Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 14(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39272626

RESUMEN

In neuroimaging, there is no equivalent alternative to magnetic resonance imaging (MRI). However, image acquisitions are generally time-consuming, which may limit utilization in some cases, e.g., in patients who cannot remain motionless for long or suffer from claustrophobia, or in the event of extensive waiting times. For multiple sclerosis (MS) patients, MRI plays a major role in drug therapy decision-making. The purpose of this study was to evaluate whether an ultrafast, T2-weighted (T2w), deep learning-enhanced (DL), echo-planar-imaging-based (EPI) fluid-attenuated inversion recovery (FLAIR) sequence (FLAIRUF) that has targeted neurological emergencies so far might even be an option to detect MS lesions of the brain compared to conventional FLAIR sequences. Therefore, 17 MS patients were enrolled prospectively in this exploratory study. Standard MRI protocols and ultrafast acquisitions were conducted at 3 tesla (T), including three-dimensional (3D)-FLAIR, turbo/fast spin-echo (TSE)-FLAIR, and FLAIRUF. Inflammatory lesions were grouped by size and location. Lesion conspicuity and image quality were rated on an ordinal five-point Likert scale, and lesion detection rates were calculated. Statistical analyses were performed to compare results. Altogether, 568 different lesions were found. Data indicated no significant differences in lesion detection (sensitivity and positive predictive value [PPV]) between FLAIRUF and axially reconstructed 3D-FLAIR (lesion size ≥3 mm × ≥2 mm) and no differences in sensitivity between FLAIRUF and TSE-FLAIR (lesion size ≥3 mm total). Lesion conspicuity in FLAIRUF was similar in all brain regions except for superior conspicuity in the occipital lobe and inferior conspicuity in the central brain regions. Further findings include location-dependent limitations of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as well as artifacts such as spatial distortions in FLAIRUF. In conclusion, FLAIRUF could potentially be an expedient alternative to conventional methods for brain imaging in MS patients since the acquisition can be performed in a fraction of time while maintaining good image quality.

2.
MAGMA ; 37(4): 621-636, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38743376

RESUMEN

PURPOSE: To investigate the effect of respiratory motion in terms of signal loss in prostate diffusion-weighted imaging (DWI), and to evaluate the usage of partial Fourier in a free-breathing protocol in a clinically relevant b-value range using both single-shot and multi-shot acquisitions. METHODS: A controlled breathing DWI acquisition was first employed at 3 T to measure signal loss from deep breathing patterns. Single-shot and multi-shot (2-shot) acquisitions without partial Fourier (no pF) and with partial Fourier (pF) factors of 0.75 and 0.65 were employed in a free-breathing protocol. The apparent SNR and ADC values were evaluated in 10 healthy subjects to measure if low pF factors caused low apparent SNR or overestimated ADC. RESULTS: Controlled breathing experiments showed a difference in signal coefficient of variation between shallow and deep breathing. In free-breathing single-shot acquisitions, the pF 0.65 scan showed a significantly (p < 0.05) higher apparent SNR than pF 0.75 and no pF in the peripheral zone (PZ) of the prostate. In the multi-shot acquisitions in the PZ, pF 0.75 had a significantly higher apparent SNR than 0.65 pF and no pF. The single-shot pF 0.65 scan had a significantly lower ADC than single-shot no pF. CONCLUSION: Deep breathing patterns can cause intravoxel dephasing in prostate DWI. For single-shot acquisitions at a b-value of 800 s/mm2, any potential risks of motion-related artefacts at low pF factors (pF 0.65) were outweighed by the increase in signal from a lower TE, as shown by the increase in apparent SNR. In multi-shot acquisitions however, the minimum pF factor should be larger, as shown by the lower apparent SNR at low pF factors.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen Eco-Planar , Análisis de Fourier , Movimiento (Física) , Próstata , Respiración , Relación Señal-Ruido , Humanos , Masculino , Imagen de Difusión por Resonancia Magnética/métodos , Imagen Eco-Planar/métodos , Próstata/diagnóstico por imagen , Adulto , Neoplasias de la Próstata/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Artefactos , Algoritmos , Persona de Mediana Edad , Interpretación de Imagen Asistida por Computador/métodos
3.
Magn Reson Med ; 91(6): 2443-2458, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38361309

RESUMEN

PURPOSE: The 3D multi-shot EPI imaging offers several benefits including higher SNR and high isotropic resolution compared to 2D single shot EPI. However, it suffers from shot-to-shot inconsistencies arising from physiologically induced phase variations and bulk motion. This work proposed a motion compensated structured low-rank (mcSLR) reconstruction method to address both issues for 3D multi-shot EPI. METHODS: Structured low-rank reconstruction has been successfully used in previous work to deal with inter-shot phase variations for 3D multi-shot EPI imaging. It circumvents the estimation of phase variations by reconstructing an individual image for each phase state which are then sum-of-squares combined, exploiting their linear interdependency encoded in structured low-rank constraints. However, structured low-rank constraints become less effective in the presence of inter-shot motion, which corrupts image magnitude consistency and invalidates the linear relationship between shots. Thus, this work jointly models inter-shot phase variations and motion corruptions by incorporating rigid motion compensation for structured low-rank reconstruction, where motion estimates are obtained in a fully data-driven way without relying on external hardware or imaging navigators. RESULTS: Simulation and in vivo experiments at 7T have demonstrated that the mcSLR method can effectively reduce image artifacts and improve the robustness of 3D multi-shot EPI, outperforming existing methods which only address inter-shot phase variations or motion, but not both. CONCLUSION: The proposed mcSLR reconstruction compensates for rigid motion, and thus improves the validity of structured low-rank constraints, resulting in improved robustness of 3D multi-shot EPI to both inter-shot motion and phase variations.


Asunto(s)
Algoritmos , Encéfalo , Imagenología Tridimensional/métodos , Movimiento (Física) , Imagen Eco-Planar/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Artefactos , Imagen de Difusión por Resonancia Magnética/métodos
4.
NMR Biomed ; 37(3): e5063, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37871617

RESUMEN

Recently, intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) has also been demonstrated as an imaging tool for applications in neurological and neurovascular diseases. However, the use of single-shot diffusion-weighted echo-planar imaging for IVIM DWI acquisition leads to suboptimal data quality: for instance, geometric distortion and deteriorated image quality at high spatial resolution. Although the recently commercialized multi-shot acquisition methods, such as multiplexed sensitivity encoding (MUSE), can attain high-resolution and high-quality DWI with signal-to-noise ratio (SNR) performance superior to that of the conventional parallel imaging method, the prolonged scan time associated with multi-shot acquisition is impractical for routine IVIM DWI. This study proposes an acquisition and reconstruction framework based on parametric-POCSMUSE to accelerate the four-shot IVIM DWI with 70% reduction of total scan time (13 min 8 s versus 4 min 8 s). First, the four-shot IVIM DWI scan with 17 b values was accelerated by acquiring only one segment per b value except for b values of 0 and 600 s/mm2 . Second, an IVIM-estimation scheme was integrated into the parametric-POCSMUSE to enable joint reconstruction of multi-b images from under-sampled four-shot IVIM DWI data. In vivo experiments on both healthy subjects and patients show that the proposed framework successfully produced multi-b DW images with significantly higher SNRs and lower reconstruction errors than did the conventional acceleration method based on parallel imaging. In addition, the IVIM quantitative maps estimated from the data produced by the proposed framework showed quality comparable to that of fully sampled MUSE-reconstructed images, suggesting that the proposed framework can enable highly accelerated multi-shot IVIM DWI without sacrificing data quality. In summary, the proposed framework can make multi-shot IVIM DWI feasible in a routine MRI examination, with reasonable scan time and improved geometric fidelity.


Asunto(s)
Alprostadil , Encéfalo , Humanos , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Cabeza , Imagen por Resonancia Magnética , Imagen Eco-Planar/métodos , Movimiento (Física)
5.
Acad Radiol ; 30(12): 2988-2998, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37211480

RESUMEN

RATIONALE AND OBJECTIVES: To evaluate clinical feasibility and image quality of a comprehensive ultrafast brain MRI protocol with multi-shot echo planar imaging and deep learning-enhanced reconstruction at 1.5T. MATERIALS AND METHODS: Thirty consecutive patients who underwent clinically indicated MRI at a 1.5 T scanner were prospectively included. A conventional MRI (c-MRI) protocol, including T1-, T2-, T2*-, T2-FLAIR, and diffusion-weighted images (DWI)-weighted sequences were acquired. In addition, ultrafast brain imaging with deep learning-enhanced reconstruction and multi-shot EPI (DLe-MRI) was performed. Subjective image quality was evaluated by three readers using a 4-point Likert scale. To assess interrater agreement, Fleiss' kappa (Ï°) was determined. For objective image analysis, relative signal intensity levels for grey matter, white matter, and cerebrospinal fluid were calculated. RESULTS: Time of acquisition (TA) of c-MRI protocols added up to 13:55 minutes, whereas the TA of DLe-MRI-based protocol added up to 3:04 minutes, resulting in a time reduction of 78%. All DLe-MRI acquisitions yielded diagnostic image quality with good absolute values for subjective image quality. C-MRI demonstrated slight advantages for DWI in overall subjective image quality (c-MRI: 3.93 [+/- 0.25] vs DLe-MRI: 3.87 [+/- 0.37], P = .04) and diagnostic confidence (c-MRI: 3.93 [+/- 0.25] vs DLe-MRI: 3.83 [+/- 3.83], P = .01). For most evaluated quality scores, moderate interobserver agreement was found. Objective image evaluation revealed comparable results for both techniques. CONCLUSION: DLe-MRI is feasible and allows for highly accelerated comprehensive brain MRI within 3minutes at 1.5 T with good image quality. This technique may potentially strengthen the role of MRI in neurological emergencies.


Asunto(s)
Aprendizaje Profundo , Imagen Eco-Planar , Humanos , Imagen Eco-Planar/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos
6.
Magn Reson Med ; 89(2): 605-619, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36198013

RESUMEN

PURPOSE: Subject head motion is a major challenge in DWI, leading to image blurring, signal losses, and biases in the estimated diffusion parameters. Here, we investigate a combined application of prospective motion correction and spatial-angular locally low-rank constrained reconstruction to obtain robust, multi-shot, high-resolution diffusion-weighted MRI under substantial motion. METHODS: Single-shot EPI with retrospective motion correction can mitigate motion artifacts and resolve any mismatching of gradient encoding orientations; however, it is limited by low spatial resolution and image distortions. Multi-shot acquisition strategies could achieve higher resolution and image fidelity but increase the vulnerability to motion artifacts and phase variations related to cardiac pulsations from shot to shot. We use prospective motion correction with optical markerless motion tracking to remove artifacts and reduce image blurring due to bulk motion, combined with locally low-rank regularization to correct for remaining artifacts due to shot-to-shot phase variations. RESULTS: The approach was evaluated on healthy adult volunteers at 3 Tesla under different motion patterns. In multi-shot DWI, image blurring due to motion with 20 mm translations and 30° rotations was successfully removed by prospective motion correction, and aliasing artifacts caused by shot-to-shot phase variations were addressed by locally low-rank regularization. The ability of prospective motion correction to preserve the orientational information in DTI without requiring a reorientation of the b-matrix is highlighted. CONCLUSION: The described technique is proved to hold valuable potential for mapping brain diffusivity and connectivity at high resolution for studies in subjects/cohorts where motion is common, including neonates, pediatrics, and patients with neurological disorders.


Asunto(s)
Imagen Eco-Planar , Interpretación de Imagen Asistida por Computador , Adulto , Recién Nacido , Humanos , Niño , Imagen Eco-Planar/métodos , Interpretación de Imagen Asistida por Computador/métodos , Estudios Prospectivos , Estudios Retrospectivos , Imagen de Difusión por Resonancia Magnética/métodos , Artefactos , Movimiento (Física) , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos
7.
Magn Reson Med ; 89(1): 396-410, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36110059

RESUMEN

PURPOSE: To introduce a novel imaging and parameter estimation framework for accurate multi-shot diffusion MRI. THEORY AND METHODS: We propose a new framework called ADEPT (Accurate Diffusion Echo-Planar imaging with multi-contrast shoTs) that enables fast diffusion MRI by allowing diffusion contrast settings to change between shots in a multi-shot EPI acquisition (i.e., intra-scan modulation). The framework estimates diffusion parameter maps directly from the acquired intra-scan modulated k-space data, while simultaneously accounting for shot-to-shot phase inconsistencies. The performance of the estimation framework is evaluated using Monte Carlo simulation studies and in-vivo experiments and compared to that of reference methods that rely on parallel imaging for shot-to-shot phase correction. RESULTS: Simulation and real-data experiments show that ADEPT yields more accurate and more precise estimates of the diffusion metrics in multi-shot EPI data in comparison with the reference methods. CONCLUSION: ADEPT allows fast multi-shot EPI diffusion MRI without significantly degrading the accuracy and precision of the estimated diffusion maps.


Asunto(s)
Imagen Eco-Planar , Procesamiento de Imagen Asistido por Computador , Imagen Eco-Planar/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Simulación por Computador , Método de Montecarlo , Encéfalo/diagnóstico por imagen
8.
Neuroimage ; 267: 119827, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36572131

RESUMEN

Three-dimensional (3D) encoding methods are increasingly being explored as alternatives to two-dimensional (2D) multi-slice acquisitions in fMRI, particularly in cases where high isotropic resolution is needed. 3D multi-shot EPI acquisition, as the workhorse of 3D fMRI imaging, is susceptible to physiological fluctuations which can induce inter-shot phase variations, and thus reducing the achievable tSNR, negating some of the benefit of 3D encoding. This issue can be particularly problematic at ultra-high fields like 7T, which have more severe off-resonance effects. In this work, we aim to improve the temporal stability of 3D multi-shot EPI at 7T by improving its robustness to inter-shot phase variations. We presented a 3D segmented CAIPI sampling trajectory ("seg-CAIPI") and an improved reconstruction method based on Hankel structured low-rank matrix recovery. Simulation and in-vivo results demonstrate that the combination of the seg-CAIPI sampling scheme and the proposed structured low-rank reconstruction is a promising way to effectively reduce the unwanted temporal variance induced by inter-shot physiological fluctuations, and thus improve the robustness of 3D multi-shot EPI for fMRI.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Eco-Planar/métodos , Encéfalo/diagnóstico por imagen , Algoritmos
9.
Magn Reson Med ; 88(3): 1180-1197, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35678236

RESUMEN

PURPOSE: To introduce wave-encoded acquisition and reconstruction techniques for highly accelerated EPI with reduced g-factor penalty and image artifacts. THEORY AND METHODS: Wave-EPI involves application of sinusoidal gradients during the EPI readout, which spreads the aliasing in all spatial directions, thereby taking better advantage of 3D coil sensitivity profiles. The amount of voxel spreading that can be achieved by the wave gradients during the short EPI readout period is constrained by the slew rate of the gradient coils and peripheral nerve stimulation monitor. We propose to use a "half-cycle" sinusoidal gradient to increase the amount of voxel spreading that can be achieved while respecting the slew and stimulation constraints. Extending wave-EPI to multi-shot acquisition minimizes geometric distortion and voxel blurring at high in-plane resolutions, while structured low-rank regularization mitigates shot-to-shot phase variations. To address gradient imperfections, we propose to use different point spread functions for the k-space lines with positive and negative polarities, which are calibrated with a FLEET-based reference scan. RESULTS: Wave-EPI enabled whole-brain single-shot gradient-echo (GE) and multi-shot spin-echo (SE) EPI acquisitions at high acceleration factors at 3T and was combined with g-Slider encoding to boost the SNR level in 1 mm isotropic diffusion imaging. Relative to blipped-CAIPI, wave-EPI reduced average and maximum g-factors by up to 1.21- and 1.37-fold at Rin × Rsms  = 3 × 3, respectively. CONCLUSION: Wave-EPI allows highly accelerated single- and multi-shot EPI with reduced g-factor and artifacts and may facilitate clinical and neuroscientific applications of EPI by improving the spatial and temporal resolution in functional and diffusion imaging.


Asunto(s)
Imagen Eco-Planar , Aumento de la Imagen , Algoritmos , Artefactos , Encéfalo/diagnóstico por imagen , Imagen Eco-Planar/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos
10.
Neuroimage ; 244: 118632, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34627977

RESUMEN

PURPOSE: A phase correction method for high-resolution multi-shot (MSH) diffusion weighted imaging (DWI) is proposed. The efficacy and generalization capability of the method were validated on both healthy volunteers and patients. THEORY AND METHODS: Conventionally, inter-shot phase variations for MSH echo-planar imaging (EPI) DWI are corrected by model-based algorithms. However, many acquisition imperfections are hard to measure accurately for conventional model-based methods, making the phase estimation and artifacts suppression unreliable. We propose a deep learning multiplexed sensitivity-encoding (DL-MUSE) framework to improve the phase estimations based on convolutional neural network (CNN) reconstruction. Aliasing-free single-shot (SSH) DW images, which have been used routinely in clinical settings, were used for training before the aliasing correction of MSH-DWI images. A dual-channel U-net comprising multiple convolutional layers was used for the phase estimation of MSH-EPI. The network was trained on a dataset containing 30 healthy volunteers and tested on another dataset of 52 healthy subjects and 15 patients with lesions or tumors with different shot numbers (4, 6 and 8). To further validate the generalization capability of our network, we acquired a dataset with different numbers of shots, TEs, partial Fourier factors, resolutions, ETLs, FOVs, coil numbers, and image orientations from two sites. We also compared the reconstruction performance of our proposed method with that of the conventional MUSE and SSH-EPI qualitatively and quantitatively. RESULTS: Our results show that DL-MUSE is capable of correcting inter-shot phase errors with high and robust performance. Compared to conventional model-based MUSE, our method, by applying deep learning-based phase corrections, showed reduced distortion, noise level, and signal loss in high b-value DWIs. The improvements of image quality become more evident as the shot number increases from 4 to 8, especially in those central regions of the images, where g-factor artifacts are severe. Furthermore, the proposed method could provide the information about the orientation of the white matter with better consistency and achieve finer fibers delineation compared to the SSH-EPI method. Besides, the experiments on volunteers and patients from two different sites demonstrated the generalizability of our proposed method preliminarily. CONCLUSION: A deep learning-based reconstruction algorithm for MSH-EPI images, which helps improve image quality greatly, was proposed. Results from healthy volunteers and tumor patients demonstrated the feasibility and generalization performances of our method for high-resolution MSH-EPI DWI, which can be used for routine clinical applications as well as neuroimaging research.


Asunto(s)
Aprendizaje Profundo , Imagen de Difusión por Resonancia Magnética/métodos , Neuroimagen/métodos , Adulto , Anciano , Algoritmos , Neoplasias Encefálicas/diagnóstico por imagen , Imagen Eco-Planar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Redes Neurales de la Computación , Variación de la Fase , Adulto Joven
11.
Magn Reson Med ; 85(1): 120-139, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32705723

RESUMEN

PURPOSE: To alleviate the spatial encoding limitations of single-shot echo-planar imaging (EPI) by developing multi-shot segmented EPI for ultra-high-resolution functional MRI (fMRI) with reduced ghosting artifacts from subject motion and respiration. THEORY AND METHODS: Segmented EPI can reduce readout duration and reduce acceleration factors, however, the time elapsed between segment acquisitions (on the order of seconds) can result in intermittent ghosting, limiting its use for fMRI. Here, "FLEET" segment ordering, where segments are looped over before slices, was combined with a variable flip angle progression (VFA-FLEET) to improve inter-segment fidelity and maximize signal for fMRI. Scaling a sinc pulse's flip angle for each segment (VFA-FLEET-Sinc) produced inconsistent slice profiles and ghosting, therefore, a recursive Shinnar-Le Roux (SLR) radiofrequency (RF) pulse design was developed (VFA-FLEET-SLR) to generate unique pulses for every segment that together produce consistent slice profiles and signals. RESULTS: The temporal stability of VFA-FLEET-SLR was compared against conventional-segmented EPI and VFA-FLEET-Sinc at 3T and 7T. VFA-FLEET-SLR showed reductions in both intermittent and stable ghosting compared to conventional-segmented and VFA-FLEET-Sinc, resulting in improved image quality with a minor trade-off in temporal SNR. Combining VFA-FLEET-SLR with acceleration, we achieved a 0.6-mm isotropic acquisition at 7T, without zoomed imaging or partial Fourier, demonstrating reliable detection of blood oxygenation level-dependent (BOLD) responses to a visual stimulus. To counteract the increased repetition time from segmentation, simultaneous multi-slice VFA-FLEET-SLR was demonstrated using RF-encoded controlled aliasing. CONCLUSIONS: VFA-FLEET with a recursive RF pulse design supports acquisitions with low levels of artifact and spatial blur, enabling fMRI at previously inaccessible spatial resolutions with a "full-brain" field of view.


Asunto(s)
Imagen Eco-Planar , Imagen por Resonancia Magnética , Artefactos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Procesamiento de Imagen Asistido por Computador
12.
Magn Reson Imaging ; 61: 20-32, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31082496

RESUMEN

PURPOSE: To develop an accelerated Cartesian MRF implementation using a multi-shot EPI sequence for rapid simultaneous quantification of T1 and T2 parameters. METHODS: The proposed Cartesian MRF method involved the acquisition of highly subsampled MR images using a 16-shot EPI readout. A linearly varying flip angle train was used for rapid, simultaneous T1 and T2 quantification. The results were compared to a conventional spiral MRF implementation. The acquisition time per slice was 8s and this method was validated on two different phantoms and three healthy volunteer brains in vivo. RESULTS: Joint T1 and T2 estimations using the 16-shot EPI readout are in good agreement with the spiral implementation using the same acquisition parameters (<4% deviation for T1 and <6% deviation for T2). The T1 and T2 values also agree with the conventional values previously reported in the literature. The visual qualities of fine brain structures in the multi-parametric maps generated by multi-shot EPI-MRF and Spiral-MRF implementations were comparable. CONCLUSION: The multi-shot EPI-MRF method generated accurate quantitative multi-parametric maps similar to conventional Spiral-MRF. This multi-shot approach achieved considerable k-space subsampling and comparatively short TRs in a similar manner to spirals and therefore provides an alternative for performing MRF using an accelerated Cartesian readout; thereby increasing the potential usability of MRF.


Asunto(s)
Encéfalo/anatomía & histología , Imagen Eco-Planar/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Voluntarios Sanos , Humanos , Fantasmas de Imagen , Valores de Referencia
13.
Magn Reson Med ; 81(6): 3745-3753, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30737825

RESUMEN

PURPOSE: Spinal cord MRI at ultrahigh field is hampered by time-varying magnetic fields associated with the breathing cycle, giving rise to ghosting artifacts in multi-shot acquisitions. Here, we suggest a correction approach based on linking the signal from a respiratory bellows to field changes inside the spinal cord. The information is used to correct the data at the image reconstruction level. METHODS: The correction was demonstrated in the context of multi-shot T2*-weighted imaging of the cervical spinal cord at 7T. A respiratory trace was acquired during a high-resolution multi-echo gradient-echo sequence, used for structural imaging and quantitative T2* mapping, and a multi-shot EPI time series, as would be suitable for fMRI. The coupling between the trace and the breathing-induced fields was determined by a short calibration scan in each individual. Images were reconstructed with and without trace-based correction. RESULTS: In the multi-echo acquisition, breathing-induced fields caused severe ghosting in images with long TE, which led to a systematic underestimation of T2* in the spinal cord. The trace-based correction reduced the ghosting and increased the estimated T2* values. Breathing-related ghosting was also observed in the multi-shot EPI images. The correction largely removed the ghosting, thereby improving the temporal signal-to-noise ratio of the time series. CONCLUSIONS: Trace-based retrospective correction of breathing-induced field variations can reduce ghosting and improve quantitative metrics in multi-shot structural and functional T2*-weighted imaging of the spinal cord. The method is straightforward to implement and does not rely on sequence modifications or additional hardware beyond a respiratory bellows.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Respiración , Médula Espinal/diagnóstico por imagen , Adulto , Algoritmos , Artefactos , Femenino , Humanos , Masculino , Movimiento/fisiología , Adulto Joven
14.
Neuroimage ; 183: 985-993, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30243955

RESUMEN

In diffusion MRI (dMRI), static magnetic field (B0) inhomogeneity and time varying gradient eddy currents induce spatial distortions in reconstructed images. These distortions are exacerbated when high spatial resolutions are used, and many field-mapping based correction techniques often only acquire maps of static B0 distortion, which are not adequate for correcting eddy current induced image distortions. This report presents a novel technique, termed RPG-MUSE, for achieving distortion-free high-resolution diffusion MRI by integrating reversed polarity gradients (RPG) into the multi-shot echo planar imaging acquisition scheme used in multiplexed sensitivity encoding (MUSE). By alternating the phase encoding direction between shots in both baseline and diffusion-weighted acquisitions, maps of both static B0 and eddy current induced field inhomogeneities can be inherently derived, without the need for additional data acquisition. Through both 2D and 3D encoded dMRI acquisitions, it is shown that an RPG-MUSE reconstruction can simultaneously achieve high spatial resolution, high spatial fidelity, and subsequently, high accuracy in diffusion metrics.


Asunto(s)
Artefactos , Mapeo Encefálico/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Eco-Planar/métodos , Humanos
15.
Magn Reson Imaging ; 51: 173-181, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29678540

RESUMEN

PURPOSE: To evaluate the reproducibility of quantitative diffusion measurements obtained with reduced Field of View (rFOV) and Multi-shot EPI (msEPI) acquisitions, using single-shot EPI (ssEPI) as a reference. METHODS: Diffusion phantom experiments, and prostate diffusion-weighted imaging in healthy volunteers and patients with known or suspected prostate cancer were performed across the three different sequences. Quantitative diffusion measurements of apparent diffusion coefficient, and diffusion kurtosis parameters (healthy volunteers), were obtained and compared across diffusion sequences (rFOV, msEPI, and ssEPI). Other possible confounding factors like b-value combinations and acquisition parameters were also investigated. RESULTS: Both msEPI and rFOV have shown reproducible quantitative diffusion measurements relative to ssEPI; no significant difference in ADC was observed across pulse sequences in the standard diffusion phantom (p = 0.156), healthy volunteers (p ≥ 0.12) or patients (p ≥ 0.26). The ADC values within the non-cancerous central gland and peripheral zone of patients were 1.29 ±â€¯0.17 × 10-3 mm2/s and 1.74 ±â€¯0.23 × 10-3 mm2/s respectively. However, differences in quantitative diffusion parameters were observed across different number of averages for rFOV, and across b-value groups and diffusion models for all the three sequences. CONCLUSION: Both rFOV and msEPI have the potential to provide high image quality with reproducible quantitative diffusion measurements in prostate diffusion MRI.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Próstata/diagnóstico por imagen , Adulto , Anciano , Imagen Eco-Planar/métodos , Estudios de Evaluación como Asunto , Humanos , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Reproducibilidad de los Resultados
16.
Neuroimage ; 159: 46-56, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28732674

RESUMEN

Recent advances in achieving ultrahigh spatial resolution (e.g. sub-millimeter) diffusion MRI (dMRI) data have proven highly beneficial in characterizing tissue microstructures in organs such as the brain. However, the routine acquisition of in-vivo dMRI data at such high spatial resolutions has been largely prohibited by factors that include prolonged acquisition times, motion induced artifacts, and low SNR. To overcome these limitations, we present here a framework for acquiring and reconstructing 3D multi-slab, multi-band and interleaved multi-shot EPI data, termed 3D-MB-MUSE. Through multi-band excitations, the simultaneous acquisition of multiple 3D slabs enables whole brain dMRI volumes to be acquired in-vivo on a 3 T clinical MRI scanner at high spatial resolution within a reasonably short amount of time. Representing a true 3D model, 3D-MB-MUSE reconstructs an entire 3D multi-band, multi-shot dMRI slab at once while simultaneously accounting for coil sensitivity variations across the slab as well as motion induced artifacts commonly associated with both 3D and multi-shot diffusion imaging. Such a reconstruction fully preserves the SNR advantages of both 3D and multi-shot acquisitions in high resolution dMRI images by removing both motion and aliasing artifacts across multiple dimensions. By enabling ultrahigh resolution dMRI for routine use, the 3D-MB-MUSE framework presented here may prove highly valuable in both clinical and research applications.


Asunto(s)
Encéfalo/anatomía & histología , Imagen de Difusión por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Neuroimagen/métodos , Algoritmos , Humanos
17.
Magn Reson Med ; 72(2): 324-36, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24006236

RESUMEN

PURPOSE: To reduce image distortion in MR diffusion imaging using an accelerated multi-shot method. METHODS: The proposed method exploits the fact that diffusion-encoded data tend to be sparse when represented in the kb-kd space, where kb and kd are the Fourier transform duals of b and d, the b-factor and the diffusion direction, respectively. Aliasing artifacts are displaced toward under-used regions of the kb-kd plane, allowing nonaliased signals to be recovered. A main characteristic of the proposed approach is how thoroughly the navigator information gets used during reconstruction: The phase of navigator images is used for motion correction, while the magnitude of the navigator signal in kb-kd space is used for regularization purposes. As opposed to most acceleration methods based on compressed sensing, the proposed method reduces the number of ky lines needed for each diffusion-encoded image, but not the total number of images required. Consequently, it tends to be most effective at reducing image distortion rather than reducing total scan time. RESULTS: Results are presented for three volunteers with acceleration factors ranging from 4 to 8, with and without the inclusion of parallel imaging. CONCLUSION: An accelerated motion-corrected diffusion imaging method was introduced that achieves good image quality at relatively high acceleration factors.


Asunto(s)
Algoritmos , Artefactos , Encéfalo/anatomía & histología , Imagen de Difusión por Resonancia Magnética/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Señales Asistido por Computador , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA