Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Int J Parasitol Parasites Wildl ; 24: 100962, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39099677

RESUMEN

Parasitic nematodes are ubiquitous and can negatively impact their host by reducing fecundity or increasing mortality, yet the driver of variation in the parasite community across a wildlife host's geographic distribution remains elusive for most species. Based on an extensive collection of fecal samples (n = 264) from GPS marked moose (Alces alces), we used DNA metabarcoding to characterize the individual (sex, age class) and seasonal parasitic nematode community in relation to habitat use and migration behavior in five populations distributed across a wide latitudinal gradient (59.6°N to 70.5°N) in Norway. We detected 21 distinct nematode taxa with the six most common being Ostertagia spp., Nematodirella spp., Trichostongylus spp., T. axei, Elaphostrongylus alces, and an unclassified Strongylida. There was higher prevalence of livestock parasites in areas with larger sheep populations indicating a higher risk of spillover events. The individual level nematode richness was mostly consistent across study areas, while the number and type of nematode taxa detected at each study area varied considerably but did not follow a latitudinal gradient. While migration distance affected nematode beta-diversity across all sites, it had a positive effect on richness at only two of the five study areas suggesting population specific effects. Unexpectedly, nematode richness was higher in winter than summer when very few nematodes were detected. Here we provide the first extensive description of the parasitic nematode community of moose across a wide latitudinal range. Overall, the population-specific impact of migration on parasitism across the distribution range and variation in sympatry with other ruminants suggest local characteristics affect host-parasite relationships.

2.
Ecol Evol ; 14(6): e11625, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38911494

RESUMEN

Moose (Alces alces) in the boreal forest habitats of Alaska are unlike other northern ungulates because they tolerate high densities of flies (Diptera) even though flies cause wounds and infections during the warm summer months. Moose move to find food and to find relief from overheating (hyperthermia) but do they avoid flies? We used GPS collars to measure the rate of movement (m⋅h-1) and the time spent (min⋅day-1) by enclosed moose in four habitats: wetlands, black spruce, early seral boreal forest, and late seral boreal forest. Fly traps were used in each habitat to quantify spatio-temporal abundance. Average daily air temperatures increased into July when peak biomass of forage for moose was greatest in early seral boreal forest habitats (424.46 vs. 25.15 kg⋅ha-1 on average in the other habitats). Average daily air temperatures were 1.7°C cooler in black spruce than other habitats, but fly abundance was greatest in black spruce (approximately 4-fold greater on average than the other habitats). Moose increased their movement rate with counts of biting flies (mosquitoes, black flies, horse and deer flies), but not non-biting flies (coprophagous flies). However, as air temperature increased (above 14.7°C) moose spent more time in fly-abundant black spruce, than early seral boreal forest, showing great tolerance for mosquitoes. Warm summer temperatures appear to cause moose to trade-off foraging in fly-sparse habitats for resting and dissipating heat in shady, wet habitats with abundant flies that adversely affect the fitness of moose.

3.
Zoonoses Public Health ; 71(6): 744-747, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38853397

RESUMEN

AIMS: We investigated the presence of SARS-CoV-2 in free-ranging wildlife populations in Northeastern Minnesota on the Grand Portage Indian Reservation and Isle Royale National Park. METHODS AND RESULTS: One hundred twenty nasal samples were collected from white-tailed deer, moose, grey wolves and black bears monitored for conservation efforts during 2022-2023. Samples were tested for viral RNA by RT-qPCR using the CDC N1/N2 primer set. Our data indicate that no wildlife samples were positive for SARS-CoV-2 RNA. CONCLUSIONS: Continued surveillance is therefore crucial to better understand the changing landscape of zoonotic SARS-CoV-2 in the Upper Midwest.


Asunto(s)
Animales Salvajes , COVID-19 , Parques Recreativos , SARS-CoV-2 , Animales , Minnesota/epidemiología , Animales Salvajes/virología , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/veterinaria , ARN Viral , Ciervos/virología
4.
Animals (Basel) ; 14(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791668

RESUMEN

We analyzed 474 human casualties in wildlife-vehicle accidents (WVAs) that occurred between 2002 and 2022 in Lithuania, which is a small northern European country. The study revealed the escalating trend of WVAs, since 2018 surpassing other transport accidents, although the number of casualties per WVA was ca. 100 times lower compared to other transport accidents. Moose was the primary contributor, responsible for 66.7% of fatalities and 47.2% of injuries, despite much lower species abundance compared to roe deer, which is the main species involved in WVAs without human casualties. Temporal patterns highlighted seasonal, daily, and hourly variations, with the majority of casualties occurring during dusk or dawn in May and September, on weekends, and between 20:00 and 22:00. Spatially, main roads with high traffic density exhibited the highest casualties per unit length. Most casualties occurred after hitting an animal directly with cars and motorcycles being most vulnerable vehicles. The effectiveness of WVA prevention measures was inconclusive: 9.5% of fatalities and 1.4% of injuries were registered in the area of the warning sign, and 10.4% of all casualties occurred on fenced road segments. These findings suggest the need for a critical evaluation of the current prevention strategies in reducing human casualties associated with WVAs.

5.
Mov Ecol ; 12(1): 33, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671527

RESUMEN

BACKGROUND: Prey are more vulnerable during migration due to decreased familiarity with their surroundings and spatially concentrated movements. Predators may respond to increased prey vulnerability by shifting their ranges to match prey. Moose (Alces alces) and white-tailed deer (Odocoileus virginianus) are primary gray wolf (Canis lupus) prey and important subsistence species for Indigenous communities. We hypothesized wolves would increase use of ungulate migration corridors during migrations and predicted wolf distributions would overlap primary available prey. METHODS: We examined seasonal gray wolf, moose, and white-tailed deer movements on and near the Grand Portage Indian Reservation, Minnesota, USA. We analyzed GPS collar data during 2012-2021 using Brownian bridge movement models (BBMM) in Migration Mapper and mechanistic range shift analysis (MRSA) to estimate individual- and population-level occurrence distributions and determine the status and timing of range shifts. We estimated proportional overlap of wolf distributions with moose and deer distributions and tested for differences among seasons, prey populations, and wolf sex and pack affiliations. RESULTS: We identified a single migration corridor through which white-tailed deer synchronously departed in April and returned in October-November. Gray wolf distributions overlapped the deer migration corridor similarly year-round, but wolves altered within-range distributions seasonally corresponding to prey distributions. Seasonal wolf distributions had the greatest overlap with deer during fall migration (10 October-28 November) and greatest overlap with moose during summer (3 May-9 October). CONCLUSIONS: Gray wolves did not increase their use of the white-tailed deer migration corridor but altered distributions within their territories in response to seasonal prey distributions. Greater overlap of wolves and white-tailed deer in fall may be due to greater predation success facilitated by asynchronous deer migration movements. Greater summer overlap between wolves and moose may be linked to moose calf vulnerability, American beaver (Castor canadensis) co-occurrence, and reduced deer abundance associated with migration. Our results suggest increases in predation pressure on deer in fall and moose in summer, which can inform Indigenous conservation efforts. We observed seasonal plasticity of wolf distributions suggestive of prey switching; that wolves did not exhibit migratory coupling was likely due to spatial constraints resulting from territoriality.

6.
J Wildl Dis ; 60(3): 727-733, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38544452

RESUMEN

Elaeophorosis, infection by the filarial worm Elaeophora schneideri, is a parasitic disease of wild ungulates in North America; however, our understanding of the relevance of E. schneideri to moose (Alces alces) morbidity and mortality is incomplete. Between March 2020 and July 2022, necropsy and histopathology were performed on 61 Shiras moose (Alces alces shirasi) in Idaho, US. Among the 41 adults (greater than 1 yr old), 21 moose were from northern Idaho, and 20 were from southeastern Idaho. Elaeophorosis was diagnosed in 24% (10 of 41). All 10 infected moose were from southeastern Idaho; none of the 21 moose from northern Idaho were infected. No juvenile moose (nine from northern and 11 from southeastern Idaho) were infected. Microfilariae were detected histologically in 9 of 10 infected moose, most consistently in brain tissue associated with lesions indicative of ischemic injury to the neuroparenchyma attributed to occlusion of arterioles and capillaries by microfilariae or fibrin thrombi, including edema, necrosis, and glial nodules. Microfilariae found in other tissues of the head, including the eye, tongue, and pinnae of some animals, as well as in lung, heart, liver, and kidney, typically were associated with inflammation. Three of the 10 infected moose had cropped ears attributed to elaeophorosis, and four exhibited abnormal behavior, which may have been due to neuropathology associated with E. schneideri microfilariae in the brain.


Asunto(s)
Ciervos , Filariasis , Animales , Ciervos/parasitología , Idaho/epidemiología , Filariasis/veterinaria , Filariasis/patología , Filariasis/epidemiología , Filariasis/parasitología , Femenino , Masculino , Filarioidea/aislamiento & purificación
7.
Ecol Evol ; 13(12): e10750, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38089892

RESUMEN

Although the advent of high-resolution GPS tracking technology has helped increase our understanding of individual and multispecies behavior in wildlife systems, detecting and recording direct interactions between free-ranging animals remains difficult. In 2023, we deployed GPS collars equipped with proximity sensors (GPS proximity collars) on brown bears (Ursus arctos) and moose (Alces alces) as part of a multispecies interaction study in central Sweden. On 6 June, 2023, a collar on an adult female moose and a collar on an adult male bear triggered each other's UHF signal and started collecting fine-scale GPS positioning data. The moose collar collected positions every 2 min for 89 min, and the bear collar collected positions every 1 min for 41 min. On 8 June, field personnel visited the site and found a female neonate moose carcass with clear indications of bear bite marks on the head and neck. During the predation event, the bear remained at the carcass while the moose moved back and forth, moving toward the carcass site about five times. The moose was observed via drone with two calves on 24 May and with only one remaining calf on 9 June. This case study describes, to the best of our knowledge, the first instance of a predation event between two free ranging, wild species recorded by GPS proximity collars. Both collars successfully triggered and switched to finer-scaled GPS fix rates when the individuals were in close proximity, producing detailed movement data for both predator and prey during and after a predation event. We suggest that, combined with standard field methodology, GPS proximity collars placed on free-ranging animals offer the ability for researchers to observe direct interactions between multiple individuals and species in the wild without the need for direct visual observation.

8.
Conserv Physiol ; 11(1): coad097, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107464

RESUMEN

Measurements of reproductive and stress-related hormones in keratinous tissues (e.g. hair, claws, hooves, baleen) can provide a record of stress and reproductive response in wildlife. We evaluated a method to collect keratin tissue from hooves of immobilized moose (Alces alces) and validated enzyme immunoassays for measuring cortisol and progesterone in hooves and hair. We also measured the annual growth and wear rates of moose hooves. Progesterone (range: 1.0-43.7 pg/mg) and cortisol (range: 0.05-2.9 pg/mg) were measurable and showed variation among hoof samples and moose. Pregnant females had twice as high progesterone concentrations (18.00 ± 3.73 pg/mg) from hoof sample locations post breeding compared to non-pregnant moose (9.40 ± 0.25 pg/mg). Annual hoof growth differed between the front (5.58 ± 0.12 cm) and rear (4.73 ± 0.13 cm) hooves and varied by season with higher growth rates during summer which decreased into autumn and winter. Adult female hooves represented between 1.6 and 2.1 years of growth and included up to two reproductive cycles. We established a method to estimate hoof growth rate and applied this to postmortem samples and were able to detect previous pregnancies. Shoulder guard hairs grew between August and March including during late gestation; however, hair progesterone concentrations (range: 2-107.1 pg/mg) were not related to reproductive state. Hair cortisol concentrations in our study (range: 0.2-15.9 pg/mg) were within the range of values previously reported for cervids. Our study supports the use of hooves for longitudinal sampling and measuring reproductive and stress-related hormones, providing a new tool for tracking reproductive events and understanding what variables may contribute to population level changes in reproduction.

9.
Conserv Physiol ; 11(1): coad003, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026802

RESUMEN

Pregnancy determination is necessary for sound wildlife management and understanding population dynamics. Pregnancy rates are sensitive to environmental and physiological factors and may indicate the overall trajectory of a population. Pregnancy can be assessed through direct methods (rectal palpation, sonography) or indicated using hormonal assays (serum progesterone or pregnancy-specific protein B, fecal progestogen metabolites). A commonly used threshold of 2 ng/ml of progesterone in serum has been used by moose biologists to indicate pregnancy but has not been rigorously investigated. To refine this threshold, we examined the relationship between progesterone concentrations in serum samples and pregnancy in 87 moose (Alces alces; 64 female, 23 male) captured from 2010 to 2020 in the Grand Portage Indian Reservation in northeastern Minnesota, USA. Pregnancy was confirmed via rectal palpation (n = 25), necropsy (n = 2), calf observation (n = 25) or characteristic pre-calving behavior (n = 6), with a total of 58 females determined pregnant and 6 not pregnant; 23 males were included to increase the non-pregnant sample size. Using receiver operating characteristic analysis, we identified an optimal threshold of 1.115 ng/ml with a specificity of 0.97 (95% confidence interval [CI] = 0.90-1.00) and a sensitivity of 0.98 (95% CI = 0.95-1.00). Progesterone concentrations were significantly higher in cases of pregnant versus non-pregnant cows, but we did not detect a difference between single and twin births. We applied our newly refined threshold to calculate annual pregnancy rates for all female moose (n = 133) captured in Grand Portage from 2010 to 2021. Mean pregnancy rate during this period was 91% and ranged annually from 69.2 to 100%. Developing a reliable method for determining pregnancy status via serum progesterone analyses will allow wildlife managers to assess pregnancy rates of moose without devoting substantial time and resources to palpation and calf monitoring.

10.
Foods ; 12(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37893665

RESUMEN

Moose (Alces alces) recombinant chymosin with a milk-clotting activity of 86 AU/mL was synthesized in the Kluyveromyces lactis expression system. After precipitation with ammonium sulfate and chromatographic purification, a sample of genetically engineered moose chymosin with a specific milk-clotting activity of 15,768 AU/mg was obtained, which was used for extensive biochemical characterization of the enzyme. The threshold of the thermal stability of moose chymosin was 55 °C; its complete inactivation occurred after heating at 60 °C. The total proteolytic activity of moose chymosin was 0.332 A280 units. The ratio of milk-clotting and total proteolytic activities of the enzyme was 0.8. The Km, kcat and kcat/Km values of moose chymosin were 4.7 µM, 98.7 s-1, and 21.1 µM-1 s-1, respectively. The pattern of change in the coagulation activity as a function of pH and Ca2+ concentration was consistent with the requirements for milk coagulants for cheese making. The optimum temperature of the enzyme was 50-55 °C. The introduction of Mg2+, Zn2+, Co2+, Ba2+, Fe2+, Mn2+, Ca2+, and Cu2+ into milk activated the coagulation ability of moose chymosin, while Ni ions on the contrary inhibited its activity. Using previously published data, we compared the biochemical properties of recombinant moose chymosin produced in bacterial (Escherichia coli) and yeast (K. lactis) producers.

11.
J Wildl Dis ; 59(4): 748-752, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37846918

RESUMEN

Elaeophora schneideri is a filarial nematode of North America that occasionally infects aberrant ruminant hosts such as moose (Alces alces). The role E. schneideri plays in clinical morbidity or mortality of moose remains uncertain. We sampled predominantly hunter-killed adult moose (n=127) to characterize the spatial patterns of prevalence and intensity of worms in carotid arteries of moose in Montana. We compared prevalence and intensity of E. schneideri within these moose to a separate sample of adult moose that died of health-related causes (n=34). We found lower prevalence in northwest Montana (0.06) than in the remainder of the state (0.42). We also found both higher prevalence of E. schneideri and higher intensity to be correlated with increased probability of health-related mortality. Our results suggest presence and intensity of E. schneideri correlate with mortality of moose, although the mechanisms of mortality remain uncertain.


Asunto(s)
Ciervos , Animales , Montana/epidemiología , Prevalencia , Rumiantes , América del Norte
12.
Vet Res ; 54(1): 74, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684668

RESUMEN

Prion diseases are a group of neurodegenerative, transmissible, and fatal disorders that affect several animal species. They are characterized by the conformational conversion of the cellular prion protein (PrPC) into the pathological prion protein (PrPSc). In 2016, chronic wasting disease (CWD) gained great importance at European level due to the first disease detection in a wild reindeer (Rangifer tarandus) in Norway. The subsequent intensive CWD surveillance launched in cervids resulted in the detection of CWD in moose (Alces alces), with 11 cases in Norway, 3 in Finland and 4 in Sweden. These moose cases differ considerably from CWD cases in North American and reindeer in Norway, as PrPSc was detectable in the brain but not in lymphoid tissues. These facts suggest the occurrence of a new type of CWD. Here, we show some immunohistochemical features that are clearly different from CWD cases in North American and Norwegian reindeer. Further, the different types of PrPSc deposits found among moose demonstrate strong variations between the cases, supporting the postulation that these cases could carry multiple strains of CWD.


Asunto(s)
Ciervos , Priones , Reno , Enfermedad Debilitante Crónica , Animales , Proteínas Priónicas , Enfermedad Debilitante Crónica/epidemiología , Finlandia/epidemiología , Suecia/epidemiología , Encéfalo , Noruega/epidemiología
13.
Parasitology ; 150(10): 956-966, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37694391

RESUMEN

Lungworms of the genus Dictyocaulus are causative agents of parasitic bronchitis in domestic and wild ungulates. This study investigates the distribution, morphology and genetic diversity of D. cervi and a new lungworm species, Dictyocaulus skrjabini n. sp. infecting red deer Cervus elaphus, fallow deer Dama dama and moose Alces alces in Poland and Sweden. The study was conducted on 167 red deer from Poland and on the DNA of lungworms derived from 7 fallow deer, 4 red deer and 2 moose collected in Sweden. The prevalence of D. cervi and D. skrjabini n. sp. in dissected red deer in Poland was 31.1% and 7.2%, respectively. Moreover, D. skrjabini n. sp. was confirmed molecularly in 7 isolates of fallow deer lungworms and 1 isolate of red deer lungworms from Sweden. Dictyocaulus skrjabini n. sp. was established based on combination of their distinct molecular and morphological features; these included the length of cephalic vesicle, buccal capsule (BC), buccal capsule wall (BCW), distance from anterior extremity to the nerve ring, the width of head, oesophagus, cephalic vesicle, BC and BCW, as well as the dimensions of reproductive organs of male and female. Additionally, molecular analyses revealed 0.9% nucleotide sequence divergence for 1,605 bp SSU rDNA, and 16.5­17.3% nucleotide sequence divergence for 642 bp mitochondrial cytB between D. skrjabini n. sp. and D. cervi, respectively, and 18.7­19% between D. skrjabini n. sp. and D. eckerti, which translates into 18.2­18.7% amino acid sequence divergence between D. skrjabini n. sp. and both lungworms.


Asunto(s)
Ciervos , Infecciones por Dictyocaulus , Nematodos , Animales , Femenino , Masculino , Dictyocaulus/genética , Ciervos/parasitología , Infecciones por Dictyocaulus/epidemiología , Nematodos/genética , Secuencia de Bases
14.
Biology (Basel) ; 12(8)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37627006

RESUMEN

The change in habitat pattern is one of the key factors affecting the survival of the moose population. The study of the habitat landscape pattern is the key to protecting the Chinese cold-temperate forest moose population and monitoring the global distribution of moose. Through the ecological risk assessment of the moose habitat landscape pattern in a cold-temperate forest, we hope to assess the strength of habitat resistance under stress factors. This study provides a theoretical basis for the protection of the moose population in the cold-temperate forest in China and the establishment of the cold-temperate forest national park. In the study, the MaxEnt model, landscape index calculation and ecological risk assessment model construction were used to analyze the field survey and infrared camera monitoring data from April 2014 to January 2023. The habitat suitability layer of the moose population in the Nanwenghe National Nature Reserve of the Great Khingan Mountains was calculated, and the range of the moose habitat was divided based on the logical threshold of the model. The landscape pattern index of the moose habitat was calculated by Fragstats software and a landscape ecological risk assessment model was established to analyze the landscape pattern and ecological risk dynamic changes of the moose habitat in 2015 and 2020. The results showed that under the premise of global warming, the habitat landscape contagion index decreased by 4.53 and the split index increased by 4.86 from 2015 to 2020. In terms of ecological risk: the area of low ecological risk areas increased by 0.88%; the area of medium ecological risk areas decreased by 1.11%; and the area of high ecological risk areas increased by 0.23%. The fragmentation risk of the landscape pattern of the moose habitat tends to increase, the preferred patch type is dispersed, the degree of aggregation is low, and the risk of patch type transformation increases. The middle and high ecological risk areas are mainly concentrated in the river area and its nearby forests, showing a fine and scattered distribution. Under the interference of global warming and human activities, the fragmentation trend of the moose habitat in the study area is increasing, and the habitat quality is declining, which is likely to cause moose population migration. For this reason, the author believes that the whole cold temperate forest is likely to face the risk of increasing the transformation trend of dominant patch types in the cold-temperate coniferous forest region mainly caused by global warming, resulting in an increase in the risk of habitat fragmentation. While the distribution range of moose is reduced, it has a significant impact on the diversity and ecological integrity of the whole cold-temperate forest ecosystem. This study provides theoretical references for further research on the impact of climate warming on global species distribution and related studies. It is also helpful for humans to strengthen their protection awareness of forest and river areas and formulate reasonable protection and sustainable development planning of cold-temperate forests. Finally, it provides theoretical references for effective monitoring and protection of cold-temperate forests and moose population dynamics.

15.
J Anim Ecol ; 92(10): 2016-2027, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37565516

RESUMEN

1. Experimental studies across biomes demonstrate that herbivores can have significant effects on ecosystem functioning. Herbivore effects, however, can be highly variable with studies demonstrating positive, neutral or negative relationships between herbivore presence and different components of ecosystems. Mixed effects are especially likely in the soil, where herbivore effects are largely indirect mediated through effects on plants. 2. We conducted a long-term experiment to disentangle the effects of non-native moose in boreal forests on plant communities, nutrient cycling, soil composition and soil organism communities. 3. To explore the effect of moose on soils, we conduct separate analyses on the soil organic and mineral horizons. Our data come from 11 paired exclosure-control plots in eastern and central Newfoundland, Canada that provide insight into 22-25 years of moose herbivory. We fit piecewise structural equations models (SEM) to data for the organic and mineral soil horizons to test different pathways linking moose to above-ground and below-ground functioning. 4. The SEMs revealed that moose exclusion had direct positive impacts on adult tree count and an indirect negative impact on shrub percent cover mediated by adult tree count. We detected no significant impact of moose on soil microbial C:N ratio or net nitrogen mineralization in the organic or mineral soil horizon. Soil temperature and moisture, however, was more than twice as variable in the presence (i.e. control) than absence (i.e. exclosure) of moose. Overall, we observed clear impacts of moose on above-ground forest components with limited indirect effects below-ground. Even after 22-25 years of exclusion, we did not find any evidence of moose impacts on soil microbial C:N ratio and net nitrogen mineralization. 5. Our long-term study and mechanistic path analysis demonstrates that soils can be resilient to ungulate herbivore effects despite evidence of strong effects above-ground. Long-term studies and analyses such as this one are relatively rare yet critical for reconciling some of the context-dependency observed across studies of ungulates effects on ecosystem functions. Such studies may be particularly valuable in ecosystems with short growing seasons such as the boreal forest.

16.
J Wildl Dis ; 59(4): 640-650, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37540143

RESUMEN

Our understanding of wildlife multihost pathogen transmission systems is often incomplete due to the difficulty of observing contact between hosts. Understanding these interactions can be critical for preventing disease-induced wildlife declines. The proliferation of high-throughput sequencing technologies provides new opportunities to better explore these cryptic interactions. Parelaphostrongylus tenuis, a multihost parasite, is a leading cause of death in some moose (Alces alces) populations threatened by local extinction in the midwestern and northeastern US and southeastern Canada. Moose contract P. tenuis by consuming infected gastropod intermediate hosts, but little is known about which gastropod species moose consume. To gain more insight, we used a genetic metabarcoding approach on 258 georeferenced and temporally stratified moose fecal samples collected May-October 2017-20 from a declining population in the north-central US. We detected moose consumption of three species of gastropods across five positive samples. Two of these (Punctum minutissimum and Helisoma sp.) have been minimally investigated for the ability to host P. tenuis, while one (Zonitoides arboreus) is a well-documented host. Moose consumption of gastropods documented herein occurred in June and September. Our findings prove that moose consume gastropod species known to become infected by P. tenuis and demonstrate that fecal metabarcoding can provide novel insight on interactions between hosts of a multispecies pathogen transmission system. After determining and improving test sensitivity, these methods may also be extended to document important interactions in other multihost disease systems.


Asunto(s)
Ciervos , Metastrongyloidea , Animales , Código de Barras del ADN Taxonómico/veterinaria , Animales Salvajes , ADN , Ciervos/parasitología , Heces/parasitología
17.
Ecol Evol ; 13(5): e10083, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37214615

RESUMEN

Climate change and habitat loss are recognized as important drivers of shifts in wildlife species' geographic distributions. While often considered independently, there is considerable overlap between these drivers, and understanding how they contribute to range shifts can predict future species assemblages and inform effective management. Our objective was to evaluate the impacts of habitat, climatic, and anthropogenic effects on the distributions of climate-sensitive vertebrates along a southern range boundary in Northern Michigan, USA. We combined multiple sources of occurrence data, including harvest and citizen-science data, then used hierarchical Bayesian spatial models to determine habitat and climatic associations for four climate-sensitive vertebrate species (American marten [Martes americana], snowshoe hare [Lepus americanus], ruffed grouse [Bonasa umbellus] and moose [Alces alces]). We used total basal area of at-risk forest types to represent habitat, and temperature and winter habitat indices to represent climate. Marten associated with upland spruce-fir and lowland riparian forest types, hares with lowland conifer and aspen-birch, grouse with lowland riparian hardwoods, and moose with upland spruce-fir. Species differed in climatic drivers with hares positively associated with cooler annual temperatures, moose with cooler summer temperatures and grouse with colder winter temperatures. Contrary to expectations, temperature variables outperformed winter habitat indices. Model performance varied greatly among species, as did predicted distributions along the southern edge of the Northwoods region. As multiple species were associated with lowland riparian and upland spruce-fir habitats, these results provide potential for efficient prioritization of habitat management. Both direct and indirect effects from climate change are likely to impact the distribution of climate-sensitive species in the future and the use of multiple data types and sources in the modelling of species distributions can result in more accurate predictions resulting in improved management at policy-relevant scales.

18.
Ecol Evol ; 13(3): e9873, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36937055

RESUMEN

Wolves (Canis lupus) can exert top-down pressure and shape ecological communities through the predation of ungulates and beavers (Castor spp.). Therefore, understanding wolf foraging is critical to estimating their ecosystem-level effects. Specifically, if wolves are consumers that optimize tradeoffs between the cost and benefits of prey acquisition, changes in these factors may lead to prey-switching or negative-density dependent selection with potential consequences for community stability. For wolves, factors affecting cost and benefits include prey vulnerability, risk, reward, and availability, which can vary temporally. We described the wolf diet by the frequency of occurrence and percent biomass and characterized the diet using prey remains found in wolf scats on Isle Royale National Park, Michigan, USA, during May-October 2019 and 2020. We used logistic regression to estimate prey consumption over time. We predicted prey with temporal variation in cost (availability and/or vulnerability) such as adult moose (Alces alces), calf moose, and beaver (Castor canadensis) to vary in wolf diets. We analyzed 206 scats and identified 62% of remains as beaver, 26% as moose, and 12% as other species (birds, smaller mammals, and wolves). Adult moose were more likely to occur in wolf scats in May when moose are in poor condition following winter. The occurrence of moose calves peaked during June-mid-July following birth but before calf vulnerability declined as they matured. By contrast, beaver occurrence in wolf scat did not change over time, reflecting the importance of low-handling cost prey items for recently introduced lone or paired wolves. Our results demonstrate that the wolf diet is responsive to temporal changes in prey costs. Temporal fluctuation in diet may influence wolves' ecological role if prey respond to increased predation risk by altering foraging or breeding behavior.

19.
Heliyon ; 9(3): e13947, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36895383

RESUMEN

Background: Studies found that the group of men who have sex with men (MSM) is at a very high level of risk of HIV and sexually transmitted infections (STIs) in Asian regions due to multiple reasons. Although the prevalence of HIV among general people in Asia is considered low, the prevalence of HIV and Syphilis among MSM in this region was found very high and usually, it goes unnoticed. This study aimed to inspect the prevalence of and trends in HIV, Syphilis, and their co-infection among MSM in Asia. Methods: A systematic search was performed on January 5, 2021, in PubMed, Web of Science, and Google Scholar databases. To evaluate the heterogeneity, Q-tests, and I 2 were used. To explore the publication bias, Eggers' test and funnel plot were used. The random-effect model and subgroup analysis were performed due to the significant heterogeneity. Results: A total of 2872 articles were identified, and 66 articles were included in the final analysis. The overall prevalence of HIV and Syphilis among MSM was estimated considering 69 estimates from 66 studies whereas 19 estimates of co-infection were found in 17 studies. The pooled HIV prevalence was 8.48% (CI: 7.01-9.95) and the pooled Syphilis prevalence was 9.86% (CI: 8.30-11.41) with significant heterogeneity and publication bias. The pooled prevalence of HIV and Syphilis co-infection was 2.99% (CI: 1.70-4.27) with significant heterogeneity and no publication bias. The HIV, Syphilis, and HIV-Syphilis co-infection prevalence estimates exhibited an upward trend during 2002-2017. Conclusions: HIV, Syphilis, and their co-infection are quite prevalent among MSM in the Asia-Pacific region. Integrated and intensified intervention strategies, HIV testing, and improved access to antiretroviral treatment as well as increased awareness are needed to reduce HIV, Syphilis, and their co-infection among the discussed vulnerable group.

20.
Ecol Evol ; 13(1): e9757, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36699571

RESUMEN

Coprophagy, the eating of feces, has been documented in a wide range of species but appears to be rare or difficult to detect in deer (Cervidae). Here, we report the first observation of coprophagy in moose Alces alces, which was recorded using camera collars on free-ranging moose in Norway. The footage shows an instance of allocoprophagy by an adult female moose in spring (May). We summarize the current knowledge about coprophagy in deer and briefly discuss potential drivers and possible implications for disease transmission. Further research is needed to determine whether coprophagy occurs frequently in moose and whether this behavior is positive (e.g., increased intake of nutrients) or negative (increased infection by parasites or pathogens).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA