Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Appl Physiol (1985) ; 135(3): 584-600, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37439241

RESUMEN

A step-transition in external work rate (WR) increases pulmonary O2 uptake (V̇o2p) in a monoexponential fashion. Although the rate of this increase, quantified by the time constant (τ), has frequently been shown to be similar between multiple different WR amplitudes (ΔWR), the adjustment of O2 delivery to the muscle (via blood flow; BF), a potential regulator of V̇o2p kinetics, has not been extensively studied. To investigate the role of BF on V̇o2p kinetics, 10 participants performed step-transitions on a knee-extension ergometer from a common baseline WR (3 W) to: 24, 33, 45, 54, and 66 W. Each transition lasted 8 min and was repeated four to six times. Volume turbinometry and mass spectrometry, Doppler ultrasound, and near-infrared spectroscopy were used to measure V̇o2p, BF, and muscle deoxygenation (deoxy[Hb + Mb]), respectively. Similar transitions were ensemble-averaged, and phase II V̇o2p, BF, and deoxy[Hb + Mb] were fit with a monoexponential nonlinear least squares regression equation. With increasing ΔWR, τV̇o2p became larger at the higher ΔWRs (P < 0.05), while τBF did not change significantly, and the mean response time (MRT) of deoxy[Hb + Mb] became smaller. These findings that V̇o2p kinetics become slower with increasing ΔWR, while BF kinetics are not influenced by ΔWR, suggest that O2 delivery could not limit V̇o2p in this situation. However, the speeding of deoxy[Hb + Mb] kinetics with increasing ΔWR does imply that the O2 delivery-to-O2 utilization of the microvasculature decreases at higher ΔWRs. This suggests that the contribution of O2 delivery and O2 extraction to V̇O2 in the muscle changes with increasing ΔWR.NEW & NOTEWORTHY A step increase in work rate produces a monoexponential increase in V̇o2p and blood flow to a new steady-state. We found that step transitions from a common metabolic baseline to increasing work rate amplitudes produced a slowing of V̇o2p kinetics, no change in blood flow kinetics, and a speeding of muscle deoxygenation kinetics. As work rate amplitude increased, the ratio of blood flow to V̇o2p became smaller, while the amplitude of muscle deoxygenation became greater. The gain in vascular conductance became smaller, while kinetics tended to become slower at higher work rate amplitudes.


Asunto(s)
Ejercicio Físico , Consumo de Oxígeno , Humanos , Consumo de Oxígeno/fisiología , Ejercicio Físico/fisiología , Pulmón/fisiología , Intercambio Gaseoso Pulmonar/fisiología , Músculo Esquelético/fisiología , Cinética , Oxígeno/metabolismo
2.
Sports (Basel) ; 11(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36828308

RESUMEN

Near-infrared spectroscopy (NIRS) is widely used in sports science research, despite the limited reliability of available data. The aim of the present study was to assess the reliability of NIRS with and without compression tights. Thirteen healthy active males, (age 21.5 ± 2.7 years, body mass 82.1 ± 11.2 kg, BMI 24.6 ± 3.2 kg·m-2) completed four trials (two control trials and two trials using compression tights) over a 28-day period. During each trial, participants completed 20 min each of laying supine, sitting, walking (4 km·h-1), jogging, and sitting following the jogging. An NIRS device was attached to the muscle belly of the vastus lateralis and gastrocnemius and recorded tissue saturation index (TSI), muscle oxygenation, and muscle deoxygenation. Systematic bias and 95% limits of agreement (LOA) and coefficient of variation (CV) were used to report reliability measures for each activity type. For TSI, systematic bias (LOA) at the gastrocnemius during the control and tights trial ranged from -0.4 to 1.7% (4.4 to 10.3%) and -1.9 to 3.5% (8.1 to 12.0%), respectively. For the vastus lateralis, the systematic bias (LOA) for the control trial ranged from -2.4 to 1.0% (5.1 to 6.9%) and for the tights trial was -0.8 to 0.6% (7.0 to 9.5%). For TSI, the CV during the control trial ranged from 1.7 to 4.0% for the gastrocnemius and 1.9 to 2.6% for the vastus lateralis. During the tights trials, the CV ranged from 3.0 to 4.5% for the gastrocnemius and 2.6 to 3.5% for the vastus lateralis. The CV for muscle oxygenation during the control and tights trials for the gastrocnemius was 2.7 to 6.2% and 1.0 to 8.8% and for the vastus lateralis was 0.6 to 4.0% and 4.0 to 4.5%, respectively. The relative reliability was poorer in the tights trials, but if the aim was to detect a 5% difference in TSI, NIRS would be sufficiently reliable. However, the reliability of muscle oxygenation and deoxygenation varies considerably with activity type, and this should be considered when determining whether to employ NIRS in research studies.

3.
Nutrients ; 14(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36235628

RESUMEN

This research examined the effects of single-dose molecular hydrogen (H2) supplements on acid-base status and local muscle deoxygenation during rest, high-intensity intermittent training (HIIT) performance, and recovery. Ten healthy, trained subjects in a randomized, double-blind, crossover design received H2-rich calcium powder (HCP) (1500 mg, containing 2.544 µg of H2) or H2-depleted placebo (1500 mg) supplements 1 h pre-exercise. They performed six bouts of 7 s all-out pedaling (HIIT) at 7.5% of body weight separated by 40 s pedaling intervals, followed by a recovery period. Blood gases' pH, PCO2, and HCO3- concentrations were measured at rest. Muscle deoxygenation (deoxy[Hb + Mb]) and tissue O2 saturation (StO2) were determined via time-resolved near-infrared spectroscopy in the vastus lateralis (VL) and rectus femoris (RF) muscles from rest to recovery. At rest, the HCP group had significantly higher PCO2 and HCO3- concentrations and a slight tendency toward acidosis. During exercise, the first HIIT bout's peak power was significantly higher in HCP (839 ± 112 W) vs. Placebo (816 ± 108 W, p = 0.001), and HCP had a notable effect on significantly increased deoxy[Hb + Mb] concentration during HIIT exercise, despite no differences in heart rate response. The HCP group showed significantly greater O2 extraction in VL and microvascular (Hb) volume in RF during HIIT exercise. The HIIT exercise provided significantly improved blood flow and muscle reoxygenation rates in both the RF and VL during passive recovery compared to rest in all groups. The HCP supplement might exert ergogenic effects on high-intensity exercise and prove advantageous for improving anaerobic HIIT exercise performance.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Sustancias para Mejorar el Rendimiento , Calcio/metabolismo , Gases/metabolismo , Humanos , Hidrógeno/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxígeno/fisiología , Sustancias para Mejorar el Rendimiento/metabolismo , Polvos
4.
Physiol Int ; 109(2): 246-260, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35895571

RESUMEN

Purpose: Chemotherapy and/or radiation are the most often delivered treatments to cancer patients. Usually during the adjuvant treatment, patients complain about fatigue. In addition, physical exercise during adjuvant treatment of cancer seems to have beneficial effects. The aim of this investigation was to assess the effects of multimodal aerobic and strength exercises programs on muscle deoxygenation of patients with breast cancer undergoing adjuvant chemotherapy treatment. Methods: Thirty-two women with breast cancer (20 patients as the training group and 12 patients as the control group) undergoing adjuvant chemotherapy participated in the study. The training group took part in 6 weeks of supervised intermittent aerobic cycling, home-based walking, isometric and electrical muscle stimulation (EMS) exercise training programs. The Outcome measures were muscle deoxygenation (ΔHHb), Maximal Voluntary isometric Contraction (MViC) and Endurance Time (ET) before and after the training period. Results: Compared to the control group, a significant increase in ΔHHb (P < 0.01) accompanied with an increase in ET (P < 0.01) and MViC (P < 0.01) of the quadriceps was obtained in the training group. However, no significant differences of MViC, ET and ΔHHb were observed in the control group. Conclusion: Multimodal aerobic and strength exercise programs enhance muscle oxygen utilization, which may partly explain the improvement in muscular strength and endurance, and the reduction of muscle fatigue in patients with breast cancer during an adjuvant chemotherapy period.


Asunto(s)
Neoplasias de la Mama , Entrenamiento de Fuerza , Neoplasias de la Mama/terapia , Quimioterapia Adyuvante , Terapia por Ejercicio , Femenino , Humanos , Fuerza Muscular/fisiología , Músculos
5.
Front Physiol ; 12: 723951, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899369

RESUMEN

During competitive freestyle swimming, the change of direction requires a turn followed by ∼15 m of underwater kicking at various intensities that require a ∼5 s breath-hold (BH). Upon surfacing, breathing must be regulated, as head rotation is necessary to facilitate the breath while completing the length of the pool (∼25 s). This study compared the respiratory and muscle deoxygenation responses of regulated breathing vs. free breathing, during these 25-5 s cycles. It was hypothesized that with the addition of a BH and sprint during heavy-intensity (HVY) exercise, oxygen uptake (VO2) and oxygen saturation (SatO2) would decrease, and muscle deoxygenation ([HHb]) and total hemoglobin ([Hbtot]) would increase. Ten healthy male participants (24 ± 3 years) performed 4-6 min trials of HVY cycling in the following conditions: (1) continuous free breathing (CONLD); (2) continuous with 5 s BH every 25 s (CONLD-BH); (3) Fartlek (FLK), a 5 s sprint followed by 25 s of HVY; and (4) a combined Fartlek and BH (FLK-BH). Continuous collection of VO2 and SatO2, [Hbtot], and [HHb] via breath-by-breath gas analysis and near-infrared spectroscopy (normalized to baseline) was performed. Breathing frequency and tidal volumes were matched between CONLD and CONLD-BH and between FLK and FLK-BH. As a result, VO2 was unchanged between CONLD (2.12 ± 0.35 L/min) and CONLD-BH (2.15 ± 0.42 L/min; p = 0.116) and between FLK (2.24 ± 0.40 L/min) and FLK-BH (2.20 ± 0.45 L/min; p = 0.861). SatO2 was higher in CONLD (63 ± 1.9%) than CONLD-BH (59 ± 3.3%; p < 0.001), but was unchanged between FLK (61 ± 2.2%) and FLK-BH (62 ± 3.1%; p = 0.462). Δ[Hbtot] is higher in CONLD (3.3 ± 1.6 µM) than CONLD-BH (-2.5 ± 1.2 µM; Δ177%; p < 0.001), but was unchanged between FLK (2.0 ± 1.6 µM) and FLK-BH (0.82 ± 1.4 µM; p = 0.979). Δ[HHb] was higher in CONLD (7.3 ± 1.8µM) than CONLD-BH (7.0 ± 2.0µM; Δ4%; p = 0.011) and lower in FLK (6.7 ± 1.8µM) compared to FLK-BH (8.7 ± 2.4 µM; p < 0.001). It is suggested that the unchanged VO2 between CONLD and CONLD-BH was supported by increased deoxygenation as reflected by decreased Δ[Hbtot] and blunted Δ[HHb], via apneic-driven redistribution of blood flow away from working muscles, which was reflected by the decreased SatO2. However, the preserved VO2 during FLK-BH vs. FLK has been underpinned by an increase in [HHb].

6.
Nutrients ; 13(2)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573133

RESUMEN

We investigated effects of molecular hydrogen (H2) supplementation on acid-base status, pulmonary gas exchange responses, and local muscle oxygenation during incremental exercise. Eighteen healthy, trained subjects in a randomized, double-blind, crossover design received H2-rich calcium powder (HCP) (1500 mg/day, containing 2.544 µg/day of H2) or H2-depleted placebo (1500 mg/day) for three consecutive days. They performed cycling incremental exercise starting at 20-watt work rate, increasing by 20 watts/2 min until exhaustion. Breath-by-breath pulmonary ventilation (V˙E) and CO2 output (V˙CO2) were measured and muscle deoxygenation (deoxy[Hb + Mb]) was determined via time-resolved near-infrared spectroscopy in the vastus lateralis (VL) and rectus femoris (RF). Blood gases' pH, lactate, and bicarbonate (HCO3-) concentrations were measured at rest and 120-, 200-, and 240-watt work rates. At rest, the HCP group had significantly lower V˙E, V˙CO2, and higher HCO3-, partial pressures of CO2 (PCO2) versus placebo. During exercise, a significant pH decrease and greater HCO3- continued until 240-watt workload in HCP. The V˙E was significantly lower in HCP versus placebo, but HCP did not affect the gas exchange status of V˙CO2 or oxygen uptake (V˙O2). HCP increased absolute values of deoxy[Hb + Mb] at the RF but not VL. Thus, HCP-induced hypoventilation would lead to lower pH and secondarily impaired balance between O2 delivery and utilization in the local RF during exercise, suggesting that HCP supplementation, which increases the at-rest antioxidant potential, affects the lower ventilation and pH status during incremental exercise. HPC induced a significantly lower O2 delivery/utilization ratio in the RF but not the VL, which may be because these regions possess inherently different vascular/metabolic control properties, perhaps related to fiber-type composition.


Asunto(s)
Antioxidantes/uso terapéutico , Ejercicio Físico/fisiología , Hidrógeno/uso terapéutico , Administración Oral , Antioxidantes/administración & dosificación , Bicarbonatos/sangre , Análisis de los Gases de la Sangre , Pruebas Respiratorias , Dióxido de Carbono/análisis , Estudios Cruzados , Método Doble Ciego , Humanos , Hidrógeno/administración & dosificación , Masculino , Músculo Esquelético/química , Oxígeno/análisis , Presión Parcial , Polvos , Espectroscopía Infrarroja Corta , Adulto Joven
7.
Am J Physiol Regul Integr Comp Physiol ; 320(5): R683-R696, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33624548

RESUMEN

In the present study, we assessed the time course of adaptations in peak oxygen uptake (V̇o2peak) and muscle fractional oxygen (O2) extraction (using near-infrared spectroscopy) following 12 wk of low-volume high-intensity interval training (HIIT) versus moderate-intensity continuous endurance training (MICT) in adults with uncomplicated type 2 diabetes (T2D). Participants with T2D were randomly assigned to MICT (n = 12, 50 min of moderate-intensity cycling) or HIIT (n = 9, 10 × 1 min at ∼90% maximal heart rate) or to a nonexercising control group (n = 9). Exercising groups trained three times per week and measurements were taken every 3 wk. The rate of muscle deoxygenation (i.e., deoxygenated hemoglobin and myoglobin concentration, Δ[HHb + Mb]) profiles of the vastus lateralis muscle were normalized to 100% of the response, plotted against % power output (PO), and fitted with a double linear regression model. V̇o2peak increased (P < 0.05) by week 3 of MICT (+17%) and HIIT (+8%), with no further significant changes thereafter. Total increases in V̇o2peak posttraining (P < 0.05) were 27% and 14%, respectively. The %Δ[HHb + Mb] versus %PO slope of the first linear segment (slope1) was reduced (P < 0.05) beyond 3 wk of HIIT and MICT, with no further significant changes thereafter. No changes in V̇o2peak or slope1 were observed in the control group. Low-volume HIIT and MICT induced improvements in V̇o2peak following a similar time course, and these improvements were likely, at least in part, due to an improved microvascular O2 delivery.


Asunto(s)
Capacidad Cardiovascular/fisiología , Diabetes Mellitus Tipo 2/fisiopatología , Ejercicio Físico/fisiología , Consumo de Oxígeno/fisiología , Adaptación Fisiológica/fisiología , Adulto , Entrenamiento de Intervalos de Alta Intensidad/métodos , Humanos , Masculino , Persona de Mediana Edad , Oxígeno/metabolismo
8.
Int J Sports Physiol Perform ; 16(7): 958-964, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33626508

RESUMEN

PURPOSE: (1) To compare various physiological indicators of performance during a 5 × 1500-m incremental kayak test performed on an ergometer and on-water and (2) to analyze the relationships between these indicators and the actual competition performance of elite sprint kayakers, aiming to provide information to coaches for evaluating and planning training on-water. METHODS: A total of 14 male and female German elite sprint kayakers performed an incremental test both on an ergometer and on-water. The tissue saturation index of the musculus (m.) biceps brachii, oxygen consumption, ratings of perceived exertion, and levels of blood lactate were measured and compared with actual racing times. In addition, power output was monitored during ergometer testing only. RESULTS: Oxygen consumption during the fourth (P = .02; d = 0.32) and final (fifth; P < .001; d = 0.32) steps of incremental testing was higher on-water than on the ergometer. The tissue saturation index of the m. biceps brachii was approximately 21% higher at the end of the ergometer test (P = .002; d = 1.14). During the second (P = .01; d = 0.78), third (P = .005; d = 0.93), and fourth stages (P = .005; d = 1.02), the ratings of perceived exertion for ergometer kayaking was higher. During the final step, power output was most closely correlated to 200- (r = .88), 500- (r = .93), and 1000-m (r = .86) racing times (all Ps < .01). CONCLUSIONS: During high-intensity kayaking on an ergometer or on-water, the oxygen consumption and tissue saturation index of the m. biceps brachii differ. Furthermore, at moderate to submaximal intensities, the ratings of perceived exertion were higher for ergometer than for on-water kayaking. Finally, of all parameters assessed, the power output during ergometer kayaking exhibited the strongest correlation with actual racing performance.


Asunto(s)
Deportes Acuáticos , Agua , Ergometría , Femenino , Humanos , Masculino , Músculo Esquelético , Consumo de Oxígeno
9.
J Appl Physiol (1985) ; 129(3): 535-546, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32702271

RESUMEN

Oxygen uptake (V̇o2) kinetics are slowed in the supine (S) position purportedly due to impaired muscle O2 delivery ([Formula: see text]); however, these conclusions are predicated on single-site measurements in superficial muscle using continuous-wave near-infrared spectroscopy (NIRS). This study aimed to determine the impact of body position [i.e., upright (U) versus S] on deep and superficial muscle deoxygenation (deoxy[heme]) using time-resolved (TR-) NIRS, and how these relate to slowed pulmonary V̇o2 kinetics. Seventeen healthy men completed constant power tests during 1) S heavy-intensity exercise and 2) U exercise at the same absolute work rate, with a subset of 10 completing additional tests at the same relative work rate as S. Pulmonary V̇o2 was measured breath-by-breath and, deoxy- and total[heme] were resolved via TR-NIRS in the superficial and deep vastus lateralis and superficial rectus femoris. The fundamental phase V̇o2 time constant was increased during S compared with U (S: 36 ± 10 vs. U: 27 ± 8 s; P < 0.001). The deoxy[heme] amplitude (S: 25-28 vs. U: 13-18 µM; P < 0.05) and total[heme] amplitude (S: 17-20 vs. U: 9-16 µM; P < 0.05) were greater in S compared with U and were consistent for the same absolute (above data) and relative work rates (n = 10, all P < 0.05). The greater deoxy- and total[heme] amplitudes in S vs. U supports that reduced perfusive [Formula: see text] in S, even within deep muscle, necessitated a greater reliance on fractional O2 extraction and diffusive [Formula: see text]. The slower V̇o2 kinetics in S versus U demonstrates that, ultimately, these adjustments were insufficient to prevent impairments in whole body oxidative metabolism.NEW & NOTEWORTHY We show that supine exercise causes a greater degree of muscle deoxygenation in both deep and superficial muscle and increases the spatial heterogeneity of muscle deoxygenation. Therefore, this study suggests that any O2 delivery gradient toward deep versus superficial muscle is insufficient to mitigate impairments in oxidative function in response to reduced whole muscle O2 delivery. More heterogeneous muscle deoxygenation is associated with slower V̇o2 kinetics.


Asunto(s)
Músculo Esquelético , Consumo de Oxígeno , Ejercicio Físico , Prueba de Esfuerzo , Humanos , Cinética , Masculino , Músculo Esquelético/metabolismo , Oxígeno/metabolismo , Intercambio Gaseoso Pulmonar
10.
Respir Physiol Neurobiol ; 278: 103439, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32360209

RESUMEN

We examined the effect of age and training status on the oxygen uptake (V˙ O2) kinetics of untrained and recreationally trained women. Young (20-35yr), middle-age (40-55yr) and older (58-71yr) recreationally trained (YTR, n = 10; MTR, n = 12; OTR, n = 9) and untrained (YUT, n = 12; MUT, n = 10; OUT, n = 9) women participated in this crossectional study. Breath-by-breath V˙ O2 and near-infrared-spectroscopy-derived (NIRS) muscle deoxygenation [HHb] were monitored continuously during increasing and constant walking exercises. On-transition V˙ O2 and [HHb] responses to moderate intensity walking were modeled as mono-exponential. The data were normalized for each subject (0%-100 %), and [HHb]/ V˙ O2 ratio was calculated as the average [HHb]/ V˙ O2 during the 20- to 120-s period after the onset of moderate intensity walking exercise. The time constant of V˙ O2 (τ V˙ O2) was longer in OUT(23.8 ± 2.4), MUT(25.4 ± 5.1), YUT(23.1 ± 3.4) than in YTR(16.2 ± 2.0), MTR(16.7 ± 3.9), OTR(16.3 ± 2.8) women (p < 0.05). The [HHb]/ V˙ O2 ratio in OUT (1.31 ± 0.18) was higher than in YTR(1.08 ± 0.05), MTR(1.13 ± 0.09), YUT(1.12 ± 0.09) (p < 0.05). It is concluded that recreationally trained women had faster V˙ O2 kinetics along with better matching of O2 delivery and utilization at the site of gas exchange in the exercising muscles.


Asunto(s)
Ejercicio Físico/fisiología , Consumo de Oxígeno/fisiología , Aptitud Física/fisiología , Adulto , Factores de Edad , Anciano , Femenino , Humanos , Persona de Mediana Edad , Adulto Joven
11.
J Appl Physiol (1985) ; 128(5): 1299-1309, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32213117

RESUMEN

We compared the time constant (τV̇O2) of the fundamental phase of pulmonary oxygen uptake (V̇o2) kinetics between young adult men with type 1 diabetes and healthy control subjects. We also assessed the impact of priming exercise on τV̇O2, critical power, and muscle deoxygenation in a subset of participants with type 1 diabetes. Seventeen men with type 1 diabetes and 17 healthy male control subjects performed moderate-intensity exercise to determine τV̇O2. A subset of seven participants with type 1 diabetes performed an additional eight visits, in which critical power, τV̇O2, and muscle deoxyhemoglobin + myoglobin ([HHb+Mb], via near-infrared spectroscopy) kinetics (described by a time constant, τ[HHb+Mb]) were determined with (PRI) and without (CON) a prior 6-min bout of heavy exercise. τV̇O2 was greater in participants with type 1 diabetes compared with control subjects (type 1 diabetes 50 ± 13 vs. control 32 ± 12 s; P < 0.001). Critical power was greater in PRI compared with CON (PRI 161 ± 25 vs. CON 149 ± 22 W; P < 0.001), whereas τV̇O2 (PRI 36 ± 15 vs. CON 50 ± 21 s; P = 0.006) and τ[HHb+Mb] (PRI 10 ± 5 vs. CON 17 ± 11 s; P = 0.037) were reduced in PRI compared with CON. Type 1 diabetes patients showed slower pulmonary V̇o2 kinetics compared with control subjects; priming exercise speeded V̇o2 and [HHb + Mb] kinetics and increased critical power in a subgroup with type 1 diabetes. These data therefore represent the first characterization of the power-duration relationship in type 1 diabetes and the first experimental evidence that τV̇O2 is an independent determinant of critical power in this population.NEW & NOTEWORTHY Patients with type 1 diabetes demonstrated slower oxygen uptake (V̇o2) kinetics compared with healthy control subjects. Furthermore, a prior bout of high-intensity exercise speeded V̇o2 kinetics and increased critical power in people with type 1 diabetes. Prior exercise speeded muscle deoxygenation kinetics, indicating that V̇o2 kinetics in type 1 diabetes are limited primarily by oxygen extraction and/or intracellular factors. These findings highlight the potential for interventions that decrease metabolic inertia for enhancing exercise tolerance in this condition.


Asunto(s)
Diabetes Mellitus Tipo 1 , Tolerancia al Ejercicio , Diabetes Mellitus Tipo 1/metabolismo , Prueba de Esfuerzo , Humanos , Cinética , Masculino , Músculo Esquelético/metabolismo , Oxígeno/metabolismo , Consumo de Oxígeno , Intercambio Gaseoso Pulmonar , Adulto Joven
12.
Exp Physiol ; 105(3): 531-541, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31944446

RESUMEN

NEW FINDINGS: What is the central question of this study? Does the presence and extent of heterogeneity in the ratio of O2 delivery to uptake across human muscles relate specifically to different muscle activation patterns? What is the main finding and its importance? During ramp incremental knee-extension and cycling exercise, the profiles of muscle deoxygenation (deoxy[haemoglobin + myoglobin]) and diffusive O2 potential (total[haemoglobin + myoglobin]) in the vastus lateralis corresponded to different muscle activation strategies. However, this was not the case for the rectus femoris, where muscle activation and deoxygenation profiles were dissociated and might therefore be determined by other structural and/or functional attributes (e.g. arteriolar vascular regulation and control of red blood cell flux). ABSTRACT: Near-infrared spectroscopy has revealed considerable heterogeneity in the ratio of O2 delivery to uptake as identified by disparate deoxygenation {deoxy[haemoglobin + myoglobin] (deoxy[Hb + Mb])} values in the exercising quadriceps. However, whether this represents a recruitment phenomenon or contrasting vascular and metabolic control, as seen among fibre types, has not been established. We used knee-extension (KE) and cycling (CE) incremental exercise protocols to examine whether differential muscle activation profiles could account for the heterogeneity of deoxy[Hb + Mb] and microvascular haemoconcentration (i.e. total[Hb + Mb]). Using time-resolved near-infrared spectroscopy for the quadriceps femoris (vastus lateralis and rectus femoris) during exhaustive ramp exercise in eight participants, we tested the following hypotheses: (i) the deoxy[Hb + Mb] (i.e. fractional O2 extraction) would relate to muscle activation levels across exercise protocols; and (ii) KE would induce greater total[Hb + Mb] (i.e. diffusive O2 potential) at task failure (i.e. peak O2 uptake) than CE irrespective of muscle site. At a given level of muscle activation, as assessed by the relative integrated EMG normalized to maximal voluntary contraction (%iEMGmax ), the vastus lateralis deoxy[Hb + Mb] profile was not different between exercise protocols. However, at peak O2 uptake and until 20% iEMGmax for CE, rectus femoris exhibited a lower deoxy[Hb + Mb] (83.2 ± 15.5 versus 98.2 ± 19.4 µm) for KE than for CE (P < 0.05). The total[Hb + Mb] at peak O2 uptake was not different between exercise protocols for either muscle site. These data support the hypothesis that the contrasting patterns of convective and diffusive O2 transport correspond to different muscle activation patterns in vastus lateralis but not rectus femoris. Thus, the differential deoxygenation profiles for rectus femoris across exercise protocols might be dependent upon specific facets of muscle architecture and functional haemodynamic events.


Asunto(s)
Hemoglobinas/metabolismo , Microvasos/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Oxígeno/metabolismo , Adulto , Ejercicio Físico/fisiología , Humanos , Masculino , Microvasos/fisiología , Mioglobina/metabolismo , Consumo de Oxígeno/fisiología , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/fisiología , Espectroscopía Infrarroja Corta/métodos , Adulto Joven
13.
Adv Exp Med Biol ; 1232: 239-244, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31893416

RESUMEN

Near-infrared time-resolved spectroscopy (NIRTRS) can quantitatively evaluate mean optical path length (MPL). Since an increase in optical absorbers in the NIR region (e.g. an increase in deoxygenated hemoglobin during exercise) would shorten the MPL, the NIRS measurement area may vary depending on physical and physiological characteristics of the measurement region and/or the exercise intensity. The aim of this study was to examine the changes in MPL measured by NIRTRS during ramp cycling exercise between fat layer thickness-matched subjects with different aerobic capacities. Healthy control (CON, n = 8) and endurance-trained males (TR, n = 8) performed ramp cycling exercise until exhaustion. Deoxygenated hemoglobin concentration (Deoxy-Hb), total hemoglobin concentration (Total-Hb) and oxygenated hemoglobin concentration (Oxy-Hb) were evaluated by a three-wavelength NIRTRS system. MPL in each wavelength (MPL760, MPL800 and MPL830) was monitored continuously. With increasing exercise intensity, Total- and Deoxy-Hb significantly increased and Oxy-Hb decreased in both groups. Total- and Oxy-Hb during exercise were significantly higher in TR than CON (P < 0.05, P < 0.01, respectively). Furthermore, Deoxy-Hb also tended to be higher in TR than CON (P = 0.07). In addition, MPL at all wavelengths significantly shortened with an increase in exercise intensity, with no differences between CON and TR. In particular, MPL760 at peak exercise shortened more than 10% compared to the start of exercise in both groups, even though MPL830 decreased only a few per cent. These findings suggest that the NIRS measurement area may be reduced during ramp cycling exercise due to shortened MPL. Additionally, the changes in MPL may be especially greater at 760 nm than at the other wavelengths due to greater changes in Deoxy-Hb during exercise. Furthermore, this study indicates that the measurements of muscle deoxygenation using continuous-wave NIRS can be less accurate since they are significantly affected by changes in the optical path length.


Asunto(s)
Ejercicio Físico , Consumo de Oxígeno , Músculo Cuádriceps , Adolescente , Adulto , Estudios de Casos y Controles , Prueba de Esfuerzo , Humanos , Masculino , Oxígeno/metabolismo , Oxihemoglobinas/metabolismo , Músculo Cuádriceps/metabolismo , Espectroscopía Infrarroja Corta , Adulto Joven
14.
Am J Physiol Regul Integr Comp Physiol ; 317(6): R840-R851, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31617749

RESUMEN

It is typically assumed that in the context of double-leg cycling, dominant (DOMLEG) and nondominant legs (NDOMLEG) have similar aerobic capacity and both contribute equally to the whole body physiological responses. However, there is a paucity of studies that have systematically investigated maximal and submaximal aerobic performance and characterized the profiles of local muscle deoxygenation in relation to leg dominance. Using counterweighted single-leg cycling, this study explored whether peak O2 consumption (V̇o2peak), maximal lactate steady-state (MLSSp), and profiles of local deoxygenation [HHb] would be different in the DOMLEG compared with the NDOMLEG. Twelve participants performed a series of double-leg and counterweighted single-leg DOMLEG and NDOMLEG ramp-exercise tests and 30-min constant-load trials. V̇o2peak was greater in the DOMLEG than in the NDOMLEG (2.87 ± 0.42 vs. 2.70 ± 0.39 L/min, P < 0.05). The difference in V̇o2peak persisted even after accounting for lean mass (P < 0.05). Similarly, MLSSp was greater in the DOMLEG than in the NDOMLEG (118 ± 31 vs. 109 ± 31 W; P < 0.05). Furthermore, the amplitude of the [HHb] signal during ramp exercise was larger in the DOMLEG than in the NDOMLEG during both double-leg (26.0 ± 8.4 vs. 20.2 ± 8.8 µM, P < 0.05) and counterweighted single-leg cycling (18.5 ± 7.9 vs. 14.9 ± 7.5 µM, P < 0.05). Additionally, the amplitudes of the [HHb] signal were highly to moderately correlated with the mode-specific V̇o2peak values (ranging from 0.91 to 0.54). These findings showed in a group of young men that maximal and submaximal aerobic capacities were greater in the DOMLEG than in the NDOMLEG and that superior peripheral adaptations of the DOMLEG may underpin these differences.NEW & NOTEWORTHY It is typically assumed that the dominant and nondominant legs contribute equally to the whole physiological responses. In this study, we found that the dominant leg achieved greater peak O2 uptake values, sustained greater power output while preserving whole body metabolic stability, and showed larger amplitudes of deoxygenation responses. These findings highlight heterogeneous aerobic capacities of the lower limbs, which have important implications when whole body physiological responses are examined.


Asunto(s)
Ejercicio Físico/fisiología , Pierna , Músculo Esquelético/metabolismo , Consumo de Oxígeno/fisiología , Adaptación Fisiológica , Adulto , Ciclismo , Humanos , Masculino , Adulto Joven
15.
Am J Physiol Regul Integr Comp Physiol ; 317(1): R203-R213, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31042412

RESUMEN

Relative perfusion of active muscles is greater during knee extension ergometry (KE) than cycle ergometry (CE). This provides the opportunity to investigate the effects of increased O2 delivery (Q̇o2) on deoxygenation heterogeneity among quadriceps muscles and pulmonary oxygen uptake (V̇o2) kinetics. Using time-resolved near-infrared spectroscopy, we hypothesized that compared with CE the superficial vastus lateralis (VL), superficial rectus femoris, and deep VL in KE would have 1) a smaller amplitude of the exercise-induced increase in deoxy[Hb + Mb] (related to the balance between V̇o2 and Q̇o2); 2) a greater amplitude of total[Hb + Mb] (related to the diffusive O2 conductance); 3) a greater homogeneity of regional muscle deoxy[Hb + Mb]; and 4) no difference in pulmonary V̇o2 kinetics. Eight participants performed square-wave KE and CE exercise from 20 W to heavy work rates. Deoxy[Hb + Mb] amplitude was less for all muscle regions in KE (P < 0.05: superficial, KE 17-24 vs. CE 19-40; deep, KE 19 vs. CE 26 µM). Furthermore, the amplitude of total[Hb + Mb] was greater for KE than CE at all muscle sites (P < 0.05: superficial, KE, 7-21 vs. CE, 1-16; deep, KE, 11 vs. CE, -3 µM). Although the amplitude and heterogeneity of deoxy[Hb + Mb] were significantly lower in KE than CE during the first minute of exercise, the pulmonary V̇o2 kinetics was not different for KE and CE. These data show that the microvascular Q̇o2 to V̇o2 ratio, and thus tissue oxygenation, was greater in KE than CE. This suggests that pulmonary and muscle V̇o2 kinetics in young healthy humans are not limited by Q̇o2 during heavy-intensity cycling.


Asunto(s)
Ciclismo , Músculo Esquelético/fisiología , Oxígeno/metabolismo , Entrenamiento de Fuerza , Tejido Adiposo , Adolescente , Hemoglobinas/metabolismo , Humanos , Masculino , Mioglobina/metabolismo , Adulto Joven
16.
Eur J Appl Physiol ; 119(1): 191-200, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30350154

RESUMEN

PURPOSE: It has been shown that an inspiratory muscle warm-up (IMW) could enhance performance. IMW may also improve the near-infrared spectroscopy (NIRS)-derived tissue oxygen saturation index (TSI) during cycling. However, there exists contradictory data about the effect of this conditioning strategy on performance and muscle oxygenation. We examined the effect of IMW on speed skating performance and studied the underpinning physiological mechanisms related to muscle oxygenation. METHODS: In a crossover, randomized, single-blind study, eight elite speed skaters performed 3000 m on-ice time trials, preceded by either IMW (2 × 30 breaths, 40% maximal inspiratory pressure) or SHAM (2 × 30 breaths, 15% maximal inspiratory pressure). Changes in TSI, oxyhemoglobin-oxymyoglobin ([O2HbMb]), deoxyhemoglobin-deoxymyoglobin ([HHbMb]), total hemoglobin-myoglobin ([THbMb]) and HHbMbdiff ([O2HbMb]-[HHbMb]) in the right vastus lateralis muscle were monitored by NIRS. All variables were compared at different time points of the race simulation with repeated-measures analysis of variance. Differences between IMW and SHAM were also analyzed using Cohen's effect size (ES) ± 90% confidence limits, and magnitude-based inferences. RESULTS: Compared with SHAM, IMW had no clear impact on skating time (IMW 262.88 ± 17.62 s vs. SHAM 264.05 ± 21.12 s, effect size (ES) 0.05; 90% confidence limits, - 0.22, 0.32, p = 0.7366), TSI, HbMbdiff, [THbMb], [O2HbMb] and perceptual responses. CONCLUSIONS: IMW did not modify skating time during a 3000 m time trial in speed skaters, in the conditions of our study. The unchanged [THbMb] and TSI demonstrate that the mechanisms by which IMW could possibly exert an effect on performance were unaffected by this intervention.


Asunto(s)
Consumo de Oxígeno , Músculo Cuádriceps/fisiología , Músculos Respiratorios/fisiología , Ejercicio de Calentamiento/fisiología , Adulto , Rendimiento Atlético , Femenino , Humanos , Inhalación , Masculino , Reflejo , Patinación/fisiología
17.
Eur J Appl Physiol ; 118(12): 2627-2639, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30206692

RESUMEN

PURPOSE: The purpose was to compare the singular and combined effects of 5 s breath holds (BH) and 5 s sprints, every 30 s, during continuous high-intensity exercise, on ventilation ([Formula: see text]), oxygen uptake ([Formula: see text]O2) and associated kinetics (τ), carbon dioxide production ([Formula: see text]CO2), and arterialized-capillary lactate concentration ([La-]). METHODS: Ten men (24 ± 3 years) performed 4-6 min ergometer protocols that included a step-transition from 20 W to a power output of 50% of the difference between lactate threshold and [Formula: see text]O2 peak (Δ50%) including: (1) a continuous protocol (CONT) with free breathing, (2) an intermittent BH protocol (CONT-BH); repeated cycles of 5 s BH: 25 s free breathing, (3) a Fartlek protocol (Fartlek); repeated 5 s at peak aerobic power output: 25 s at Δ50%; (4) combining the 5 s Fartlek and CONT-BH protocol (Fartlek-BH). Breath-by-breath gas exchange, measured by mass spectrometry and turbine, was recorded. RESULTS: [Formula: see text] E (L min-1) was greater (p < 0.05) than CONT (90 ± 7) in all conditions CONT-BH (98 ± 16), Fartlek (105 ± 10), and Fartlek-BH (101 ± 19). [Formula: see text]O2 and [Formula: see text]CO2 (L min-1) were unchanged in CONT-BH (2.73 ± 0.14 and 3.16 ± 0.38) and greater in Fartlek (2.85 ± 0.12 and 3.43 ± 0.16), compared to CONT (2.71 ± 0.12 and 3.12 ± 0.13). Whereas, [Formula: see text]CO2 during Fartlek-BH was higher (3.28 ± 0.35) and [Formula: see text]O2 was unchanged (2.73 ± 0.14). Fartlek-BH resulted in slower [Formula: see text]O2 kinetics (62.2 ± 19 s) and greater blood lactate concentrations (11.5 ± 2.7 mM), compared to CONT (48.8 ± 12 s; 9.0 ± 2.3 mM, respectively). CONCLUSIONS: It was demonstrated that the CONT-BH resulted in increased ventilation that sustained [Formula: see text]O2. However, [Formula: see text]O2 was restricted when an additional work was combined with the BH condition.


Asunto(s)
Contencion de la Respiración , Entrenamiento de Intervalos de Alta Intensidad/métodos , Consumo de Oxígeno , Adulto , Dióxido de Carbono/metabolismo , Humanos , Ácido Láctico/sangre , Masculino , Intercambio Gaseoso Pulmonar , Ventilación Pulmonar , Distribución Aleatoria , Natación/fisiología
18.
Physiol Rep ; 5(17)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28912130

RESUMEN

To date our knowledge of skeletal muscle deoxygenation as measured by near-infrared spectroscopy (NIRS) is predicated almost exclusively on sampling of superficial muscle(s), most commonly the vastus lateralis (VL-s). Recently developed high power NIRS facilitates simultaneous sampling of deep (i.e., rectus femoris, RF-d) and superficial muscles of RF (RF-s) and VL-s. Because deeper muscle is more oxidative with greater capillarity and sustains higher blood flows than superficial muscle, we used time-resolved NIRS to test the hypotheses that, following exercise onset, the RF-d has slower deoxy[Hb+Mb] kinetics with reduced amplitude than superficial muscles. Thirteen participants performed cycle exercise transitions from unloaded to heavy work rates. Within the same muscle (RF-s vs. RF-d) deoxy[Hb+Mb] kinetics (mean response time, MRT) and amplitudes were not different. However, compared with the kinetics of VL-s, deoxy[Hb+Mb] of RF-s and RF-d were slower (MRT: RF-s, 51 ± 23; RF-d, 55 ± 29; VL-s, 18 ± 6 s; P < 0.05). Moreover, the amplitude of total[Hb+Mb] was greater for VL-s than both RF-s and RF-d (P < 0.05). Whereas pulmonary V˙O2 kinetics (i.e., on vs. off) were symmetrical in heavy exercise, there was a marked on-off asymmetry of deoxy[Hb+Mb] for all three sites i.e., MRT-off > MRT-on (P < 0.05). Collectively these data reveal profoundly different O2 transport strategies, with the RF-s and RF-d relying proportionately more on elevated perfusive and the VL-s on diffusive O2 transport. These disparate O2 transport strategies and their temporal profiles across muscles have previously been concealed within the "global" pulmonary V˙O2 response.


Asunto(s)
Ejercicio Físico , Consumo de Oxígeno , Músculo Cuádriceps/fisiología , Humanos , Masculino , Oxihemoglobinas/metabolismo , Músculo Cuádriceps/irrigación sanguínea , Músculo Cuádriceps/metabolismo , Adulto Joven
19.
Eur J Appl Physiol ; 117(10): 2057-2064, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28819691

RESUMEN

PURPOSE: The present study was performed to determine the impact of hypoxia on working muscle oxygenation during incremental running, and to compare tissue oxygenation between the thigh and calf muscles. METHODS: Nine distance runners and triathletes performed incremental running tests to exhaustion under normoxic and hypoxic conditions (fraction of inspired oxygen = 0.15). Peak pulmonary oxygen uptake ([Formula: see text]) and tissue oxygen saturation (StO2) were measured simultaneously in both the vastus lateralis and medial gastrocnemius. RESULTS: Hypoxia significantly decreased peak running speed and [Formula: see text] (p < 0.01). During incremental running, StO2 in the vastus lateralis decreased almost linearly, and the rate of decrease from warm-up (180 m min-1) to [Formula: see text] was significantly greater than in the medial gastrocnemius under both normoxic and hypoxic conditions (p < 0.01). StO2 in both muscles was significantly decreased under hypoxic compared with normoxic conditions at all running speeds (p < 0.01). The rate at which StO2 was decreased by hypoxia was greater in the vastus lateralis as the running speed increased, whereas it changed little in the medial gastrocnemius. CONCLUSIONS: These results suggest that the thigh is more deoxygenated than the calf under hypoxic conditions, and that the effects of hypoxia on tissue oxygenation differ between these two muscles during incremental running.


Asunto(s)
Hipoxia/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxígeno , Carrera/fisiología , Adulto , Humanos , Pierna/fisiología , Masculino , Músculo Esquelético/fisiología , Muslo/fisiología
20.
Int J Sports Physiol Perform ; 12(4): 496-504, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27617750

RESUMEN

PURPOSE: To quantify changes in skeletal-muscle oxygenation and pulmonary O2 uptake (V̇O2) after an extreme ultratrail running bout. METHODS: Before (PRE) and after (POST) the race (330-km, 24000 D±), profiles of vastus lateralis muscle oxygenation (ie, oxyhemoglobin [O2Hb], deoxyhemoglobin [HHb], and tissue oxygenation index [TOI]) and V̇O2 were determined in 14 athletes (EXP) and 12 control adults (CON) during two 4-min constant-load cycling bouts at power outputs of 1 (p1) and 1.5 (p1.5) W/kg performed in randomized order. RESULTS: At POST, normalized [HHb] values increased (p1, +38.0%; p1.5, +27.9%; P < .05), while normalized [O2Hb] (p1, -20.4%; p1.5, -14.4%; P < .05) and TOI (p1, -17.0%; p1.5, -17.7%; P < .05) decreased in EXP. V̇O2 values were similar (P > 0.05). An "overshoot" in normalized [HHb]:V̇O2 was observed, although the increase was significant only during p1.5 (+58.7%, P = .003). No difference in the aforementioned variables was noted in CON (P > .05). CONCLUSIONS: The concentric and, particularly, the eccentric loads characterizing this extreme ultratrail-running bout may have led to variations in muscle structure and function, increasing the local muscle deoxygenation profile and the imbalance between O2 delivery to working muscles and muscle O2 consumption. This highlights the importance of incorporating graded training, particularly downhill bouts, to reduce the negative influence of concentric and severe eccentric loads to the microcirculatory function and to enhance the ability of runners to sustain such loading.


Asunto(s)
Consumo de Oxígeno/fisiología , Músculo Cuádriceps/fisiología , Carrera/fisiología , Adulto , Atletas , Hemoglobinas/análisis , Humanos , Masculino , Microcirculación , Persona de Mediana Edad , Oxihemoglobinas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA