Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 58(18): 1627-1642.e7, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37633271

RESUMEN

Mammalian specification of mesoderm and definitive endoderm (DE) is instructed by the two related Tbx transcription factors (TFs) Eomesodermin (Eomes) and Brachyury sharing partially redundant functions. Gross differences in mutant embryonic phenotypes suggest specific functions of each TF. To date, the molecular details of separated lineage-specific gene regulation by Eomes and Brachyury remain poorly understood. Here, we combine mouse embryonic and stem-cell-based analyses to delineate the non-overlapping, lineage-specific transcriptional activities. On a genome-wide scale, binding of both TFs overlaps at promoters of target genes but shows specificity for distal enhancer regions that is conferred by differences in Tbx DNA-binding motifs. The unique binding to enhancer sites instructs the specification of anterior mesoderm (AM) and DE by Eomes and caudal mesoderm by Brachyury. Remarkably, EOMES antagonizes BRACHYURY gene regulatory functions in coexpressing cells during early gastrulation to ensure the proper sequence of early AM and DE lineage specification followed by posterior mesoderm derivatives.


Asunto(s)
Gastrulación , Proteínas de Dominio T Box , Ratones , Animales , Gastrulación/genética , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Mesodermo/metabolismo , Proteínas Fetales/genética , Proteínas Fetales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mamíferos/metabolismo
2.
Philos Trans R Soc Lond B Biol Sci ; 377(1865): 20210258, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36252226

RESUMEN

The amnion is an extraembryonic tissue that evolutionarily allowed embryos of all amniotes to develop in a transient and local aquatic environment. Despite the importance of this tissue, very little is known about its formation and its molecular characteristics. In this review, we have compared the basic organization of the extraembryonic membranes in amniotes and describe the two types of amniogenesis, folding and cavitation. We then zoom in on the atypical development of the amnion in mice that occurs via the formation of a single posterior amniochorionic fold. Moreover, we consolidate lineage tracing data to better understand the spatial and temporal origin of the progenitors of amniotic ectoderm, and visualize the behaviour of their descendants in the extraembryonic-embryonic junctional region. This analysis provides new insight on amnion development and expansion. Finally, using an online-available dataset of single-cell transcriptomics during the gastrulation period in mice, we provide bioinformatic analysis of the molecular signature of amniotic ectoderm and amniotic mesoderm. The amnion is a tissue with unique biomechanical properties that deserves to be better understood. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.


Asunto(s)
Amnios , Mesodermo , Animales , Gastrulación , Ratones
3.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142249

RESUMEN

Progesterone treatment is commonly employed to promote and support pregnancy. While maternal tissues are the main progesterone targets in humans and mice, its receptor (PGR) is expressed in the murine embryo, questioning its function during embryonic development. Progesterone has been previously associated with murine blastocyst development. Whether it contributes to lineage specification is largely unknown. Gastrulation initiates lineage specification and generation of the progenitors contributing to all organs. Cells passing through the primitive streak (PS) will give rise to the mesoderm and endoderm. Cells emerging posteriorly will form the extraembryonic mesodermal tissues supporting embryonic growth. Cells arising anteriorly will contribute to the embryonic heart in two sets of distinct progenitors, first (FHF) and second heart field (SHF). We found that PGR is expressed in a posterior-anterior gradient in the PS of gastrulating embryos. We established in vitro differentiation systems inducing posterior (extraembryonic) and anterior (cardiac) mesoderm to unravel PGR function. We discovered that PGR specifically modulates extraembryonic and cardiac mesoderm. Overexpression experiments revealed that PGR safeguards cardiac differentiation, blocking premature SHF progenitor specification and sustaining the FHF progenitor pool. This role of PGR in heart development indicates that progesterone administration should be closely monitored in potential early-pregnancy patients undergoing infertility treatment.


Asunto(s)
Gástrula , Gastrulación , Receptores de Progesterona , Animales , Diferenciación Celular , Femenino , Gástrula/fisiología , Humanos , Mesodermo , Ratones , Embarazo , Progesterona/metabolismo , Receptores de Progesterona/metabolismo
4.
Cell ; 185(17): 3169-3185.e20, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35908548

RESUMEN

Mice deficient for all ten-eleven translocation (TET) genes exhibit early gastrulation lethality. However, separating cause and effect in such embryonic failure is challenging. To isolate cell-autonomous effects of TET loss, we used temporal single-cell atlases from embryos with partial or complete mutant contributions. Strikingly, when developing within a wild-type embryo, Tet-mutant cells retain near-complete differentiation potential, whereas embryos solely comprising mutant cells are defective in epiblast to ectoderm transition with degenerated mesoderm potential. We map de-repressions of early epiblast factors (e.g., Dppa4 and Gdf3) and failure to activate multiple signaling from nascent mesoderm (Lefty, FGF, and Notch) as likely cell-intrinsic drivers of TET loss phenotypes. We further suggest loss of enhancer demethylation as the underlying mechanism. Collectively, our work demonstrates an unbiased approach for defining intrinsic and extrinsic embryonic gene function based on temporal differentiation atlases and disentangles the intracellular effects of the demethylation machinery from its broader tissue-level ramifications.


Asunto(s)
Gastrulación , Mesodermo , Animales , Diferenciación Celular/genética , Embrión de Mamíferos/metabolismo , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Proteínas Nucleares/metabolismo , Transducción de Señal
5.
Cell ; 184(11): 2825-2842.e22, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33932341

RESUMEN

Mouse embryonic development is a canonical model system for studying mammalian cell fate acquisition. Recently, single-cell atlases comprehensively charted embryonic transcriptional landscapes, yet inference of the coordinated dynamics of cells over such atlases remains challenging. Here, we introduce a temporal model for mouse gastrulation, consisting of data from 153 individually sampled embryos spanning 36 h of molecular diversification. Using algorithms and precise timing, we infer differentiation flows and lineage specification dynamics over the embryonic transcriptional manifold. Rapid transcriptional bifurcations characterize the commitment of early specialized node and blood cells. However, for most lineages, we observe combinatorial multi-furcation dynamics rather than hierarchical transcriptional transitions. In the mesoderm, dozens of transcription factors combinatorially regulate multifurcations, as we exemplify using time-matched chimeric embryos of Foxc1/Foxc2 mutants. Our study rejects the notion of differentiation being governed by a series of binary choices, providing an alternative quantitative model for cell fate acquisition.


Asunto(s)
Desarrollo Embrionario/fisiología , Gastrulación/fisiología , Animales , Diferenciación Celular , Linaje de la Célula , Embrión de Mamíferos/citología , Desarrollo Embrionario/genética , Femenino , Expresión Génica , Ratones/embriología , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones , Embarazo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
6.
Dev Biol ; 381(1): 170-8, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23747598

RESUMEN

During mouse gastrulation, cells in the primitive streak undergo epithelial-mesenchymal transformation and the resulting mesenchymal cells migrate out laterally to form mesoderm and definitive endoderm across the entire embryonic cylinder. The mechanisms underlying mesoderm and endoderm specification, migration, and allocation are poorly understood. In this study, we focused on the function of mouse Cripto, a member of the EGF-CFC gene family that is highly expressed in the primitive streak and migrating mesoderm cells on embryonic day 6.5. Conditional inactivation of Cripto during gastrulation leads to varied defects in mesoderm and endoderm development. Mutant embryos display accumulation of mesenchymal cells around the shortened primitive streak indicating a functional requirement of Cripto during the formation of mesoderm layer in gastrulation. In addition, some mutant embryos showed poor formation and abnormal allocation of definitive endoderm cells on embryonic day 7.5. Consistently, many mutant embryos that survived to embryonic day 8.5 displayed defects in ventral closure of the gut endoderm causing cardia bifida. Detailed analyses revealed that both the Fgf8-Fgfr1 pathway and p38 MAP kinase activation are partially affected by the loss of Cripto function. These results demonstrate a critical role for Cripto during mouse gastrulation, especially in mesoderm and endoderm formation and allocation.


Asunto(s)
Endodermo/metabolismo , Factor de Crecimiento Epidérmico/fisiología , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Glicoproteínas de Membrana/fisiología , Mesodermo/metabolismo , Proteínas de Neoplasias/fisiología , Alelos , Animales , Factor de Crecimiento Epidérmico/genética , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Glicoproteínas de Membrana/genética , Ratones , Mutación , Proteínas de Neoplasias/genética , Línea Primitiva/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA