Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Chemistry ; 29(22): e202203670, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36637100

RESUMEN

It remains challenging to fabricate highly-efficient and long-lived organic afterglow materials, especially in the case of red afterglow systems. Here we develop advanced charge transfer (CT) technology to boost afterglow efficiency and lifetimes in fluoranthene-containing dopant-matrix systems. First, organic CT molecules possess singlet-triplet splitting energy (ΔEST ) of around 0.5 eV, much smaller than localized excitation systems. Second, upon doping into suitable organic matrices, dipole-dipole interactions between 1 CT states and organic matrices reduce 1 CT levels with less effect on 3 CT levels, and thus further narrow ΔEST and enhance intersystem crossing. Third, the rigid planar structure of fluoranthene groups and the rigid microenvironment provided by organic matrices can suppress phosphorescence quenching. Forth, the multiple donor design enables spectral red-shifts to red region and switches on TADF mechanism to improve afterglow efficiency to 13.1 % and maintain afterglow lifetime of 0.1 s. Such high-performance afterglow materials have been rarely explored in reported studies.

2.
Angew Chem Int Ed Engl ; 60(44): 23771-23776, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34405502

RESUMEN

Thermally activated delayed fluorescence (TADF) materials with through-space charge transfers (CT) have attracted particularly interest recently. However, the slow reverse intersystem crossing (RISC) and radiative decay always limit their electroluminescence performances. Herein, TADF molecules with ortho-linked multiple donors-acceptor (ortho-Dn -A) motif are developed to create near-degenerate excited states for the reinforcement of spin-orbit coupling. The incorporation of both through-bond and through-space CT enlarges oscillator strength. The optimal ortho-D3 -A compound exhibits a photoluminescence quantum yield of ca. 100 %, a high RISC rate of 2.57×106  s-1 and a high radiative decay rate of 1.00×107  s-1 simultaneously. With this compound as the sensitizer, a TADF-sensitized-fluorescent organic light-emitting diode shows a maximum external quantum efficiency of 31.6 % with an ultrapure green Commission Internationale de L'Eclairage y coordinate value of 0.69.

3.
Front Surg ; 8: 693021, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34195224

RESUMEN

Background: The use of living-donor kidney allografts with multiple vessels continues to rise in order to increase the donor pool. This requires surgeons to pursue vascular reconstructions more often, which has previously been associated with a higher risk of developing early post-transplant complications. We therefore wanted to investigate the prognostic role of using living-donor renal allografts with a single artery (SA) vs. multiple arteries (MA) at the time of transplant. Methods: We retrospectively analyzed a cohort of 210 consecutive living-donor kidney transplants performed between January, 2008 and March, 2019, and compared the incidence of developing postoperative complications and other clinical outcomes between SA vs. MA recipients. Results: No differences were observed between SA (N = 161) and MA (N = 49) kidneys in terms of the incidence of developing a postoperative (or surgical) complication, a urologic complication, hospital length of stay, delayed graft function, estimated glomerular filtration rate at 3 or 12 mo post-transplant, and graft survival. Conclusions: The use of live-kidney allografts with MA requiring vascular reconstruction shows excellent clinical outcomes and does not increase the risk of developing postoperative complications or other adverse outcomes when compared with SA renal allografts.

4.
Adv Mater ; 31(20): e1804762, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30444544

RESUMEN

Compared with conventional organic solar cells (OSCs) based on single donor-acceptor pairs, terpolymer- and ternary-based OSCs featuring multiple donor-acceptor pairs are promising strategies for enhancing the performance while maintaining an easy and simple synthetic process. Using multiple donor-acceptor pairs in the active layer, the key photovoltaic parameters (i.e., short-circuit current density, open-circuit voltage, and fill factor) governing the OSC characteristics can be simultaneously or individually improved by positive changes in light-harvesting ability, molecular energy levels, and blend morphology. Here, these three major contributions are discussed with the aim of offering in-depth insights in combined terpolymers and ternary systems. Recent exemplary cases of OSCs with multiple donor-acceptor pairs are summarized and more advanced research and perspectives for further developments in this field are highlighted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA