Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
BMC Oral Health ; 24(1): 829, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039547

RESUMEN

BACKGROUND: Mucosal-associated invariant T (MAIT) cells assume pivotal roles in numerous autoimmune inflammatory maladies. However, scant knowledge exists regarding their involvement in the pathological progression of oral lichen planus (OLP). The focus of our study was to explore whether MAIT cells were altered across distinct clinical types of OLP. METHODS: The frequency, phenotype, and partial functions of MAIT cells were performed by flow cytometry, using peripheral blood from 18 adults with non-erosive OLP and 22 adults with erosive OLP compared with 15 healthy adults. We also studied the changes in MAIT cells in 15 OLP patients receiving and 10 not receiving corticosteroids. Surface proteins including CD4, CD8, CD69, CD103, CD38, HLA-DR, Tim-3, Programmed Death Molecule-1 (PD-1), and related factors released by MAIT cells such as Granzyme B (GzB), interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-17A, and IL-22 were detected. RESULTS: Within non-erosive OLP patients, MAIT cells manifested an activated phenotype, evident in an elevated frequency of CD69+ CD38+ MAIT cells (p < 0.01). Conversely, erosive OLP patients displayed an activation and depletion phenotype in MAIT cells, typified by elevated CD69 (p < 0.01), CD103 (p < 0.05), and PD-1 expression (p < 0.01). Additionally, MAIT cells exhibited heightened cytokine production, encompassing GzB, IFN-γ, and IL-17A in erosive OLP patients. Notably, the proportion of CD103+ MAIT cells (p < 0.05) and GzB secretion (p < 0.01) by MAIT cells diminished, while the proportion of CD8+ MAIT cells (p < 0.05) rose in OLP patients with corticosteroid therapy. CONCLUSIONS: MAIT cells exhibit increased pathogenicity and pro-inflammatory capabilities in OLP. Corticosteroid therapy influences the expression of certain phenotypes and functions of MAIT cells in the peripheral blood of OLP patients.


Asunto(s)
Liquen Plano Oral , Células T Invariantes Asociadas a Mucosa , Humanos , Liquen Plano Oral/inmunología , Liquen Plano Oral/patología , Células T Invariantes Asociadas a Mucosa/inmunología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Antígenos CD , Anciano , Granzimas/metabolismo , Corticoesteroides/uso terapéutico , Citocinas/metabolismo , Receptor de Muerte Celular Programada 1 , Estudios de Casos y Controles , Antígenos de Diferenciación de Linfocitos T , Fenotipo , Citometría de Flujo , Lectinas Tipo C
2.
Immunology ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39022997

RESUMEN

Tuberculosis (TB) is still an urgent global public health problem. Notably, mucosal-associated invariant T (MAIT) cells play an important role in early anti-TB immune response. Targeted control of them may be an effective method to improve vaccine efficacy and TB treatment. However, the biology and signal regulation mechanisms of MAIT cells in TB patients are still poorly understood. Previous studies have been limited by the lack of reagents to specifically identify MAIT cells. In addition, the use of alternative markers may subsume non-MAIT cell into MAIT cell populations. In this study, the human MR1 tetramer which can specifically identify MAIT cells was used to further explore the effect and mechanism of MAIT cells in anti-TB immune response. Our results showed that the tetramer+ MAIT cells in peripheral blood of TB patients were mainly CD8+ or CD4-CD8- cells, and very few were CD4+ cells. After BCG infecting autologous antigen-presenting cells, MAIT cells in patients produced significantly higher levels of cytokines, lysis and proliferation compared with healthy controls. After suppression of mTORC1 by the mTORC1-specific inhibitor rapamycin, the immune response of MAIT cells in patients was significantly reduced. This study demonstrates that peripheral blood tetramer+ MAIT cells from TB patients have significant anti-TB immune effect, which is regulated by mTORC1. This could provide ideas and potential therapeutic targets for the development of novel anti-TB immunotherapy.

3.
J Clin Immunol ; 44(6): 139, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822857

RESUMEN

We evaluated the impact of early recovery of mucosal-associated invariant T cells (MAIT) and gamma-delta (γδ) T cells, especially Vδ2+ T cells, on the clinical outcomes of 76 patients who underwent allogeneic hematopoietic cell transplantation (allo-HCT). MAIT cells were identified at day 20-30 post-transplant using flow cytometry and defined as CD3+ TCRVα7.2+CD161+. Two subsets of Vδ2+ T cells were analyzed according to the expression of CD26. The cytotoxicity profile of MAIT and Vδ2+ T cells was analyzed according to the intracellular expression of perforin and granzyme B, and intracellular IFN-γ was evaluated after in vitro activation. CD26+Vδ2+ T cells displayed higher intracellular levels of IFN-γ, whereas CD26- Vδ2+ T were found to be more cytotoxic. Moreover, MAIT cell frequency was correlated with the frequency of Vδ2+ T cells with a better correlation observed with Vδ2+CD26+ than with the Vδ2+CD26- T cell subset. By using the composite endpoint graft-versus-host disease (GvHD)-free, relapse-free survival (GRFS) as the primary endpoint, we found that patients with a higher MAIT cell frequency at day 20-30 after allo-HCT had a significantly increased GRFS and a better overall survival (OS) and disease-free survival (DFS). Moreover, patients with a low CD69 expression by MAIT cells had an increased cumulative incidence of grade 2-4 acute GvHD (aGvHD). These results suggest that MAIT cell reconstitution may provide mitigating effects early after allo-HCT depending on their activation markers and functional status. Patients with a high frequency of Vδ2+CD26+ T cells had a significantly higher GRFS, OS and DFS, but there was no impact on cumulative incidence of grade 2-4 aGVHD, non-relapse mortality and relapse. These results revealed that the impact of Vδ2+ T cells on the success of allo-HCT may vary according to the frequency of the CD26+ subset.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Células T Invariantes Asociadas a Mucosa , Trasplante Homólogo , Humanos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/etiología , Células T Invariantes Asociadas a Mucosa/inmunología , Adulto Joven , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Adolescente , Anciano , Resultado del Tratamiento , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Citotoxicidad Inmunológica
4.
Front Immunol ; 15: 1391280, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38840918

RESUMEN

Background: Currently, there is a lack of an objective quantitative measure to comprehensively evaluate the inflammatory activity of axSpA, which poses certain challenges in accurately assessing the disease activity. Objective: To explore the value of combined-parameter models of sacroiliac joints (SIJs) MRI relaxometry and peripheral blood Mucosal-associated invariant T (MAIT) cells in evaluating the inflammatory activity of axial spondyloarthritis (axSpA). Methods: This retrospective clinical study included 88 axSpA patients (median age 31.0 (22.0, 41.8) years, 21.6% females) and 20 controls (median age 28.0 (20.5, 49.5) years, 40.0% females). The axSpA group was classified into active subgroup (n=50) and inactive subgroup (n=38) based on ASDAS-CRP. All participants underwent SIJs MRI examination including T1 and T2* mapping, and peripheral blood flow cytometry analysis of MAIT cells (defined as CD3+Vα7.2+CD161+) and their activation markers (CD69). The T1 and T2* values, as were the percentages of MAIT cells and CD69+MAIT cells were compared between different groups. Combined-parameter models were established using logistic regression, and ROC curves were employed to evaluate the diagnostic efficacy. Results: The T1 values of SIJs and %CD69+MAIT cells in the axSpA group and its subgroup were higher than the control group (p<0.05), while %MAIT cells were lower than the control group (p<0.05). The T1 values and %CD69+MAIT cells correlated positively, while %MAIT cells correlated negatively, with the ASDAS-CRP (r=0.555, 0.524, -0.357, p<0.001). Between the control and axSpA groups, and between the inactive and active subgroups, the combined-parameter model T1 mapping+%CD69+MAIT cells has the best efficacy (AUC=0.959, 0.879, sensibility=88.6, 70%, specificity=95.0, 94.7%, respectively). Conclusion: The combined-parameter model T1 mapping+%CD69+MAIT cells allows a more accurate evaluation of the level of inflammatory activity.


Asunto(s)
Espondiloartritis Axial , Imagen por Resonancia Magnética , Células T Invariantes Asociadas a Mucosa , Humanos , Femenino , Células T Invariantes Asociadas a Mucosa/inmunología , Masculino , Adulto , Imagen por Resonancia Magnética/métodos , Espondiloartritis Axial/diagnóstico por imagen , Espondiloartritis Axial/inmunología , Estudios Retrospectivos , Persona de Mediana Edad , Adulto Joven , Articulación Sacroiliaca/diagnóstico por imagen , Articulación Sacroiliaca/patología , Inflamación/inmunología , Inflamación/diagnóstico por imagen , Biomarcadores
5.
Scand J Immunol ; 100(3): e13391, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38773691

RESUMEN

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that can be activated by microbial antigens and cytokines and are abundant in mucosal tissues including the colon. MAIT cells have cytotoxic and pro-inflammatory functions and have potentials for use as adoptive cell therapy. However, studies into their anti-cancer activity, including their role in colon cancer, are limited. Using an animal model of colon cancer, we showed that peritumoral injection of in vivo-expanded MAIT cells into RAG1-/- mice with MC38-derived tumours inhibits tumour growth compared to control. Multiplex cytokine analyses showed that tumours from the MAIT cell-treated group have higher expression of markers for eosinophil-activating cytokines, suggesting a potential association between eosinophil recruitment and tumour inhibition. In a human peripheral leukocyte co-culture model, we showed that leukocytes stimulated with MAIT ligand showed an increase in eotaxin-1 production and activation of eosinophils, associated with increased cancer cell killing. In conclusion, we showed that MAIT cells have a protective role in a murine colon cancer model, associated with modulation of the immune response to cancer, potentially involving eosinophil-associated mechanisms. Our results highlight the potential of MAIT cells for non-donor restricted colon cancer immunotherapy.


Asunto(s)
Neoplasias del Colon , Eosinófilos , Inmunidad Innata , Ratones Noqueados , Células T Invariantes Asociadas a Mucosa , Animales , Células T Invariantes Asociadas a Mucosa/inmunología , Neoplasias del Colon/inmunología , Neoplasias del Colon/terapia , Ratones , Humanos , Inmunidad Innata/inmunología , Eosinófilos/inmunología , Citocinas/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Línea Celular Tumoral , Técnicas de Cocultivo , Proteínas de Homeodominio
6.
J Exp Clin Cancer Res ; 43(1): 134, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698468

RESUMEN

BACKGROUND: Mucosal-associated invariant T (MAIT) cells have been reported to regulate tumor immunity. However, the immune characteristics of MAIT cells in non-small cell lung cancer (NSCLC) and their correlation with the treatment efficacy of immune checkpoint inhibitors (ICIs) remain unclear. PATIENTS AND METHODS: In this study, we performed single-cell RNA sequencing (scRNA-seq), flow cytometry, and multiplex immunofluorescence assays to determine the proportion and characteristics of CD8+MAIT cells in patients with metastatic NSCLC who did and did not respond to anti-PD-1 therapy. Survival analyses were employed to determine the effects of MAIT proportion and C-X-C chemokine receptor 6 (CXCR6) expression on the prognosis of patients with advanced NSCLC. RESULTS: The proportion of activated and proliferating CD8+MAIT cells were significantly higher in responders-derived peripheral blood mononuclear cells (PBMCs) and lung tissues before anti-PD-1 therapy, with enhanced expression of cytotoxicity-related genes including CCL4, KLRG1, PRF1, NCR3, NKG7, GZMB, and KLRK1. The responders' peripheral and tumor-infiltrating CD8+MAIT cells showed an upregulated CXCR6 expression. Similarly, CXCR6+CD8+MAIT cells from responders showed higher expression of cytotoxicity-related genes, such as CST7, GNLY, KLRG1, NKG7, and PRF1. Patients with ≥15.1% CD8+MAIT cells to CD8+T cells ratio and ≥35.9% CXCR6+CD8+MAIT cells to CD8+MAIT cells ratio in peripheral blood showed better progression-free survival (PFS) after immunotherapy. The role of CD8+MAIT cells in lung cancer immunotherapy was potentially mediated by classical/non-classical monocytes through the CXCL16-CXCR6 axis. CONCLUSION: CD8+MAIT cells are a potential predictive biomarker for patients with NSCLC responding to anti-PD-1 therapy. The correlation between CD8+MAIT cells and immunotherapy sensitivity may be ascribed to high CXCR6 expression.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Neoplasias Pulmonares , Células T Invariantes Asociadas a Mucosa , Receptores CXCR6 , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Receptores CXCR6/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Células T Invariantes Asociadas a Mucosa/inmunología , Células T Invariantes Asociadas a Mucosa/metabolismo , Masculino , Femenino , Inmunoterapia/métodos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Persona de Mediana Edad , Anciano , Pronóstico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo
7.
Nutrients ; 16(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674935

RESUMEN

Short-term protein-calorie dietary restriction (StDR) is a promising preoperative strategy for modulating postoperative inflammation. We have previously shown marked gut microbial activity during StDR, but relationships between StDR, the gut microbiome, and systemic immunity remain poorly understood. Mucosal-associated invariant T-cells (MAITs) are enriched on mucosal surfaces and in circulation, bridge innate and adaptive immunity, are sensitive to gut microbial changes, and may mediate systemic responses to StDR. Herein, we characterized the MAIT transcriptomic response to StDR using single-cell RNA sequencing of human PBMCs and evaluated gut microbial species-level changes through sequencing of stool samples. Healthy volunteers underwent 4 days of DR during which blood and stool samples were collected before, during, and after DR. MAITs composed 2.4% of PBMCs. More MAIT genes were differentially downregulated during DR, particularly genes associated with MAIT activation (CD69), regulation of pro-inflammatory signaling (IL1, IL6, IL10, TNFα), and T-cell co-stimulation (CD40/CD40L, CD28), whereas genes associated with anti-inflammatory IL10 signaling were upregulated. Stool analysis showed a decreased abundance of multiple MAIT-stimulating Bacteroides species during DR. The analyses suggest that StDR potentiates an anti-inflammatory MAIT immunophenotype through modulation of TCR-dependent signaling, potentially secondary to gut microbial species-level changes.


Asunto(s)
Restricción Calórica , Microbioma Gastrointestinal , Células T Invariantes Asociadas a Mucosa , Humanos , Células T Invariantes Asociadas a Mucosa/inmunología , Masculino , Adulto , Femenino , Heces/microbiología , Inflamación/inmunología , Adulto Joven , Voluntarios Sanos , Transcriptoma
8.
Cancer Med ; 13(6): e7112, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38509769

RESUMEN

BACKGROUND: Patients with non-small cell lung cancer (NSCLC) and chronic obstructive pulmonary disease (COPD) experience worse clinical outcomes but respond better to immunotherapy than patients with NSCLC without COPD. Mucosal-associated invariant T (MAIT) cells, a versatile population of innate immune T lymphocytes, have a crucial function in the response to infection and tumors. This study investigated the distribution of MAIT cells in COPD-associated NSCLC and their involvement in the immune response. METHODS: Flow cytometry, immunohistochemistry, and immunofluorescence were performed on tissue samples of patients with NSCLC, with or without COPD, treated with or without anti-programmed death 1 (PD1) immunotherapy. MAIT cells were stimulated with 5-OP-RU using a mouse subcutaneous tumor model. RESULTS: Tumors contained significantly more MAIT cells than paraneoplastic tissues, and CD8+ MAIT cells accounted for more than 90% of these cells. Patients with NSCLC and COPD had higher CD8+ MAIT cell counts than those with NSCLC without COPD. Additionally, patients with NSCLC and COPD displayed reduced expression of the activation marker, CD69, and functional markers, granzyme B (GZMB) and interferon γ (IFNγ), and higher expression of the immune exhaustion marker, PD1. Among patients who received immunotherapy, the proportion with a complete or partial response was higher in those with COPD than in those without COPD. In patients with NSCLC and COPD, the major pathologic response (MPR) group had higher MAIT levels than those in the no major pathologic response (NPR) group. In the mouse subcutaneous tumor model stimulation of MAIT cells using 5-OP-RU enhanced the antitumor effects of anti-PD1. CONCLUSIONS: In patients with NSCLC and COPD, response to immunotherapy is associated with accumulation of CD8+ MAIT cells showing immune exhaustion. These findings may contribute to innovative approaches for immunotherapy targeting CD8+ MAIT cells.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Células T Invariantes Asociadas a Mucosa , Enfermedad Pulmonar Obstructiva Crónica , Ribitol/análogos & derivados , Uracilo/análogos & derivados , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Células T Invariantes Asociadas a Mucosa/metabolismo , Células T Invariantes Asociadas a Mucosa/patología , Neoplasias Pulmonares/metabolismo , Terapia Neoadyuvante , Biomarcadores/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/terapia , Inmunoterapia
9.
J Scleroderma Relat Disord ; 9(1): 67-78, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38333523

RESUMEN

Objective: Systemic sclerosis is an autoimmune disease characterized by fibrosis of the skin and internal organs including the lung. Mucosal-associated invariant T cells are innate-like T lymphocytes able to produce various cytokines and cytotoxic mediators such as granzyme B. A large body of evidence supports a role of mucosal-associated invariant T cells in autoimmune disease but more recent reports suggest also a potential role in fibrotic conditions. Therefore, we herein addressed the question as whether mucosal-associated invariant T cells may have an altered profile in systemic sclerosis. Methods: Mucosal-associated invariant T cell frequency was analyzed by flow cytometry, using fresh peripheral blood from 74 consecutive systemic sclerosis patients who were compared to 44 healthy donors. In addition, in-depth mucosal-associated invariant T cell phenotype and function were analyzed in unselected 29 women with systemic sclerosis who were compared to 23 healthy women donors. Results: Proportion of circulating mucosal-associated invariant T cells was significantly reduced by 68% in systemic sclerosis compared to healthy donors (0.78% in systemic sclerosis vs 2.5%, p < 0.0001). Within systemic sclerosis subsets, mucosal-associated invariant T cells were reduced in patients with interstitial lung disease (systemic sclerosis-interstitial lung disease) (0.56% vs 0.96% in patients without interstitial lung disease, p = 0.04). Moreover, in systemic sclerosis patients, mucosal-associated invariant T cells displayed an activated phenotype indicated by markedly increased CD69+ mucosal-associated invariant T cell frequency (20% mucosal-associated invariant T cell CD69+ compared to 9.4% in healthy donors, p = 0.0014). Interestingly, mucosal-associated invariant T cells from systemic sclerosis-interstitial lung disease patients had a more pronounced altered phenotype compared to systemic sclerosis without interstitial lung disease with a correlation between mucosal-associated invariant T cells expressing CCR6+ and mucosal-associated invariant T cell frequency (r = 0.8, p = 0.006). Conclusion: Circulating mucosal-associated invariant T cells were reduced and exhibited an activated phenotype in systemic sclerosis patients. This peripheral mucosal-associated invariant T cell deficiency may be related to enhanced apoptosis and/or homing in inflamed tissue, particularly in systemic sclerosis-interstitial lung disease patients.

10.
Virus Res ; 341: 199315, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38211733

RESUMEN

Prolonged T cell lymphopenia is common in COVID-19, caused by SARS-CoV-2. While the mechanisms of lymphopenia during COVID-19 remain elusive, it is especially pronounced in a specialized innate-like T cell population called Mucosal Associated Invariant T cells (MAITs). MAITs has been suggested to express Angiotensin-Converting Enzyme 2 (ACE2), which is the well-known cellular receptor for SARS-CoV-2. However, it is still unclear if SARS-CoV-2 can infect or affect MAIT cells directly. In this study, we performed multicolor flow cytometry on peripheral blood mononuclear cells obtained from COVID-19 patients to assess the frequencies of CD8+Vα7.2+CD161+ MAIT subsets at acute and convalescent disease phases. The susceptibility of MAITs and T cells to direct exposure by SARS-CoV-2 was analysed using cells isolated from healthy donor buffy coats by viability assays, virus-specific RT-PCR, and flow cytometry. In situ lung immunofluorescence was used to evaluate retention of T cells, especially MAIT cells, in lung tissues during acute COVID-19. Our study confirms previous reports indicating that circulating MAITs are activated, and their frequency is declined in patients with acute SARS-CoV-2 infection, whereas an accumulation of MAITs and T cells was seen in the lung tissue of individuals with fatal COVID-19. However, despite a fraction of MAITs found to express ACE2, no evidence for the susceptibility of MAITs for direct infection or activation by SARS-CoV-2 particles was observed. Thus, their activation and decline in the circulation is most likely explained by indirect mechanisms involving other immune cells and cytokine-induced pro-inflammatory environment but not by direct exposure to viral particles at the infection site.


Asunto(s)
COVID-19 , Linfopenia , Células T Invariantes Asociadas a Mucosa , Humanos , Enzima Convertidora de Angiotensina 2 , Leucocitos Mononucleares , SARS-CoV-2 , Pulmón
11.
Int Immunopharmacol ; 126: 111276, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38016348

RESUMEN

This study reported on the intratumor genomic and immunological heterogeneity of different tumor lesions from a single patient with multiple primary colorectal cancer (MPCC). The goal of this study was to explore the molecular and microenvironment characteristics of tumor lesions from different primary sites in a patient with MPCC. A total of three tumor lesions located in the hepatic flexure of the transverse colon, sigmoid colon, and rectum were collected from a 72-year-old male patient with MPCC. All three tumor samples were examined by using whole-exome sequencing (WES) and single-cell RNA sequencing (scRNA-seq). The transcriptome data of The Cancer Genome Atlas (TCGA) colon cancer (COAD) dataset were explored to characterize the biological impacts of certain immune cells. Only three nonsynonymous mutations were shared by all of the tumor lesions, whereas a number of single nucleotide variant (SNV) and copy number variation (CNV) mutations were shared by tumor samples from the sigmoid colon and rectum. Transcriptomic analysis showed that tumor lesions derived from the transverse colon had decreased levels of RTK, ERK, and AKT pathway activity, thus suggesting lower oncogenic properties in the transverse lesion compared to the other two samples. Further immune landscape evaluation by using single-cell transcriptomic analysis displayed significant intratumor heterogeneity in MPCC. Specifically, more abundant mucosal-associated invariant T (MAIT) cell infiltration was found in transverse colon tumor lesions. Afterwards, we found that higher MAIT cell infiltration may correlate with a better prognosis of patients with colon cancer (immunohistochemical status was MSI-L/pMMR) by using a publicly available TCGA dataset.


Asunto(s)
Neoplasias del Colon , Neoplasias Primarias Múltiples , Masculino , Humanos , Anciano , Transcriptoma , Variaciones en el Número de Copia de ADN , Perfilación de la Expresión Génica , Neoplasias Primarias Múltiples/patología , Genómica , Microambiente Tumoral/genética
12.
Allergol Int ; 73(1): 94-106, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37336695

RESUMEN

BACKGROUND: Mepolizumab treatment improves symptom control and quality of life and reduces exacerbations in patients with severe eosinophilic asthma. However, biomarkers that predict therapeutic effectiveness must be determined for use in precision medicine. Herein, we elucidated the dynamics of various parameters before and after treatment as well as patient characteristics predictive of clinical responsiveness to mepolizumab after 1-year treatment. METHODS: Twenty-seven patients with severe asthma were treated with mepolizumab for one year. Asthma control test scores, pulmonary function tests, fractional exhaled nitric oxide levels, and blood samples were evaluated. Additionally, we explored the role of CD69-positive mucosal-associated invariant T (MAIT) cells as a candidate biomarker for predicting treatment effectiveness by evaluating an OVA-induced asthma murine model using MR1 knockout mice, where MAIT cells were absent. RESULTS: The frequencies of CD69-positive group 1 innate lymphoid cells, group 3 innate lymphoid cells, natural killer cells, and MAIT cells decreased after mepolizumab treatment. The frequency of CD69-positive MAIT cells and neutrophils was lower and serum periostin levels were higher in responders than in non-responders. In the OVA-induced asthma murine model, CD69-positive MAIT cell count in the whole mouse lung was significantly higher than that in the control mice. Moreover, OVA-induced eosinophilic airway inflammation was exacerbated in the MAIT cell-deficient MR1 knockout mice. CONCLUSIONS: This study shows that circulating CD69-positive MAIT cells, neutrophils, and serum periostin might predict the real-world response after 1-year mepolizumab treatment. Furthermore, MAIT cells potentially have a protective role against type 2 airway inflammation.


Asunto(s)
Asma , Células T Invariantes Asociadas a Mucosa , Humanos , Animales , Ratones , Neutrófilos , Periostina , Inmunidad Innata , Modelos Animales de Enfermedad , Ovalbúmina/uso terapéutico , Calidad de Vida , Linfocitos , Inflamación , Biomarcadores , Ratones Noqueados
13.
Inflammation ; 47(3): 939-957, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38159177

RESUMEN

Oral lichen planus (OLP) is a T cell-mediated immune mucosal disease of unknown pathogenesis. Whether mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), an intracellular signaling protein, is involved in the T-cell immune dysfunction of OLP remains elusive. MALT1 expression in local and peripheral T cells of OLP and controls was analyzed using immunohistochemistry, multiplex immunohistochemistry, and flow cytometry. The expression of MALT1 in activated Jurkat T cells incubated with either OLP plasma or interleukin (IL)-7/IL-15 was determined by flow cytometry. The effects of MALT1 and mechanistic target of rapamycin (mTOR) on T-cell immunity were investigated through western blot, CCK8 assay, and flow cytometry. The expression of MALT1 protein was elevated in local OLP T cells and mucosal-associated invariant T (MAIT) cells, while reduced in peripheral OLP T cells, MAIT cells, and follicular helper-like MAIT (MAITfh) cells. Stimulation with OLP plasma and IL-7/ IL-15 had no effect on MALT1 expression in activated Jurkat T cells. MALT1 protease-specific inhibitor (MI-2) induced mTOR phosphorylation, increased B-cell lymphoma 10 (BCL10) expression, inhibited T-cell proliferation, and promoted T-cell apoptosis. The combination of MI-2 and rapamycin increased MALT1 expression, further suppressed T-cell proliferation, and facilitated T-cell apoptosis. MALT1 expression is aberrant in both local lesions and peripheral blood of OLP. Inhibition of the mTOR pathway further enhances the suppression of T-cell proliferation and the promotion of apoptosis induced by the MALT1 inhibitor MI-2.


Asunto(s)
Liquen Plano Oral , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas , Linfocitos T , Serina-Treonina Quinasas TOR , Humanos , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Liquen Plano Oral/metabolismo , Liquen Plano Oral/inmunología , Liquen Plano Oral/patología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Células Jurkat , Transducción de Señal , Masculino , Femenino , Apoptosis/efectos de los fármacos , Persona de Mediana Edad , Adulto
14.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(11): 1881-1885, 2023 Nov 20.
Artículo en Chino | MEDLINE | ID: mdl-38081605

RESUMEN

OBJECTIVE: To investigate the role of mucosal-associated invariant T (MAIT) cells in the regulatory mechanism of adipose browning. METHODS: A mouse model with functional deficiency of MAIT cells was established for comparison with the wild-type mice for levels of brown adipose tissue markers in response to cold stimulation using Western blotting and RT-PCR. Flow cytometry was used to analyze the changes in the number, activation level and cytokine secretion ability of MAIT cells in mouse adipose tissue after cold stimulation. In a co-culture system of MAIT cells and adipocytes, the effect of interleukin-4 (IL-4) blocking antibodies on the expressions of brown adipose tissue markers in the adipocytes was evaluated using Western blotting and RT-PCR. In a mouse model of MAIT cell deficiency, the changes in adipose browning-related indicators in response to cold stimulation were analyzed using metabolic cages, immunohistochemistry, Western blotting and the Seahorse method. RESULTS: In both the mouse models of functional deficiency of MAIT cells and wild-type mice, cold stimulation significantly increased the expression levels of brown adipose tissue markers UCP-1 and PGC1-α and upregulated CD69 and IL-4 expressions in the adipose tissue without significantly affecting the number of MAIT cells in the adipose tissue. In the coculture experiment, the adipocytes showed obviously increased browning level after co-culture with MAIT cells (P < 0.05), but blocking IL-4 signaling strongly downregulated the browning level (P < 0.05). The MAIT cell-deficient mice showed obviously lower levels of energy expenditure, adipose browning and metabolism of the adipocytes compared with the wild-type mice in response to cold stimulation (P < 0.05). CONCLUSION: MAIT cells participate in adipose browning in mice, and cold stimulation promotes MAIT cell secretion of IL-4 to positively regulate adipose browning.


Asunto(s)
Células T Invariantes Asociadas a Mucosa , Animales , Ratones , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Interleucina-4/metabolismo , Obesidad/metabolismo
15.
Cancer Immunol Immunother ; 72(12): 4399-4414, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37932426

RESUMEN

Increasing evidence suggests that mucosal-associated invariant T cells (MAITs) play a crucial role in anti-tumor responses against various cancers. In this study, we investigated the immune characteristics of MAIT cells in patients with acute myeloid leukemia (AML). Using multi-parameter flow cytometry, we performed phenotypic and functional analysis of MAITs in peripheral blood or bone marrow samples collected from 131 patients with AML including 99 newly diagnosed, 18 remission, and 14 relapsed cases, as well as 69 healthy controls. We found that MAITs exhibit signs of aging and exhaustion, particularly in CD8+ MAITs subset, at newly diagnosis. MAITs exhibit an effector memory or terminally differentiated phenotype. Frequency and number of MAITs reflect AML cell genetic features, tumor burden, disease status, and treatment responsiveness. Moreover, MAITs exhibit a highly activated or even exhausted state, as indicated by upregulation of PD-1. Furthermore, impaired production of Th1-type cytokines and increased secretion of Th17-type cytokines, granzyme B, and perforin were observed in MAITs from AML patients. Additionally, MAITs shifted toward producing cytokines that promote tumor progression, such as IL-8. Lower frequency of MAITs was associated with poorer overall survival (OS), and multivariate analysis revealed that MAITs frequency < 2.12% was an independent prognostic factor affecting OS. Collectively, our findings suggest that MAITs may play a role in immune deficiency in AML, emphasizing their potential importance in AML pathogenesis and treatment. These discoveries provide a theoretical basis for the development of novel immunotherapeutic strategies in AML.


Asunto(s)
Leucemia Mieloide Aguda , Células T Invariantes Asociadas a Mucosa , Humanos , Pronóstico , Citocinas , Células Th17
17.
Biomed Rep ; 19(6): 95, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37901873

RESUMEN

Lower levels of peripheral mucosal-associated invariant T (MAIT) cells have been observed in the peripheral blood of patients with severe coronavirus disease 2019 (COVID-19). Following on from previous research into the effect of the IgG repertoire on human lymphocytes, the present study aimed to evaluate if immunoglobulin G (IgG) antibodies obtained from patients with mild or severe COVID-19 contribute to these effects on MAIT cells. Culture experiments were performed using healthy human peripheral blood mononuclear cells (PBMCs) and different repertoires of IgG obtained from patients with COVID-19 as a mild or severe disease and compared with mock, healthy control or therapeutic IgG conditions. The results indicate that the IgG repertoire induced during the development of mild and severe COVID-19 has, per se, the in vitro potential to reduce the frequency of MAIT cells and the production of IFN-γ by the MAIT cell population in PBMCs from healthy individuals. In conclusion, the results of the present study indicate that IgG in patients with severe COVID-19 may participate in the reduction of peripheral MAIT cell frequency and hinder the antiviral activity of these cells.

18.
Iran J Immunol ; 20(4): 382-399, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37842930

RESUMEN

Cell-mediated immunity (CMI) is crucial in controlling the highly aggressive and progressive SARS-CoV-2 infection. Despite extensive researches on severe COVID-19 infection, the etiology and/or mechanisms of lymphopenia, decreased T cell-mediated responses in patients, cytokine release storms (CRS), and enhanced pro-inflammatory mediators are not fully understood. Several T cell subpopulations, including innate-like lymphocytes (ILLs) and conventional T cells, are involved in COVID-19 infection; however, their contribution to immunity and complications remains to be more elucidated. CD16+ T cells are among the effective players in the development of T helper1 (Th1) responses in COVID-19 infection, while their robust cytolytic properties contribute to lung tissue damage. While CD56-CD16bright NK cells play a protective role, natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells, and γδ T cells and their roles in COVID-19 require further investigation. The involvement of the other T cell subsets, such as Th17, along with neutrophils, adds to the complexity of the situation. In this review, we presented and discussed the findings of recent studies on T cell responses and the contribution of each type of immune cells to COVID-19.


Asunto(s)
COVID-19 , Células T Invariantes Asociadas a Mucosa , Humanos , SARS-CoV-2 , Células T Invariantes Asociadas a Mucosa/metabolismo , Subgrupos de Linfocitos T , Células Asesinas Naturales , Síndrome de Liberación de Citoquinas
19.
Cell ; 186(17): 3686-3705.e32, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37595566

RESUMEN

Mucosal-associated invariant T (MAIT) cells represent an abundant innate-like T cell subtype in the human liver. MAIT cells are assigned crucial roles in regulating immunity and inflammation, yet their role in liver cancer remains elusive. Here, we present a MAIT cell-centered profiling of hepatocellular carcinoma (HCC) using scRNA-seq, flow cytometry, and co-detection by indexing (CODEX) imaging of paired patient samples. These analyses highlight the heterogeneity and dysfunctionality of MAIT cells in HCC and their defective capacity to infiltrate liver tumors. Machine-learning tools were used to dissect the spatial cellular interaction network within the MAIT cell neighborhood. Co-localization in the adjacent liver and interaction between niche-occupying CSF1R+PD-L1+ tumor-associated macrophages (TAMs) and MAIT cells was identified as a key regulatory element of MAIT cell dysfunction. Perturbation of this cell-cell interaction in ex vivo co-culture studies using patient samples and murine models reinvigorated MAIT cell cytotoxicity. These studies suggest that aPD-1/aPD-L1 therapies target MAIT cells in HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células T Invariantes Asociadas a Mucosa , Animales , Humanos , Ratones , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Células T Invariantes Asociadas a Mucosa/inmunología , Células T Invariantes Asociadas a Mucosa/patología , Macrófagos Asociados a Tumores
20.
Immune Netw ; 23(3): e22, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37416928

RESUMEN

Alcoholic liver cirrhosis (ALC) is caused by chronic alcohol overconsumption and might be linked to dysregulated immune responses in the gut-liver axis. However, there is a lack of comprehensive research on levels and functions of innate lymphocytes including mucosal-associated invariant T (MAIT) cells, NKT cells, and NK (NK) cells in ALC patients. Thus, the aim of this study was to examine the levels and function of these cells, evaluate their clinical relevance, and explore their immunologic roles in the pathogenesis of ALC. Peripheral blood samples from ALC patients (n = 31) and healthy controls (HCs, n = 31) were collected. MAIT cells, NKT cells, NK cells, cytokines, CD69, PD-1, and lymphocyte-activation gene 3 (LAG-3) levels were measured by flow cytometry. Percentages and numbers of circulating MAIT cells, NKT cells, and NK cells were significantly reduced in ALC patients than in HCs. MAIT cell exhibited increased production of IL-17 and expression levels of CD69, PD-1, and LAG-3. NKT cells displayed decreased production of IFN-γ and IL-4. NK cells showed elevated CD69 expression. Absolute MAIT cell levels were positively correlated with lymphocyte count but negatively correlated with C-reactive protein. In addition, NKT cell levels were negatively correlated with hemoglobin levels. Furthermore, log-transformed absolute MAIT cell levels were negatively correlated with the Age, Bilirubin, INR, and Creatinine score. This study demonstrates that circulating MAIT cells, NKT cells, and NK cells are numerically deficient in ALC patients, and the degree of cytokine production and activation status also changed. Besides, some of their deficiencies are related to several clinical parameters. These findings provide important information about immune responses of ALC patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA