Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38790354

RESUMEN

Quantitative neuromuscular monitoring, as extolled by clinical guidelines, is advocated to circumvent the complications associated with neuromuscular blockers (NMBs), such as residual neuromuscular block (rNMB). Nonetheless, the worldwide utilization of such methods remains undesirable. Phonomyography (PMG) boasts the advantages of convenience, stability, and multi-muscle recording which may be a promising monitoring method. The purpose of this preliminary study is conducting a feasibility analysis and an effectiveness evaluation of a PMG prototype under general anesthesia. A prospective observational preliminary study was conducted. Twenty-five adults who had undergone none-cardiac elective surgery were enrolled. The PMG prototype and TOF-Watch SX simultaneously recorded the pharmacodynamic properties of single bolus rocuronium at the ipsilateral adductor pollicis for each patient. For the primary outcome, the time duration to 0.9 TOF ratio of the two devices reached no statistical significance (p > 0.05). For secondary outcomes, the multi-temporal neuromuscular-monitoring measurements between the two devices also reached no statistical significance (p > 0.05). What is more, both the Spearman's and Pearson's correlation tests revealed a strong correlation across all monitoring periods between the PMG prototype and TOF-Watch SX. Additionally, Bland-Altman plots demonstrated a good agreement between the two devices. Thus, the PMG prototype was a feasible, secure, and effective neuromuscular-monitoring technique during general anesthesia and was interchangeable with TOF-Watch SX.

2.
Eur J Neurosci ; 53(8): 2726-2739, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33484588

RESUMEN

The sensitivity of the auditory system is regulated via two major efferent pathways: the medial olivocochlear system that connects to the outer hair cells, and by the middle ear muscles-the tensor tympani and stapedius. The role of the former system in suppressing otoacoustic emissions has been extensively studied, but that of the complementary network has not. In studies of selective attention, decreases in otoacoustic emissions from contralateral stimulation have been ascribed to the medial olivocochlear system, but the acknowledged problem is that the results can be confounded by parallel muscle activity. Here, the potential role of the muscle system is examined through a wide but not exhaustive review of the selective attention literature, and the unifying hypothesis is made that the prominent "physiological noise" detected in such experiments, which is reduced during attention, is the sound produced by the muscles in proximity to the ear-including the middle ear muscles. All muscles produce low-frequency sound during contraction, but the implications for selective attention experiments-in which muscles near the ear are likely to be active-have not been adequately considered. This review and synthesis suggests that selective attention may reduce physiological noise in the ear canal by reducing the activity of muscles close to the ear. Indeed, such an experiment has already been done, but the significance of its findings have not been widely appreciated. Further sets of experiments are needed in this area.


Asunto(s)
Ruido , Emisiones Otoacústicas Espontáneas , Estimulación Acústica , Atención , Cóclea , Músculos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA