RESUMEN
Tubular aggregates (TA) are skeletal muscle structures that arise from the progressive accumulation of sarcoplasmic reticulum proteins, mainly with aging. Muscle regeneration plays a role in TA formation. TA quantification may aid in the evaluation of muscle aging and genetic muscle degeneration. TA form over time, appears in aging in normal murine muscles. TA reduction in injured conditions may be due to the degeneration-regeneration process in muscles, with loss of damaged muscle fibers and formation of new fibers that do not present protein aggregation. These new regenerated fibers do not improve the function capacity of the aged muscle. Here, we present a methodology for labeling and identifying tubular aggregates in muscle fibers and also the standardization of its quantification.
RESUMEN
Regeneration is a remarkable characteristic of the skeletal muscle. Triggered by common lesions, regeneration is stimulated resulting in muscle fiber repair and restoration of muscle homeostasis in normal muscle. In genetic dystrophic muscle, the cycle of degeneration/regeneration is an endless loop that leads to impaired regeneration and substitution of muscle fibers by connective and adipose tissue, causing muscle weakness. Identification and characterization of muscle regeneration steps can help discover potential therapy targets for muscle diseases and aging. Muscle regeneration markers such as the number of satellite cells in the muscle, the proportion of activated satellite cells, and the quantity of regenerating muscle fiber can be quantified using immunolabeling.Here we are presenting a quantitative method to measure muscle regeneration that can be applied to different proposals. To demonstrate the protocol applicability, we used models for acute and chronic muscle injuries. As model of acute degeneration, a wild-type C57BL6 mice with muscle injury induced by electroporation was used, and the muscle was analyzed after 5 and 10 days post-injury. DMDmdx mouse muscle was used as a model of chronic degeneration. The methodologies presented here are among the gold standard methodologies for muscle regeneration analysis and can be easily applied to any type of muscle regeneration study.
RESUMEN
Skeletal muscle regeneration after injury is a complex process involving inflammatory signaling and myoblast activation. Pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α) are key mediators, but their effects on gene expression in proliferating myoblasts are unclear. We performed the RNA sequencing of TNF-α treated C2C12 myoblasts to elucidate the signaling pathways and gene networks regulated by TNF-α during myoblast proliferation. The TNF-α (10 ng/mL) treatment of C2C12 cells led to 958 differentially expressed genes compared to the controls. Pathway analysis revealed significant regulation of TNF-α signaling, along with the chemokine and IL-17 pathways. Key upregulated genes included cytokines (e.g., IL-6), chemokines (e.g., CCL7), and matrix metalloproteinases (MMPs). TNF-α increased myogenic factor 5 (Myf5) but decreased MyoD protein levels and stimulated the release of MMP-9, MMP-10, and MMP-13. TNF-α also upregulates versican and myostatin mRNA. Overall, our study demonstrates the TNF-α modulation of distinct gene expression patterns and signaling pathways that likely contribute to enhanced myoblast proliferation while suppressing premature differentiation after muscle injury. Elucidating the mechanisms involved in skeletal muscle regeneration can aid in the development of regeneration-enhancing therapeutics.
Asunto(s)
Proliferación Celular , Mioblastos , Transducción de Señal , Factor de Necrosis Tumoral alfa , Mioblastos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Proliferación Celular/efectos de los fármacos , Animales , Ratones , Línea Celular , Quimiocinas/metabolismo , Quimiocinas/genética , Citocinas/metabolismo , Citocinas/genética , Regulación de la Expresión Génica/efectos de los fármacosRESUMEN
Skeletal muscle degeneration is responsible for major mobility complications, and this muscle type has little regenerative capacity. Several biomaterials have been proposed to induce muscle regeneration and function restoration. Decellularized scaffolds present biological properties that allow efficient cell culture, providing a suitable microenvironment for artificial construct development and being an alternative for in vitro muscle culture. For translational purposes, biomaterials derived from large animals are an interesting and unexplored source for muscle scaffold production. Therefore, this study aimed to produce and characterize bovine muscle scaffolds to be applied to muscle cell 3D cultures. Bovine muscle fragments were immersed in decellularizing solutions for 7 days. Decellularization efficiency, structure, composition, and three-dimensionality were evaluated. Bovine fetal myoblasts were cultured on the scaffolds for 10 days to attest cytocompatibility. Decellularization was confirmed by DAPI staining and DNA quantification. Histological and immunohistochemical analysis attested to the preservation of main ECM components. SEM analysis demonstrated that the 3D structure was maintained. In addition, after 10 days, fetal myoblasts were able to adhere and proliferate on the scaffolds, attesting to their cytocompatibility. These data, even preliminary, infer that generated bovine muscular scaffolds were well structured, with preserved composition and allowed cell culture. This study demonstrated that biomaterials derived from bovine muscle could be used in tissue engineering.
Asunto(s)
Músculo Esquelético , Mioblastos , Ingeniería de Tejidos , Andamios del Tejido , Animales , Bovinos , Andamios del Tejido/química , Músculo Esquelético/citología , Ingeniería de Tejidos/métodos , Mioblastos/citología , Materiales Biocompatibles/química , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Células Cultivadas , Proliferación Celular , Matriz Extracelular/metabolismoRESUMEN
Introduction: Tubular aggregates (TA) are skeletal muscle structures that arise from the progressive accumulation of sarcoplasmic reticulum proteins. Cytoplasmic aggregates in muscle fibers have already been observed in mice and humans, mainly during aging and muscle disease processes. However, the effects of muscle regeneration on TA formation have not yet been reported. This study aimed to investigate the relationship between degeneration/regeneration and TA in aged murine models. We investigated the presence and quantity of TA in old males from two murine models with intense muscle degeneration and regeneration. Methods: One murine lineage was a Dmdmdx model of Duchenne muscular dystrophy (n = 6). In the other model, muscle damage was induced by electroporation in C57BL/6J wild-type mice, and analyzed after 5, 15, and 30 days post-electroporation (dpe; n = 15). Regeneration was evaluated based on the quantity of developmental myosin heavy chain (dMyHC)-positive fibers. Results: The frequency of fibers containing TA was higher in aged C57BL/6J (26 ± 8.3%) than in old dystrophic Dmdmdx mice (2.4 ± 2%). Comparing the data from induced degeneration/regeneration in normal mice revealed a reduced proportion of TA-containing fibers after 5 and 30 dpe. Normal aged muscle was able to regenerate and form dMyHC+ fibers, mainly at 5 dpe (0.1 ± 0.1 vs. 16.5 ± 2.6%). However, there was no difference in force or resistance between normal and 30 dpe animals, except for the measurements by the Actimeter device, which showed the worst parameters in the second group. Discussion: Our results suggest that TA also forms in the Dmdmdx muscle but in smaller amounts. The intense degeneration and regeneration of the old dystrophic model resulted in the generation of new muscle fibers with a lower quantity of TA. Data from electroporated wild-type mice support the idea that muscle regeneration leads to a reduction in the amount of TA. We suggest that TA accumulates in muscle fibers throughout physiological aging and that regeneration leads to the formation of new fibers without these structures. In addition, these new fibers do not confer functional benefits to the muscle.
RESUMEN
Skeletal muscle degeneration is responsible for major mobility complications, and this muscle type has little regenerative capacity. Several biomaterials have been proposed to induce muscle regeneration and function restoration. Decellularized scaffolds present biological properties that allow efficient cell culture, providing a suitable microenvironment for artificial construct development and being an alternative for in vitro muscle culture. For translational purposes, biomaterials derived from large animals are an interesting and unexplored source for muscle scaffold production. Therefore, this study aimed to produce and characterize bovine muscle scaffolds to be applied to muscle cell 3D cultures. Bovine muscle fragments were immersed in decellularizing solutions for 7 days. Decellularization efficiency, structure, composition, and three-dimensionality were evaluated. Bovine fetal myoblasts were cultured on the scaffolds for 10 days to attest cytocompatibility. Decellularization was confirmed by DAPI staining and DNA quantification. Histological and immunohistochemical analysis attested to the preservation of main ECM components. SEM analysis demonstrated that the 3D structure was maintained. In addition, after 10 days, fetal myoblasts were able to adhere and proliferate on the scaffolds, attesting to their cytocompatibility. These data, even preliminary, infer that generated bovine muscular scaffolds were well structured, with preserved composition and allowed cell culture. This study demonstrated that biomaterials derived from bovine muscle could be used in tissue engineering.
RESUMEN
The aim of the current study was to investigate the effect of glutamine supplementation on the expression of HSP70 and the calcium-binding proteins from the S100 superfamily in the recovering extensor digitorum longus (EDL) muscle after injury. Two-month-old Wistar rats were subjected to cryolesion of the EDL muscle and then randomly divided into two groups (with or without glutamine supplementation). Starting immediately after the injury, the supplemented group received daily doses of glutamine (1 g/kg/day, via gavage) for 3 and 10 days orally. Then, muscles were subjected to histological, molecular, and functional analysis. Glutamine supplementation induced an increase in myofiber size of regenerating EDL muscles and prevented the decline in maximum tetanic strength of these muscles evaluated 10 days after injury. An accelerated upregulation of myogenin mRNA levels was detected in glutamine-supplemented injured muscles on day 3 post-cryolesion. The HSP70 expression increased only in the injured group supplemented with glutamine for 3 days. The increase in mRNA levels of NF-κB, the pro-inflammatory cytokines IL-1ß and TNF-α, and the calcium-binding proteins S100A8 and S100A9 on day 3 post-cryolesion in EDL muscles was attenuated by glutamine supplementation. In contrast, the decrease in S100A1 mRNA levels in the 3-day-injured EDL muscles was minimized by glutamine supplementation. Overall, our results suggest that glutamine supplementation accelerates the recovery of myofiber size and contractile function after injury by modulating the expression of myogenin, HSP70, NF-κB, pro-inflammatory cytokines, and S100 calcium-binding proteins.
Asunto(s)
Glutamina , FN-kappa B , Ratas , Animales , Glutamina/farmacología , Glutamina/metabolismo , Miogenina/metabolismo , Miogenina/farmacología , FN-kappa B/metabolismo , Ratas Wistar , Músculo Esquelético/metabolismo , Contracción Muscular/fisiología , Citocinas/metabolismo , ARN Mensajero/metabolismo , Suplementos Dietéticos , Proteínas de Unión al CalcioRESUMEN
BACKGROUND: Satellite cells are tissue-specific stem cells primarily responsible for the regenerative capacity of skeletal muscle. Satellite cell function and maintenance are regulated by extrinsic and intrinsic mechanisms, including the ubiquitin-proteasome system, which is key for maintaining protein homeostasis. In this context, it has been shown that ubiquitin-ligase NEDD4-1 targets the transcription factor PAX7 for proteasome-dependent degradation, promoting muscle differentiation in vitro. Nonetheless, whether NEDD4-1 is required for satellite cell function in regenerating muscle remains to be determined. RESULTS: Using conditional gene ablation, we show that NEDD4-1 loss, specifically in the satellite cell population, impairs muscle regeneration resulting in a significant reduction of whole-muscle size. At the cellular level, NEDD4-1-null muscle progenitors exhibit a significant decrease in the ability to proliferate and differentiate, contributing to the formation of myofibers with reduced diameter. CONCLUSIONS: These results indicate that NEDD4-1 expression is critical for proper muscle regeneration in vivo and suggest that it may control satellite cell function at multiple levels.
Asunto(s)
Músculo Esquelético , Complejo de la Endopetidasa Proteasomal , Complejo de la Endopetidasa Proteasomal/metabolismo , Proliferación Celular/fisiología , Músculo Esquelético/metabolismo , Células Madre , Diferenciación Celular , Ubiquitinas/metabolismo , Desarrollo de Músculos/fisiología , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismoRESUMEN
We investigated the effect of inhibition of 5-lipoxigenase (LOX) and 12-LOX pathways on the regeneration of skeletal muscle fibers after injury induced by a myotoxin (MTX) phospholipase A2 from snake venom in an in vivo experimental model. Gastrocnemius muscles of mice injected with MTX presented an increase in 5-LOX protein expression, while 12-LOX was found to be a constitutive protein of skeletal muscle. Animals that received oral treatments with 5-LOX inhibitor MK886 or 12-LOX inhibitor baicalein 30 min and 48 h after MTX-induced muscle injury showed a reduction in the inflammatory process characterized by a significant decrease of cell influx and injured fibers in the degenerative phase (6 and 24 h after injury). In the beginning of the regeneration process (3 days), mice that received MK886 showed fewer new basophilic fibers, suggesting fewer proliferative events and myogenic cell fusion. Furthermore, in the progression of tissue regeneration (14-21 days), the mice treated with 5-LOX inhibitor presented a lower quantity of central nucleus fibers and small-caliber fibers, culminating in a muscle that is more resistant to the stimulus of fatigue during muscle regeneration with a predominance of slow fibers. In contrast, animals early treated with the 12-LOX inhibitor presented functional fibers with higher diameters, less resistant to fatigue and predominance of fast heavy-chain myosin fibers as observed in control animals. These effects were accompanied by an earlier expression of myogenic factor MyoD. Our results suggest that both 5-LOX and 12-LOX pathways represent potential therapeutic targets for muscle regeneration. It appears that inhibition of the 5-LOX pathway represses only the degenerative process by reducing tissue inflammation levels. Meanwhile, inhibition of the 12-LOX pathway also favors the anticipation of maturation and earlier recovery of muscle fiber activity function after injury.
Asunto(s)
Araquidonato 12-Lipooxigenasa , Enfermedades Musculares , Ratones , Animales , Araquidonato 12-Lipooxigenasa/farmacología , Araquidonato 5-Lipooxigenasa/farmacología , Fibras Musculares Esqueléticas , Músculo EsqueléticoRESUMEN
Skeletal muscle is one of the most abundant tissues of the human body and is responsible for the generation of movement. Muscle injuries can lead to severe disability. Skeletal muscle is characterized by an important regeneration capacity, which is possible due to the interaction between the myoblasts and immune cells. Neutrophils are fundamental as inducers of muscle damage and as promoters of the initial inflammatory response which eventually allows the muscle repair. The main functions of the neutrophils are phagocytosis, respiratory burst, degranulation, and the production of neutrophil extracellular traps (NETs). An overactivation of neutrophils after muscle injuries may lead to an expansion of the initial damage and can hamper the successful muscle repair. The importance of neutrophils as inducers of muscle damage extends beyond acute muscle injury and recently, neutrophils have become more relevant as part of the immunopathogenesis of chronic muscle diseases like idiopathic inflammatory myopathies (IIM). This heterogeneous group of systemic autoimmune diseases is characterized by the presence of muscle inflammation with a variable amount of extramuscular features. In IIM, neutrophils have been found to have a role as biomarkers of disease activity, and their expansion in peripheral blood is related to certain clinical features like interstitial lung disease (ILD) and cancer. On the other hand, low density granulocytes (LDG) are a distinctive subtype of neutrophils characterized by an enhanced production of NETs. These cells along with the NETs have also been related to disease activity and certain clinical features like ILD, vasculopathy, calcinosis, dermatosis, and cutaneous ulcers. The role of NETs in the immunopathogenesis of IIM is supported by an enhanced production and deficient degradation of NETs that have been observed in patients with dermatomyositis and anti-synthetase syndrome. Finally, new interest has arisen in the study of other phenotypes of LDG with a phenotype corresponding to myeloid-derived suppressor cells, which were also found to be expanded in patients with IIM and were related to disease activity. In this review, we discuss the role of neutrophils as both orchestrators of muscle repair and inducers of muscle damage, focusing on the immunopathogenesis of IIM.
Asunto(s)
Dermatomiositis , Enfermedades Pulmonares Intersticiales , Enfermedades Musculares , Miositis , Humanos , Neutrófilos , Músculo Esquelético/patología , RegeneraciónRESUMEN
AIM: It has been suggested that the proliferation and early differentiation of myoblasts are impaired in Marfan syndrome (MFS) mice during muscle regeneration. However, the underlying cellular and molecular mechanisms remain poorly understood. Here, we investigated muscle regeneration in MFS mouse models by analyzing the influence of the fibrotic niche on satellite cell function. METHODS: In vivo, ex vivo, and in vitro experiments were performed. In addition, we evaluated the effect of the pharmacological inhibition of fibrosis using Ang-(1-7) on regenerating skeletal muscles of MFS mice. RESULTS: The skeletal muscle of MFS mice shows an increased accumulation of collagen fibers (81.2%), number of fibroblasts (157.1%), and Smad2/3 signaling (110.5%), as well as an aberrant number of fibro-adipogenic progenitor cells in response to injury compared with wild-type mice. There was an increased number of proinflammatory and anti-inflammatory macrophages (3.6- and 3.1-fold, respectively) in regenerating muscles of wild-type mice, but not in the regenerating muscles of MFS mice. Our data show that proliferation and differentiation of satellite cells are altered (p ≤ 0.05) in MFS mice. Myoblast transplantation assay revealed that the regenerating muscles from MFS mice have reduced satellite cell self-renewal capacity (74.7%). In addition, we found that treatment with Ang-(1-7) reduces fibrosis (71.6%) and ameliorates satellite cell dysfunction (p ≤ 0.05) and muscle contractile function (p ≤ 0.05) in MFS mice. CONCLUSION: The fibrotic niche, caused by Fbn1 mutations, reduces the myogenic potential of satellite cells, affecting structural and functional muscle regeneration. In addition, the fibrosis inhibitor Ang-(1-7) partially counteracts satellite cell abnormalities and restores myofiber size and contractile force in regenerating muscles.
Asunto(s)
Síndrome de Marfan , Células Satélite del Músculo Esquelético , Ratones , Animales , Síndrome de Marfan/patología , Músculo Esquelético/fisiología , Células Satélite del Músculo Esquelético/fisiología , Diferenciación Celular , Modelos Animales de Enfermedad , Regeneración/fisiología , FibrosisRESUMEN
Objective: Pax-7 and Myo-D regulate satellite cells' activation and differentiation, thus muscle regeneration following damage. This research aimed to investigate the effect of Thymoquinone (TQ) on skeletal muscle regeneration following 7,12-dimethylbenz-(a)-anthracene (DMBA)-induced injury in the hamster buccal pouch via immunohistochemical assessment of Pax-7 and Myo-D expression. Material and Methods: 65 male golden Syrian hamsters were divided into 3 groups: Group 1: (n=5) received no treatment. Group 2: (n=20) served as a positive control. The left buccal pouches were painted with the carcinogen 3/week/ 6weeks. Group 3: (n=40) were subdivided into two equal sub-groups as follows: Group 3a: (n=20) were given one i.p. TQ injection. Group 3b: (n=20) were given two i.p. TQ injections. Five animals from each group (2 and 3) were euthanized at 24, 48 hrs, one, and two weeks after the last injection. A blood sample (2 ml) was withdrawn for assessment of TNF-α levels in serum. Serial sections of the pouches were examined histologically (H&E), and immunohistochemically (IHC) for the detection of Pax-7 and Myo-D proteins. Results: double i.p injections of TQ resulted in a significant elevation in the level of TNF-α from the second-day post-injection with a progressive formation of the muscle fibers (MFs) and mononuclear cells (MNCs) around the deeper blood vessels. At 14 days, no statistically significant difference was found between this group and group '2', while the difference remained significant compared to groups '1' and '3a'. The muscle fibers were more mature and compact. IHC results showed positive expression of the perivascular mononuclear cells (MNCs) to both Pax-7 and Myo-D with positive reactivity of the peripheral nuclei of muscle fibers to Pax-7 compared to the negative reaction in the positive control group. Conclusion: early and two TQ injections had a promising effect on the induction of striated muscle regeneration, mainly by non-myogenic stem cells (AU)
Objetivo: Pax-7 e Myo-D regulam a ativação e diferenciação de células satélites durante a regeneração muscular pós-trauma. Assim, objetivamos investigar o efeito da timoquinona (TQ) na regeneração muscular esquelética após injúria causada por 7,12 dimetilbenzantraceno (DMBA) em bolsa jugal de hamsters, através da análise imuno-histoquímica de Pax-7 e Myo-D. Material e Métodos: 65 hamsters-sírios machos foram divididos em 3 grupos: Grupo 1: (n=5) controle negativo, sem tratamento. Grupo 2: (n=20) controle positivo. A bolsa jugal do lado esquerdo recebeu aplicação do DMBA por 3 e 6 semanas. Grupo 3: (n=40) receberam aplicação de DMBA e foram então subdivididos em: Grupo 3a: (n=20) que recebeu 1 injeção intraperitoneal (ip) de TQ e Grupo 3b: (n=20) que recebeu duas injeções ip de TQ. Cinco animais dos grupos 2 e 3 foram eutanasiados em 24 horas, 48 horas, 7 dias e 14 dias após a administração de DMBA e da última injeção de TQ. Amostras de sangue (2 ml) foram coletadas para avaliação dos níveis séricos de TNF-α. Cortes seriados da bolsa jugal dos animais foram analisados histologicamente (H&E), e através de imunohistoquimica (IHC) para avaliação das proteínas Pax-7 e Myo-D. Resultados: duas injeções ip de TQ aumentaram os níveis séricos TNF-α à partir do segundo dia pós-administração com formação progressiva de fibras musculares (MFs) e células mononucleares (MNCs) ao redor dos vasos sanguíneos. No dia 14, não houve diferença estatística entre o grupo 3b e o grupo 2, enquanto a diferença permaneceu entre o grupo 1 e 3a. As MFs apresentavam-se mais maduras e compactas. A IHC mostrou expressão de Pax-7 e Myo-D nas MNCs ao redor dos vasos, e houve expressão nuclear de Pax-7 nas MFs no grupo 2. Conclusão: ambos regimes de administração do TQ, 1 ou 2 aplicações ip, apresentaram efeito promissor na indução da regeneração muscular esquelética, principalmente nas células não-miogênicas.(AU)
Asunto(s)
Animales , Inmunohistoquímica , 9,10-Dimetil-1,2-benzantraceno , Factor de Transcripción PAX7RESUMEN
BACKGROUND: Satellite cells are tissue-specific stem cells primarily responsible for the regenerative capacity of skeletal muscle. Satellite cell function and maintenance are regulated by extrinsic and intrinsic mechanisms, including the ubiquitin-proteasome system, which is key for maintaining protein homeostasis. In this context, it has been shown that ubiquitin-ligase NEDD4-1 targets the transcription factor PAX7 for proteasome-dependent degradation, promoting muscle differentiation in vitro. Nonetheless, whether NEDD4-1 is required for satellite cell function in regenerating muscle remains to be determined. RESULTS: Using conditional gene ablation, we show that NEDD4-1 loss, specifically in the satellite cell population, impairs muscle regeneration resulting in a significant reduction of whole-muscle size. At the cellular level, NEDD4-1-null muscle progenitors exhibit a significant decrease in the ability to proliferate and differentiate, contributing to the formation of myofibers with reduced diameter. CONCLUSIONS: These results indicate that NEDD4-1 expression is critical for proper muscle regeneration in vivo and suggest that it may control satellite cell function at multiple levels.
Asunto(s)
Músculo Esquelético/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Células Madre , Ubiquitinas/metabolismo , Diferenciación Celular , Desarrollo de Músculos/fisiología , Proliferación Celular/fisiología , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismoRESUMEN
Muscle tissue is formed by elongated and contractile cells with specific morphofunctional characteristics. Thus, it is divided into three basic types: smooth muscle tissue, cardiac striated muscle tissue and skeletal striated muscle tissue. The striated skeletal muscle tissue presents high plasticity, regeneration and growth capacity due to the presence of satellite cells, quiescent myoblasts that are activated in case of injury to the tissue and originate new muscle fibers when they differentiate. In more severe deficiencies or injuries there is a loss of their regenerative capacity, thus compromising the body's functionality at different levels. Tissue engineering studies the development of biomaterials capable of stimulating the recovery of cellular activity in injured body tissues, as well as the activity of cells with muscle differentiation potential in injury repair. However, the need for three-dimensional re-assembly in a complex organization makes it difficult to mimic this tissue and fully regenerate it for the sake of precise and effective movements. Thus, this article aims to provide a narrative review of tissue engineering strategies applied to the regeneration of skeletal muscle, in a critical evaluation of research, whether aimed at injury or atrophies such as spinal muscular atrophy.
RESUMEN
The aim of the present study was to analyze for the first time the effect of photobiomodulation therapy (PBMT) using defocused high-power laser (DHPL) in myoblast cell line C2C12 viability and migration and compare them with low-power laser therapy. Cells were divided into 9 groups: Sham irradiation 10% fetal bovine serum (FBS); Sham irradiation 5%FBS; low-power laser 0.1 W; DHPL 810 1 W; DHPL 810 2 W; DHPL 980 1 W; DHPL 980 2 W; DHPL dual 1 W; DHPL dual 2 W. To simulate stress conditions, all groups exposed to irradiation were maintained in DMEM 5% FBS. The impact of therapies on cell viability was assessed through sulforhodamine B assay and on cells migration through scratch assays and time-lapse. Myoblast viability was not modified by PBMT protocols. All PBMT protocols were able to accelerate the scratch closure after 6 and 18 h of the first irradiation (p < 0.001). Also, an increase in migration speed, with a more pronounced effect of DHPL laser using dual-wavelength protocol with 2 W was observed (p < 0.001). In conclusion, the diverse PBMT protocols used in this study accelerated the C2C12 myoblasts migration, with 2-W dual-wavelength outstanding as the most effective protocol tested. Benefits from treating muscle injuries with PBMT appear to be related to its capacity to induce cell migration without notable impact on cell viability.
Asunto(s)
Terapia por Luz de Baja Intensidad , Mioblastos , Mioblastos/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Supervivencia Celular/efectos de la radiación , Movimiento Celular , Rayos LáserRESUMEN
Proinflammatory cytokines and reactive oxygen species are released after muscle damage, and although they are necessary for the muscle regeneration process, an excess of these substances leads to the destruction of biomolecules and impairment of the repair system. Several drugs have emerged in recent years to control the muscle inflammatory response, and studies have shown that gold nanoparticles (AuNPs) have anti-inflammatory and antioxidant properties. This review reveals the effects of AuNPs on the inflammatory and redox mechanisms of muscles. We assessed the results of several studies published in different journals over the last 20 years, with a focus on the effects of AuNPs on possible aspects of muscle regeneration or recovery, namely, inflammatory processes and redox system mechanisms. A systematic database search was conducted using PubMed, Medline, Bireme, Web of Science, and Google Scholar to identify peer-reviewed studies from the 2000s. Combinations of keywords related to muscle damage, regeneration or repair, AuNPs, oxidative stress, and antioxidants were used in the search. This review did not address other variables, such as specific diseases or other biological effects; however, these variables should be considered for a complete understanding of the effects of AuNPs on skeletal muscles.
RESUMEN
Deficient skeletal muscle regeneration, which often leads to permanent sequelae, is a common clinical finding in envenomations caused by snakes of the family Viperidae, such as those of Bothrops alternatus and B. diporus in South America. The causes of such poor muscle regenerative outcome are still incompletely understood. Using a murine experimental model of envenomation by the venoms of these two species, we assessed whether traces of venom components that remain in muscle tissue days after envenomation affect myoblasts and myotube formation in culture. The kinetics of drop in venom concentration in the tissue was assessed by ELISA and Western blot, and by the quantification of venom phospholipase A2 activity. A rapid drop of venom components was observed in muscle, although a band of 58-63 kDa remained even 168 h after venom injection, and venom phospholipase A2 activity was detected in muscle tissue days after envenomation. Muscle homogenates from envenomated animals were cytotoxic to myoblasts in culture and inhibited the formation of myotubes even in conditions where homogenates were devoid of cytotoxicity. These deleterious effects were abrogated when homogenates were incubated with antivenom. Our findings agree with previous observations with the venom of Bothrops asper and provide further evidence that one of the causes of the poor skeletal muscle regeneration after Bothrops sp venom-induced myonecrosis is the deleterious action on myogenic cells of traces of venom components remaining in the tissue.
Asunto(s)
Bothrops , Venenos de Crotálidos , Animales , Antivenenos , Venenos de Crotálidos/toxicidad , Ratones , Fibras Musculares Esqueléticas , Venenos de SerpienteRESUMEN
This study evaluated the effects of glutamine supplementation immediately after freezing injury on morphological and contractile function of regenerating soleus muscles from rats. Young male Wistar rats were subjected to cryolesion of soleus muscles, and immediately after received a daily supplementation of glutamine (1 g/kg/day). The muscles were evaluated on post-injury days 3 and 10. Glutamine-supplemented injured muscles had a lower number of CD11b positive immune cells and higher mRNA levels of IL-4 compared to those from the cryolesioned muscles analyzed on post-injury day 3. The mRNA and protein expression levels of the myogenic transcription factor MyoD were also higher in glutamine-supplemented injured muscles than in injured muscles examined on post-cryolesion day 3. In addition, glutamine-supplemented injured muscles had a higher size of their regenerating myofibers, attenuated decline in maximum tetanic strength and improved fatigue resistance compared to those from injured muscles evaluated on post-cryolesion day 10. No effect was observed in uninjured muscles supplemented with glutamine. Our results suggest that glutamine supplementation improves the resolution of inflammation, as well as the size and functional recovery of regenerating myofibers from soleus muscles by accelerating the up-regulation of IL-4 and MyoD expression. Future non-pharmacological rehabilitation studies are warranted to investigate the effect of glutamine supplementation on the outcome of injured skeletal muscles.
Asunto(s)
Glutamina , Contracción Muscular , Músculo Esquelético , Regeneración , Animales , Suplementos Dietéticos , Glutamina/farmacología , Interleucina-4/metabolismo , Masculino , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/fisiología , ARN Mensajero/metabolismo , Ratas , Ratas WistarRESUMEN
The purpose of this study was to assess the topic use of Sebastiania hispida extract and low-level gallium-arsenide laser irradiation (GaAs, 904 nm) to reduce the local myonecrosis and edema of Bothrops moojeni snake venom-injected gastrocnemius. Wistar rats receiving intramuscular venom injection (VBm) were compared with saline control (S) and envenomed rats receiving local exposure to plant extract (VExt) or laser irradiation (VL). The phytochemistry and thin-layer chromatography of S. hispida extract indicated the presence of phenolic compounds like gallic acid and flavonoids including quercetin. Gastrocnemius of VExt and VL groups had a significant reduction of edema and creatine kinase (CK) activities and a greater Myogenin (MyoG) expression compared to VBm group, with the plant extract efficacy better than laser exposure. Reduction of edema and serum CK activities reflects a lessening of muscle damage, whereas the increase of MyoG indicates myoblast differentiation and acceleration of muscle repair. The S. hispida richness in phenolic compounds and flavonoids, such as the light modulatory ability to triggering a multitude of cell signalings likely underlie the positive outcomes. Our findings suggest both treatments as potential auxiliary tools to be explored in clinical trials in combination with anti-venom therapy after Bothropic snakebites.
Asunto(s)
Antivenenos/farmacología , Terapia por Luz de Baja Intensidad , Mordeduras de Serpientes/radioterapia , Venenos de Serpiente/toxicidad , Animales , Antivenenos/uso terapéutico , Ratas , Ratas WistarRESUMEN
Satellite cells (SCs) are tissue-specific stem cells responsible for adult skeletal muscle regeneration and maintenance. SCs function is critically dependent on two families of transcription factors: the paired box (Pax) involved in specification and maintenance and the Muscle Regulatory Factors (MRFs), which orchestrate myogenic commitment and differentiation. In turn, signaling events triggered by extrinsic and intrinsic stimuli control their function via post-translational modifications, including ubiquitination and phosphorylation. In this context, the Abelson non-receptor tyrosine kinase (c-Abl) mediates the activation of the p38 α/ß MAPK pathway, promoting myogenesis. c-Abl also regulates the activity of the transcription factor MyoD during DNA-damage stress response, pausing differentiation. However, it is not clear if c-Abl modulates other key transcription factors controlling SC function. This work aims to determine the role of c-Abl in SCs myogenic capacity via loss of function approaches in vitro and in vivo. Here we show that c-Abl inhibition or deletion results in a down-regulation of Pax7 mRNA and protein levels, accompanied by decreased Pax7 transcriptional activity, without a significant effect on MRF expression. Additionally, we provide data indicating that Pax7 is directly phosphorylated by c-Abl. Finally, SC-specific c-Abl ablation impairs muscle regeneration upon acute injury. Our results indicate that c-Abl regulates myogenic progression in activated SCs by controlling Pax7 function and expression.