Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PeerJ ; 11: e16261, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818333

RESUMEN

Purpose: The purpose of this investigation was to compare the quality of neural drive and recruited quadriceps motor units' (MU) action potential amplitude (MUAPAMP) and discharge rate (mean firing rate (MFR)) relative to recruitment threshold (RT) between individuals with anterior cruciate ligament reconstruction (ACLR) and controls. Methods: Fourteen individuals with ACLR and 13 matched controls performed trapezoidal knee extensor contractions at 30%, 50%, 70%, and 100% of their maximal voluntary isometric contraction (MVIC). Decomposition electromyography (dEMG) and torque were recorded concurrently. The Hoffmann reflex (H-reflex) and central activation ratio (CAR) were acquired bilaterally to detail the proportion of MU pool available and volitionally activated. We examined MUAPAMP-RT and MFR-RT relationships with linear regression and extracted the regression line slope, y-intercept, and RT range for each contraction. Linear mixed effect modelling used to analyze the effect of group and limb on regression line slope and RT range. Results: Individuals with ACLR demonstrated lower MVIC torque in the involved limb compared to uninvolved limb. There were no differences in H-reflex or CAR between groups or limbs. The ACLR involved limb demonstrated smaller mass-normalized RT range and slower MU firing rates at high contraction intensities (70% and 100% MVIC) compared to uninvolved and control limbs. The ACLR involved limb also demonstrated larger MU action potentials in the VM compared to the contralateral limb. These differences were largely attenuated with relative RT normalization. Conclusions: These results suggest that persistent strength deficits following ACLR may be attributable to a diminished quadriceps motor neuron pool and inability to upregulate the firing rate of recruited MUs.


Asunto(s)
Potenciales de Acción , Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Debilidad Muscular , Músculo Cuádriceps , Reclutamiento Neurofisiológico , Humanos , Lesiones del Ligamento Cruzado Anterior/fisiopatología , Lesiones del Ligamento Cruzado Anterior/cirugía , Reconstrucción del Ligamento Cruzado Anterior/efectos adversos , Reconstrucción del Ligamento Cruzado Anterior/métodos , Rodilla/fisiopatología , Rodilla/cirugía , Articulación de la Rodilla/fisiopatología , Articulación de la Rodilla/cirugía , Músculo Cuádriceps/fisiopatología , Debilidad Muscular/etiología , Debilidad Muscular/fisiopatología
2.
J Neurotrauma ; 36(9): 1428-1434, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30235970

RESUMEN

4-Aminopyridine (4AP), a potassium channel antagonist, can improve hindlimb motor function in dogs with chronic thoracolumbar spinal cord injury (SCI); however, individual response is variable. We hypothesized that injury characteristics would differ between dogs that do and do not respond to 4AP. Our objective was to compare clinical, electrodiagnostic, gait, and imaging variables between dogs that do and do not respond to 4AP, to identify predictors of response. Thirty-four dogs with permanent deficits after acute thoracolumbar SCI were enrolled. Spasticity, motor and sensory evoked potentials (MEPs, SEPs), H-reflex, F-waves, gait scores, and magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI) were evaluated at baseline and after 4AP administration. Baseline variables were assessed as predictors of response; response was defined as ≥1 point change in open field gait score. Variables were compared pre- and post-4AP to evaluate 4AP effects. Fifteen of 33 (45%) dogs were responders, 18/33 (55%) were non-responders and 1 was eliminated because of an adverse event. Pre-H-reflex threshold <1.2 mA predicted non-response; pre-H-reflex threshold >1.2 mA and Canine Spasticity Scale overall score <7 were predictive of response. All responders had translesional connections on DTI. MEPs were more common post-4AP than pre-4AP (10 vs. 6 dogs) and 4AP decreased H-reflex threshold and increased spasticity in responders. 4-AP impacts central conduction and motor neuron pool excitability in dogs with chronic SCI. Severity of spasticity and H-reflex threshold might allow prediction of response. Further exploration of electrodiagnostic and imaging characteristics might elucidate additional factors contributing to response or non-response.


Asunto(s)
4-Aminopiridina/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Perros , Potenciales Evocados Motores/fisiología , Femenino , Reflejo H/fisiología , Masculino , Neuronas Motoras/fisiología , Espasticidad Muscular/fisiopatología
3.
J Neurophysiol ; 120(4): 2059-2065, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29947595

RESUMEN

Reaction time (RT) is the time interval between the appearance of a stimulus and initiation of a motor response. Within RT, two processes occur, selection of motor goals and motor planning. An unresolved question is whether perturbation to the motor planning component of RT slows the response and alters the voluntary activation of muscle. The purpose of this study was to determine how the modulation of muscle activity during an RT response changes with motor plan perturbation. Twenty-four young adults (20.5 ±1.1 yr, 13 women) performed 15 trials of an isometric RT task with ankle dorsiflexion using a sinusoidal anticipatory strategy (10-20% maximum voluntary contraction). We compared the processing part of the RT and modulation of muscle activity from 10 to 60 Hz of the tibialis anterior (primary agonist) when the stimulus appeared at the trough or at the peak of the sinusoidal task. We found that RT ( P = 0.003) was longer when the stimulus occurred at the peak compared with the trough. During the time of the reaction, the electromyography (EMG) power from 10 to 35 Hz was less at the peak than the trough ( P = 0.019), whereas the EMG power from 35 to 60 Hz was similar between the peak and trough ( P = 0.92). These results suggest that perturbation to motor planning lengthens the processing part of RT and alters the voluntary activation of the muscle by decreasing the relative amount of power from 10 to 35 Hz. NEW & NOTEWORTHY We aimed to determine whether perturbation to motor planning would alter the speed and muscle activity of the response. We compared trials when a stimulus appeared at the peak or trough of an oscillatory reaction time task. When the stimulus occurred at the trough, participants responded faster, with greater force, and less EMG power from 10-35 Hz. We provide evidence that motor planning perturbation slows the response and alters the voluntary activity of the muscle.


Asunto(s)
Contracción Isométrica , Músculo Esquelético/fisiología , Tiempo de Reacción , Tobillo/fisiología , Femenino , Humanos , Masculino , Músculo Esquelético/inervación , Adulto Joven
4.
J Neurophysiol ; 118(4): 2238-2250, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28768739

RESUMEN

Motor neurons appear to be activated with a common input signal that modulates the discharge activity of all neurons in the motor nucleus. It has proven difficult for neurophysiologists to quantify the variability in a common input signal, but characterization of such a signal may improve our understanding of how the activation signal varies across motor tasks. Contemporary methods of quantifying the common input to motor neurons rely on compiling discrete action potentials into continuous time series, assuming the motor pool acts as a linear filter, and requiring signals to be of sufficient duration for frequency analysis. We introduce a space-state model in which the discharge activity of motor neurons is modeled as inhomogeneous Poisson processes and propose a method to quantify an abstract latent trajectory that represents the common input received by motor neurons. The approach also approximates the variation in synaptic noise in the common input signal. The model is validated with four data sets: a simulation of 120 motor units, a pair of integrate-and-fire neurons with a Renshaw cell providing inhibitory feedback, the discharge activity of 10 integrate-and-fire neurons, and the discharge times of concurrently active motor units during an isometric voluntary contraction. The simulations revealed that a latent state-space model is able to quantify the trajectory and variability of the common input signal across all four conditions. When compared with the cumulative spike train method of characterizing common input, the state-space approach was more sensitive to the details of the common input current and was less influenced by the duration of the signal. The state-space approach appears to be capable of detecting rather modest changes in common input signals across conditions.NEW & NOTEWORTHY We propose a state-space model that explicitly delineates a common input signal sent to motor neurons and the physiological noise inherent in synaptic signal transmission. This is the first application of a deterministic state-space model to represent the discharge characteristics of motor units during voluntary contractions.


Asunto(s)
Modelos Neurológicos , Neuronas Motoras/fisiología , Animales , Retroalimentación Fisiológica , Probabilidad , Tiempo de Reacción , Potenciales Sinápticos
5.
Front Aging Neurosci ; 6: 296, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25400579

RESUMEN

Qualitative changes in the peripheral motor system were examined using young, adult, middle-aged, and old-aged rats in order to assess before and after the appearance of sarcopenia symptoms. Significant loss of muscle mass and strength, and slow-type fiber grouping with a loss of innervated nerve fibers were used as typical markers of sarcopenia. Dynamic twitch and tetanus tension and evoked electromyogram (EEMG) were measured via electrical stimulation through the sciatic nerve under anesthesia using our force-distance transducer system before and after sciatectomy. Digital and analog data sampling was performed and shortening and relaxing velocity of serial twitches was calculated with tension force. Muscle tenderness in passive stretching was also measured as stretch absorption ability, associated with histological quantitation of muscle connective tissues. The results indicated the validity of the present model, in which old-aged rats clearly showed the typical signs of sarcopenia, specifically in the fast-type plantaris muscles, while the slow-type soleus showed relatively mild syndromes. These observations suggest the following qualitative alterations as the pathophysiological mechanism of sarcopenia: (1) reduction of shortening and relaxing velocity of twitch; (2) decline of muscle tenderness following an increase in the connective tissue component; (3) impaired recruitment of motor units (MUs) (sudden depression of tetanic force and EEMG) in higher stimulation frequencies over 50-60 Hz; and (4) easy fatigability in the neuromuscular junctions. These findings are likely to be closely related to significant losses in fast-type MUs, muscle strength and contraction velocity, which could be a causative factor in falls in the elderly. Importantly, some of these symptoms began in middle-aged rats that showed no other signs of sarcopenia. Thus, prevention should be started in middle age that could be retained relatively higher movement ability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA