exposure and even in the dead leaves without obvious decrease. Furthermore, 20 different plant species grown in diverse climate zones were exposed to HN1, and the adduct of GABA-HN1 was identified in all the leaves. The results showed the good universality and specificity of GABA-NMs as plant biomarkers for NMs exposure. This work provides a new approach for the pollution investigation of toxic chemicals through analysing biomarkers in plant materials.


Asunto(s)
Biomarcadores , Espectrometría de Masas en Tándem , Ácido gamma-Aminobutírico , Ácido gamma-Aminobutírico/análisis , Ácido gamma-Aminobutírico/metabolismo , Biomarcadores/análisis , Cromatografía Líquida de Alta Presión , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Mecloretamina/análisis , Mecloretamina/toxicidad , Mecloretamina/química , Nicotiana/química , Plantas/química , Plantas/metabolismo , Límite de Detección , Cromatografía Líquida con Espectrometría de Masas
2.
Cells ; 12(23)2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38067156

RESUMEN

Caenorhabditis elegans (C. elegans) is gaining recognition and importance as an organismic model for toxicity testing in line with the 3Rs principle (replace, reduce, refine). In this study, we explored the use of C. elegans to examine the toxicities of alkylating sulphur mustard analogues, specifically the monofunctional agent 2-chloroethyl-ethyl sulphide (CEES) and the bifunctional, crosslinking agent mechlorethamine (HN2). We exposed wild-type worms at different life cycle stages (from larvae L1 to adulthood day 10) to CEES or HN2 and scored their viability 24 h later. The susceptibility of C. elegans to CEES and HN2 paralleled that of human cells, with HN2 exhibiting higher toxicity than CEES, reflected in LC50 values in the high µM to low mM range. Importantly, the effects were dependent on the worms' developmental stage as well as organismic age: the highest susceptibility was observed in L1, whereas the lowest was observed in L4 worms. In adult worms, susceptibility to alkylating agents increased with advanced age, especially to HN2. To examine reproductive effects, L4 worms were exposed to CEES and HN2, and both the offspring and the percentage of unhatched eggs were assessed. Moreover, germline apoptosis was assessed by using ced-1p::GFP (MD701) worms. In contrast to concentrations that elicited low toxicities to L4 worms, CEES and HN2 were highly toxic to germline cells, manifesting as increased germline apoptosis as well as reduced offspring number and percentage of eggs hatched. Again, HN2 exhibited stronger effects than CEES. Compound specificity was also evident in toxicities to dopaminergic neurons-HN2 exposure affected expression of dopamine transporter DAT-1 (strain BY200) at lower concentrations than CEES, suggesting a higher neurotoxic effect. Mechanistically, nicotinamide adenine dinucleotide (NAD+) has been linked to mustard agent toxicities. Therefore, the NAD+-dependent system was investigated in the response to CEES and HN2 treatment. Overall NAD+ levels in worm extracts were revealed to be largely resistant to mustard exposure except for high concentrations, which lowered the NAD+ levels in L4 worms 24 h post-treatment. Interestingly, however, mutant worms lacking components of NAD+-dependent pathways involved in genome maintenance, namely pme-2, parg-2, and sirt-2.1 showed a higher and compound-specific susceptibility, indicating an active role of NAD+ in genotoxic stress response. In conclusion, the present results demonstrate that C. elegans represents an attractive model to study the toxicology of alkylating agents, which supports its use in mechanistic as well as intervention studies with major strength in the possibility to analyze toxicities at different life cycle stages.


Asunto(s)
Alquilantes , Caenorhabditis elegans , Animales , Humanos , Alquilantes/toxicidad , NAD , Estadios del Ciclo de Vida
3.
Bioorg Chem ; 138: 106674, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37331169

RESUMEN

Nitrogen mustards (NMs) are an important class of chemotherapeutic drugs and have been widely employed for the treatment of various cancers. However, due to the high reactivity of nitrogen mustard, most NMs react with proteins and phospholipids within the cell membrane. Therefore, only a very small fraction of NMs can reach the reach nucleus, alkylating and cross-linking DNA. To efficiently penetrate the cell membrane barrier, the hybridization of NMs with a membranolytic agent may be an effective strategy. Herein, the chlorambucil (CLB, a kind of NM) hybrids were first designed by conjugation with membranolytic peptide LTX-315. However, although LTX-315 could help large amounts of CLB penetrate the cytomembrane and enter the cytoplasm, CLB still did not readily reach the nucleus. Our previous work demonstrated that the hybrid peptide NTP-385 obtained by covalent conjugation of rhodamine B with LTX-315 could accumulate in the nucleus. Hence, the NTP-385-CLB conjugate, named FXY-3, was then designed and systematically evaluated both in vitro and in vivo. FXY-3 displayed prominent localization in the cancer cell nucleus and induced severe DNA double-strand breaks (DSBs) to trigger cell apoptosis. Especially, compared with CLB and LTX-315, FXY-3 exhibited significantly increased in vitro cytotoxicity against a panel of cancer cell lines. Moreover, FXY-3 showed superior in vivo anticancer efficiency in the mouse cancer model. Collectively, this study established an effective strategy to increase the anticancer activity and the nuclear accumulation of NMs, which will provide a valuable reference for future nucleus-targeting modification of nitrogen mustards.


Asunto(s)
Neoplasias , Compuestos de Mostaza Nitrogenada , Animales , Ratones , Clorambucilo/farmacología , ADN/metabolismo , Nitrógeno , Compuestos de Mostaza Nitrogenada/farmacología , Péptidos/farmacología
4.
Pharmacol Ther ; 243: 108366, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36842616

RESUMEN

In this review we trace the passage of fundamental ideas through 20th century cancer research that began with observations on mustard gas toxicity in World War I. The transmutation of these ideas across scientific and national boundaries, was channeled from chemical carcinogenesis labs in London via Yale and Chicago, then ultimately to the pharmaceutical industry in Bielefeld, Germany. These first efforts to checkmate cancer with chemicals led eventually to the creation of one of the most successful groups of cancer chemotherapeutic drugs, the oxazaphosphorines, first cyclophosphamide (CP) in 1958 and soon thereafter its isomer ifosfamide (IFO). The giant contributions of Professor Sir Alexander Haddow, Dr. Alfred Z. Gilman & Dr. Louis S. Goodman, Dr. George Gomori and Dr. Norbert Brock step by step led to this breakthrough in cancer chemotherapy. A developing understanding of the metabolic disposition of ifosfamide directed efforts to ameliorate its side-effects, in particular, ifosfamide-induced encephalopathy (IIE). This has resulted in several candidates for the encephalopathic metabolite, including 2-chloroacetaldehyde, 2-chloroacetic acid, acrolein, 3-hydroxypropionic acid and S-carboxymethyl-L-cysteine. The pros and cons for each of these, together with other IFO metabolites, are discussed in detail. It is concluded that IFO produces encephalopathy in susceptible patients, but CP does not, by a "perfect storm," involving all of these five metabolites. Methylene blue (MB) administration appears to be generally effective in the prevention and treatment of IIE, in all probability by the inhibition of monoamine oxidase in brain potentiating serotonin levels that modulate the effects of IFO on GABAergic and glutamatergic systems. This review represents the authors' analysis of a large body of published research.


Asunto(s)
Antineoplásicos , Encefalopatías , Humanos , Ifosfamida/efectos adversos , Ifosfamida/metabolismo , Antineoplásicos/efectos adversos , Ciclofosfamida , Encefalopatías/inducido químicamente , Encefalopatías/tratamiento farmacológico , Azul de Metileno/efectos adversos
5.
Sci Total Environ ; 857(Pt 3): 159454, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36252658

RESUMEN

The present study assessed the ready biodegradability of the prodrug cyclophosphamide (CPA) and its stable human metabolites in the closed bottle test (CBT). The results of the CBT showed that only the main human metabolite, carboxyphosphamide (CXP), was biodegradable to a certain extent (23 ± 2.4 % ThODNH3). All other metabolites showed neither biodegradation under these conditions nor were any toxic effects on the inoculum observed. Yet, HRMSn results revealed partial primary elimination of all human metabolites and formation of 25 new transformation products. Abiotic degradation via SNi and SN2 reactions was proposed as the main degradation pathway during the CBT. The main degradation products were assigned as 3-(2-chloroethyl)oxazolidin-2-one (COAZ), cytotoxic N-2-chloroethylaziridine (CEZ) and nor­nitrogen mustard (NNM), an analogue of the chemical warfare agent HN2. While the acute ecotoxicity of the detected products is widely unknown, many have already been reported in medical literature to be either mutagenic, genotoxic, cytotoxic or carcinogenic and may therefore cause a greater risk than their precursors. QSAR models predicted that 16 of them are mutagenic and genotoxic, thus classifying the majority of the chemicals as potential environmental hazards. The central intermediates during the degradation process were proposed as CEZ and its corresponding aziridinium ion. However, other degradation products may occur depending on the type and strength of nucleophiles present in the matrices. Overall, the results demonstrated the importance to include human metabolites in the evaluation of the environmental fate of pharmaceuticals and their risk assessment especially when investigating prodrugs. The results underline the importance of identifying possible degradation products of metabolites, as they can be more toxic than related parent compounds and metabolites and can cause a greater risk to the environment and humans.


Asunto(s)
Antineoplásicos , Humanos , Ciclofosfamida/toxicidad , Ciclofosfamida/química , Biodegradación Ambiental
6.
Ecology ; 103(12): e3827, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35857374

RESUMEN

Species range sizes and realized niche breadths vary tremendously. Understanding the source of this variation has been a long-term aim in evolutionary ecology and is a major tool in efforts to ameliorate the impacts of changing climates on species distributions. Species ranges that span a large climatic envelope can be achieved by a collection of specialized genotypes locally adapted to a small range of conditions, by genotypes with stable fitness across variable environments, or a combination of these factors. We asked whether fitness expressed along a key niche axis, water availability, could explain a species' realized niche breadth, its geographic range and climate breadth, in 11 species from a clade of jewelflowers whose range sizes vary by two orders of magnitude. Specifically, we explored whether the range size of a species was related to the ability of genotypes (maternal families) to maintain fitness across a range of experimental water availabilities based on 30-year historical field precipitation regimes. We operationally characterized fitness homeostasis through the coefficient of variation in fitness of a genotype (family) across the experimental water gradient. We found that species with genotypes that had high fitness homeostasis, low variation in fitness over our treatments, had larger climatic niche breadth and geographic range in their field distributions. The result was robust to alternate measures of fitness homeostasis. Our results show that the fitness homeostasis of genotypes can be a major factor contributing to niche breadth and range size in this clade. Fitness homeostasis can buffer species from loss of genetic diversity and under changing climates, provides time for adaptation to future conditions.


Asunto(s)
Clima , Ecosistema , Humanos , Agua , Evolución Biológica , Homeostasis
7.
Molecules ; 26(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203347

RESUMEN

A series of new analogs of nitrogen mustards (4a-4h) containing the 1,3,5-triazine ring substituted with dipeptide residue were synthesized and evaluated for the inhibition of both acetylcholinesterase (AChE) and ß-secretase (BACE1) enzymes. The AChE inhibitory activity studies were carried out using Ellman's colorimetric method, and the BACE1 inhibitory activity studies were carried out using fluorescence resonance energy transfer (FRET). All compounds displayed considerable AChE and BACE1 inhibition. The most active against both AChE and BACE1 enzymes were compounds A and 4a, with an inhibitory concentration of AChE IC50 = 0.051 µM; 0.055 µM and BACE1 IC50 = 9.00 µM; 11.09 µM, respectively.


Asunto(s)
Acetilcolinesterasa/química , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Inhibidores de la Colinesterasa , Compuestos de Mostaza Nitrogenada , Péptidos , Triazinas , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/química , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/química , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Proteínas Ligadas a GPI/química , Humanos , Compuestos de Mostaza Nitrogenada/síntesis química , Compuestos de Mostaza Nitrogenada/química , Péptidos/síntesis química , Péptidos/química , Triazinas/síntesis química , Triazinas/química
8.
Artículo en Inglés | MEDLINE | ID: mdl-34052559

RESUMEN

Highly polar ethanolamines (EAs), excreted in urine, are hydrolysis products of nitrogen mustards (NMs), which are prohibited by the Chemical Weapons Convention (CWC). The methods established for biological matrices are essential for verification analysis of the CWC related chemicals. This paper describes a new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method developed for qualitative and quantitative analysis of EAs, N-ethyldiethanolamine (EDEA), N-methyldiethanolamine (MDEA) and triethanolamine (TEAOH) from urine samples. After optimization of sample preparation and chromatographic conditions, the method was fully validated. Silica solid-phase extraction (SPE) cartridges and a porous graphite carbon (PGC) column were selected for validation studies. The method is linear from 5 to 500, 0.5 to 250, and 0.5 to 500 ng/mL for TEAOH, EDEA, and MDEA, respectively. It is also precise and accurate. A minimum sample amount of 0.5 mL urine was used. The limit of quantification using this approach was 0.4, 5.5, and 6.3 ng/mL for MDEA, EDEA and TEAOH, respectively. The combination of the PGC column and high pH eluents in analysis retained and separated the studied EAs. Retention times were 2.11, 2.56 and 2.98 min for MDEA, EDEA and TEAOH, respectively. The method is applicable for verification analysis of the CWC.


Asunto(s)
Cromatografía Liquida/métodos , Etanolaminas , Compuestos de Mostaza Nitrogenada , Espectrometría de Masas en Tándem/métodos , Etanolaminas/metabolismo , Etanolaminas/orina , Femenino , Humanos , Hidrólisis , Modelos Lineales , Masculino , Compuestos de Mostaza Nitrogenada/metabolismo , Compuestos de Mostaza Nitrogenada/orina , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
9.
Biomedicines ; 9(5)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33926050

RESUMEN

New di-(ß-chloroethyl)-amides of some acids derived from 2-mercaptobenzoxazole were prepared by reaction of the corresponding pivalic mixed anhydrides with di-(ß-chloroethyl)-amine. A study regarding the optimization of the chemical reactions was made for the case of di-(ß-chloroethyl)-amines. The quantum chemical analysis by Spartan'14 was made in order to establish the most stable configuration of the ground electronic states for the obtained chemical structures and some physico-chemical parameters of N-mustards reported in this paper. Mercaptobenzoxazoles substituted in the side chain with the cytotoxic group show antitumor activity and they inhibit Ehrlich Ascites in an appreciable proportion compared to the drug I.O.B.-82, as our studies evidenced.

10.
Front Plant Sci ; 12: 637115, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33747016

RESUMEN

Morphotypes of Brassica oleracea are the result of a dynamic interaction between genes that regulate the transition between vegetative and reproductive stages and those that regulate leaf morphology and plant architecture. In kales, ornate leaves, extended vegetative phase, and nutritional quality are some of the characters potentially selected by humans during domestication. We used a combination of developmental studies and transcriptomics to understand the vegetative domestication syndrome of kale. To identify candidate genes that are responsible for the evolution of domestic kale, we searched for transcriptome-wide differences among three vegetative B. oleracea morphotypes. RNA-seq experiments were used to understand the global pattern of expressed genes during a mixture of stages at one time in kale, cabbage, and the rapid cycling kale line TO1000. We identified gene expression patterns that differ among morphotypes and estimate the contribution of morphotype-specific gene expression that sets kale apart (3958 differentially expressed genes). Differentially expressed genes that regulate the vegetative to reproductive transition were abundant in all morphotypes. Genes involved in leaf morphology, plant architecture, defense, and nutrition were differentially expressed in kale. This allowed us to identify a set of candidate genes we suggest may be important in the kale domestication syndrome. Understanding candidate genes responsible for kale domestication is of importance to ultimately improve Cole crop production.

11.
Artículo en Inglés | MEDLINE | ID: mdl-33264722

RESUMEN

At present, there is a real threat of chemical warfare agents being used in terrorist acts and military clashes. Sulfur and nitrogen mustards are blister agents with high lethality and rapid disruption of armed forces. These highly poisonous substances are hydrolyzed to the characteristic marker compounds when released into the environment. Analysis of environmental objects allows to establish the fact of alleged use of chemical warfare agents and to reveal their type. However, water and soil samples are not always reliable for retrospective analysis. The resulting chemical warfare agent markers may be washed out from the application site over time by groundwaters or atmospheric condensations. This study shows the potential for using plants as a convenient material for retrospective analysis. Garden cress (Lepidium sativum) was chosen as a model plant for this purpose, since it can be easily and quickly grown hydroponically. The plants were cultivated in the environment of the selected markers to study an accumulation of these compounds by the plants. An effective and fast method of homogenization with subsequent ultrasonic extraction was applied. The extracts were analyzed using a specially developed and validated HPLC-MS/MS approach. Separation of the hydrophilic markers was carried out on a reversed-phase column with a polar endcapping. Sensitive mass spectrometric detection was performed in the multiple reaction monitoring mode. Achieved limits of detection for most markers were in the range of 2-40 ng mL-1. It was discovered from the research that after the removal of markers from the growing medium the plants are able to store and concentrate these markers for at least 5 weeks, ensuring a high retrospectivity of the analysis. The obtained results indicate the perspective of using plants as additional objects of analysis during the investigation of incidents related to the use of chemical warfare agents. However, more complex plants and models should be studied in the future.


Asunto(s)
Sustancias para la Guerra Química , Cromatografía Líquida de Alta Presión/métodos , Lepidium sativum , Gas Mostaza , Espectrometría de Masas en Tándem/métodos , Sustancias para la Guerra Química/análisis , Sustancias para la Guerra Química/química , Sustancias para la Guerra Química/metabolismo , Hidrólisis , Lepidium sativum/química , Lepidium sativum/metabolismo , Límite de Detección , Modelos Lineales , Gas Mostaza/análisis , Gas Mostaza/química , Gas Mostaza/metabolismo , Reproducibilidad de los Resultados
12.
ChemMedChem ; 16(5): 860-868, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33200541

RESUMEN

Nitrogen mustards (NMs) are an old but still largely diffused class of anticancer drugs. However, spreading mechanisms of resistance undermine their efficacy and therapeutic applicability. To expand their antitumour value, we developed bis-3-chloropiperidines (B-CePs), a new class of mustard-based alkylating agent, and we recently reported the striking selectivity for BxPC-3 pancreatic tumour cells of B-CePs bearing aromatic moieties embedded in the linker. In this study, we demonstrate that such tropism is shared by bis-3-chloropiperidines bearing appended aromatic groups in flexible linkers, whereas esters substituted by aliphatic groups or by efficient DNA-interacting groups are potent but nonselective cytotoxic agents. Besides, we describe how the critical balance between water stability and DNA reactivity can affect the properties of bis-3-chloropiperidines. Together, these findings support the exploitation of B-CePs as potential antitumour clinical candidates.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Piperidinas/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Piperidinas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
13.
Arch Pharm (Weinheim) ; 354(4): e2000366, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33283341

RESUMEN

In previous studies, we demonstrated that esters of bendamustine containing a basic moiety are far more cytotoxic anticancer agents than their parent compound and that the substitution of the labile ester moiety by a branched ester or an amide markedly increases stability in the blood plasma. In the current study, we showed that this substitution was bioisosteric. Aiming at increased cytotoxicity, we introduced the same modification to related nitrogen mustards: 6-isobendamustine, chlorambucil, and melphalan. The synthesis was accomplished using the coupling reagents N,N'-dicyclohexylcarbodiimide or 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium tetrafluoroborate. Cytotoxicity against a panel of diverse cancer cells (carcinoma, sarcoma, and malignant melanoma) was assessed in a kinetic chemosensitivity assay. The target compounds showed cytotoxic or cytocidal effects at concentrations above 1 µM: a striking enhancement over bendamustine and 6-isobendamustine, both ineffective against the selected cancer cells at concentrations up to 50 µM, and a considerable improvement over chlorambucil, showing some potency only against the sarcoma cells. Melphalan was almost as effective as the target compounds-derivatization only provided a small improvement. The novel cytostatics are of interest as model compounds for analyzing a correlation between cytotoxicity and membrane transport and for the treatment of malignancies.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Mostaza Nitrogenada/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Compuestos de Mostaza Nitrogenada/síntesis química , Compuestos de Mostaza Nitrogenada/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
14.
Biochem J ; 477(23): 4543-4558, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33175093

RESUMEN

Nitrogen mustards are among the first modern anticancer chemotherapeutics that are still widely used as non-specific anticancer alkylating agents. While the mechanism of action of mustard drugs involves the generation of DNA interstrand cross-links, the predominant lesions produced by these drugs are nitrogen half-mustard-N7-dG (NHMG) adducts. The bulky major groove lesion NHMG, if left unrepaired, can be bypassed by translesion synthesis (TLS) DNA polymerases. However, studies of the TLS past NHMG have not been reported so far. Here, we present the first synthesis of an oligonucleotide containing a site-specific NHMG. We also report kinetic and structural characterization of human DNA polymerase η (polη) bypassing NHMG. The templating NHMG slows dCTP incorporation ∼130-fold, while it increases the misincorporation frequency ∼10-30-fold, highlighting the promutagenic nature of NHMG. A crystal structure of polη incorporating dCTP opposite NHMG shows a Watson-Crick NHMG:dCTP base pair with a large propeller twist angle. The nitrogen half-mustard moiety fits snugly into an open cleft created by the Arg61-Trp64 loop of polη, suggesting a role of the Arg61-Trp64 loop in accommodating bulky major groove adducts during lesion bypass. Overall, our results presented here to provide first insights into the TLS of the major DNA adduct formed by nitrogen mustard drugs.


Asunto(s)
Aductos de ADN/química , ADN Polimerasa Dirigida por ADN/química , Mecloretamina/química , Oligonucleótidos/química
15.
Ann N Y Acad Sci ; 1480(1): 44-53, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32808309

RESUMEN

The use of chemical warfare agents (CWAs) in military conflicts and against civilians is a recurrent problem. Despite ongoing CWA research using in vitro or in vivo models, progress to elucidate mechanisms of toxicity and to develop effective therapies, decontamination procedures, and general countermeasures is still limited. Novel scientific approaches to address these questions are needed to expand perspectives on existing knowledge and gain new insights. To achieve this, the use of ex vivo techniques like precision-cut tissue slices (PCTSs) can be a valuable approach. Existing studies employing this economical and relatively easy to implement method show model suitability and comparability with the use of in vitro and in vivo models. In this article, we review research on CWAs in PCTSs to illustrate the advantages of the approach and to promote future applications.


Asunto(s)
Sustancias para la Guerra Química/envenenamiento , Microdisección , Animales , Humanos
16.
Ann N Y Acad Sci ; 1480(1): 5-13, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32725637

RESUMEN

Exposure to vesicants, including sulfur mustard and nitrogen mustard, causes damage to the epithelia of the respiratory tract and the lung. With time, this progresses to chronic disease, most notably, pulmonary fibrosis. The pathogenic process involves persistent inflammation and the release of cytotoxic oxidants, cytokines, chemokines, and profibrotic growth factors, which leads to the collapse of lung architecture, with fibrotic involution of the lung parenchyma. At present, there are no effective treatments available to combat this pathological process. Recently, much interest has focused on nutraceuticals, substances derived from plants, herbs, and fruits, that exert pleiotropic effects on inflammatory cells and parenchymal cells that may be useful in reducing fibrogenesis. Some promising results have been obtained with nutraceuticals in experimental animal models of inflammation-driven fibrosis. This review summarizes the current knowledge on the putative preventive/therapeutic efficacy of nutraceuticals in progressive pulmonary fibrosis, with a focus on their activity against inflammatory reactions and profibrotic cell differentiation.


Asunto(s)
Sustancias para la Guerra Química/envenenamiento , Suplementos Dietéticos , Irritantes/envenenamiento , Mecloretamina/envenenamiento , Gas Mostaza/envenenamiento , Fibrosis Pulmonar , Animales , Modelos Animales de Enfermedad , Humanos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/dietoterapia , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología
17.
Ann N Y Acad Sci ; 1480(1): 14-29, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32726497

RESUMEN

Acute respiratory distress syndrome (ARDS) is a highly morbid lung pathology induced by exposure to chemical warfare agents, including vesicants, phosgene, chlorine, and ricin. In this review, we describe the pathology associated with the development of ARDS in humans and experimental models of acute lung injury following animal exposure to these high-priority threat agents. Potential future approaches to disease-modifying treatment used in preclinical animal studies, including antioxidants, anti-inflammatories, biologics, and mesenchymal stem cells, are also described. As respiratory pathologies, including ARDS, are the major cause of morbidity and mortality following exposure to chemical threat agents, understanding mechanisms of disease pathogenesis is key to the development of efficacious therapeutics beyond the primary intervention principle, which remains mechanical ventilation.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Sustancias para la Guerra Química/envenenamiento , Respiración Artificial , Síndrome de Dificultad Respiratoria/terapia , Animales , Humanos , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología
18.
J Chromatogr A ; 1625: 461306, 2020 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-32709349

RESUMEN

A pentafluorobenzoylation (PFBz)-liquid chromatography-tandem mass spectrometry method was developed for qualitative and quantitative analysis of ethanolamines (EAs, nitrogen mustard degradation products). With this method, highly hydrophilic EAs can be sufficiently analyzed with a commonly used reversed phase column (retention times: (PFBz)2-methyl diethanolamine, 9.1 min; (PFBz)2-ethyl diethanolamine, 9.8 min; and (PFBz)3-triethanolamine, 17.6 min). The applicability of the method for real samples was investigated via recovery tests. Methyl diethanolamine and ethyl diethanolamine were detected at concentrations as low as 1 ng/mL in serum and 10 ng/mL in urine, and quantified within the range of 1-1000 ng/mL and 10-1000 ng/mL, respectively.


Asunto(s)
Cromatografía Liquida/métodos , Fluorobencenos/química , Mecloretamina/análisis , Espectrometría de Masas en Tándem/métodos , Etanolamina/sangre , Humanos , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Límite de Detección
19.
Invest New Drugs ; 38(4): 990-1002, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31520321

RESUMEN

This study provides new information on the cellular effects of 1,3,5-triazine nitrogen mustards with different peptide groups in DLD and Ht-29 human colon cancer cell lines. A novel series of 2,4,6-trisubstituted 1,3,5-triazine derivatives bearing 2-chloroethyl and oligopeptide moieties was designed and synthesized. The most cytotoxic derivative was triazine with an Ala-Ala-OMe substituent on the ring (compound 7b). This compound induced time- and dose-dependent cytotoxicity in the DLD-1 and HT-29 colon cancer cell lines. The triazine derivative furthermore induced apoptosis through intracellular signaling pathway attenuation. Compound 7b may be a candidate for further evaluation as a chemotherapeutic agent against colorectal cancer.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias del Colon/tratamiento farmacológico , Triazinas/farmacología , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Triazinas/síntesis química
20.
Bioorg Med Chem Lett ; 30(4): 126910, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31882300

RESUMEN

Six N-nitroaryl-2-amino-1,3-dichloropropane derivatives have been prepared and evaluated against 18 cancer cell lines and two non-cancerous cell lines. Analysis of cell viability data and IC50 values indicated that the presence of a trifluoromethyl group in the nitroaryl moiety is an important structural feature associated with the compounds' cytotoxicities.


Asunto(s)
Antineoplásicos/síntesis química , Propano/análogos & derivados , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Metilación , Profármacos/síntesis química , Profármacos/química , Profármacos/farmacología , Propano/síntesis química , Propano/química , Propano/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA