RESUMEN
Ocular dominance plasticity (ODP) in the cat primary visual cortex (V1) is induced during waking by monocular deprivation (MD) and consolidated during subsequent sleep. The mechanisms underlying this process are incompletely understood. Extracellular signal-regulated kinase (ERK) is activated in V1 during sleep after MD, but it is unknown whether ERK activation during sleep is necessary for ODP consolidation. We investigated the role of ERK in sleep-dependent ODP consolidation by inhibiting the ERK-activating enzyme MEK in V1 (via U0126) during post-MD sleep. ODP consolidation was then measured with extracellular microelectrode recordings. Western blot analysis was used to confirm the efficacy of U0126 and to examine proteins downstream of ERK. U0126 abolished ODP consolidation and reduced both phosphorylation of eukaryotic initiation factor 4E (eIF4E) and levels of the synaptic marker PSD-95. Furthermore, interfering with ERK-mediated translation by inhibiting MAP kinase-interacting kinase 1 (Mnk1) with CGP57380 mimicked the effects of U0126. These results demonstrate that ODP consolidation requires sleep-dependent activation of the ERK-Mnk1 pathway.
Asunto(s)
Predominio Ocular/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Plasticidad Neuronal/fisiología , Privación Sensorial/fisiología , Sueño/fisiología , Corteza Visual/enzimología , Potenciales de Acción/efectos de los fármacos , Compuestos de Anilina/farmacología , Animales , Butadienos/farmacología , Gatos , Predominio Ocular/efectos de los fármacos , Factor 4E Eucariótico de Iniciación/metabolismo , Femenino , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/enzimología , Nitrilos/farmacología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Purinas/farmacología , Sueño/efectos de los fármacos , Corteza Visual/efectos de los fármacosRESUMEN
Monocular deprivation results in anatomical changes in the visual cortex in favor of the non-deprived eye. Although the retina forms part of the visual pathway, there is scarcity of data on the effect of monocular deprivation on its structure. The objective of this study was to describe the effects of monocular deprivation on the retinal ganglion cell dendritic features. The study design was quasi-experimental. 30 rabbits (18 experimental, 12 controls) were examined. Monocular deprivation was achieved through unilateral lid suture in the experimental animals. The rabbits were observed for three weeks. Each week, 6 experimental and 3 control animals were euthanized, their retina harvested and processed for light microscopy. Photomicrographs of the retina were taken using a digital camera then entered into FIJI software for analysis. The number of primary branches, terminal branches and dendritic field area among the non-deprived eyes increased by 66.7%(p=0.385), 400%(p=0.002), and 88.4%(p=0.523) respectively. Non-deprived eyes had 114.3% more terminal dendrites (p=0.002) compared to controls. Among deprived eyes, all variables measured had a gradual rise in the first two weeks followed by decline with further deprivation. There were no statistically significant differences noted between the deprived and control eyes. Monocular deprivation results in increase in synaptic contacts in the non-deprived eye, with reciprocal changes occurring in the deprived eye.
La privación monocular de la visión resulta en cambios anatómicos en la corteza visual en favor del ojo no privado. Aunque la retina forma parte de la vía visual, hay escasez de datos sobre el efecto de la privación monocular en su estructura. El objetivo de esta investigación fue describir los efectos de la privación monocular en las características de las dendritas de las células ganglionares de la retina. Se diseñó un estudio cuasi-experimental. Se examinaron 30 conejos (18 experimentales, 12 controles). La privación monocular se logró a través de la sutura unilateral del párpado en los animales de experimentación. Los conejos fueron observados durante tres semanas. Cada semana, 6 animales experimentales y 3 control fueron eutanasiados, donde se obtuvo la retina y fue procesada para realizar microscopía óptica. Las microfotografías de la retina fueron tomadas con una cámara digital y luego se utilizó el software FIJI para su análisis. El número de dendritas primarias, terminales y el área del campo de dendritas en los ojos no privados aumentó un 66,7% (p=0,385), 400% (p=0,002), y 88,4% (p=0,523), respectivamente. Los ojos no privados, tenían 114,3% más dendritas terminales (p=0,002) en comparación con los controles. Entre los ojos privados, todas las variables medidas tuvieron un aumento gradual en las dos primeras semanas, seguido de descenso con mayor privación. No se observaron diferencias estadísticamente significativas entre los ojos privados y el grupo control. En conclusion, la privación monocular produce un aumento de los contactos sinápticos en los ojos no privados, con cambios recíprocos que se manifiestan en los ojos privados de la visión.
Asunto(s)
Animales , Conejos , Retina/citología , Células Ganglionares de la Retina/citología , Visión Monocular , Dendritas/ultraestructura , Privación Sensorial , Corteza Visual/citologíaRESUMEN
The aim of the present study was to analyze the influence of enriched environment on the distribution of perineuronal nets (PNNs) using a stereogically based unbiased protocol and visual acuity in adult Swiss albino mice that underwent monocular deprivation during the critical period of postnatal development. Eight female Swiss albino mice were monocular deprived on postnatal day 10 and divided into two groups at weaning: standard environment (SE group, n = 4) and enriched environment (EE group, n = 4). After 3 months, all of the mice were subjected to grating visual acuity tests, sacrificed, and perfused with aldehyde fixative. The brains were removed and cut at 70 µm thickness in a vibratome and processed for lectin histochemical staining with Wisteria floribunda agglutinin (WFA). Architectonic limits of area 17 were conspicuously defined by WFA histochemical staining, and the optical fractionator stereological method was applied to estimate the total number of PNNs in the supragranular, granular, and infragranular layers. All groups were compared using Student's t-test at a 95 percent confidence level. Comparative analysis of the average PNN estimations revealed that the EE group had higher PNNs in the supragranular layer (2726.33 ± 405.416, mean ± standard deviation) compared with the SE group (1543.535 ± 260.686; Student's t-test, p = .0495). No differences were found in the other layers. Visual acuity was significantly lower in the SE group (0.55 cycles/degree) than in the EE group (1.06 cycles/degree). Our results suggest that the integrity of the specialized extracellular matrix PNNs of the supragranular layer may be essential for normal visual acuity development.(AU)
Asunto(s)
Animales , Ratones , Visión Monocular , Ambiente , Agudeza Visual , Corteza Visual , Red NerviosaRESUMEN
The aim of the present study was to analyze the influence of enriched environment on the distribution of perineuronal nets (PNNs) using a stereogically based unbiased protocol and visual acuity in adult Swiss albino mice that underwent monocular deprivation during the critical period of postnatal development. Eight female Swiss albino mice were monocular deprived on postnatal day 10 and divided into two groups at weaning: standard environment (SE group, n = 4) and enriched environment (EE group, n = 4). After 3 months, all of the mice were subjected to grating visual acuity tests, sacrificed, and perfused with aldehyde fixative. The brains were removed and cut at 70 µm thickness in a vibratome and processed for lectin histochemical staining with Wisteria floribunda agglutinin (WFA). Architectonic limits of area 17 were conspicuously defined by WFA histochemical staining, and the optical fractionator stereological method was applied to estimate the total number of PNNs in the supragranular, granular, and infragranular layers. All groups were compared using Student's t-test at a 95 percent confidence level. Comparative analysis of the average PNN estimations revealed that the EE group had higher PNNs in the supragranular layer (2726.33 ± 405.416, mean ± standard deviation) compared with the SE group (1543.535 ± 260.686; Student's t-test, p = .0495). No differences were found in the other layers. Visual acuity was significantly lower in the SE group (0.55 cycles/degree) than in the EE group (1.06 cycles/degree). Our results suggest that the integrity of the specialized extracellular matrix PNNs of the supragranular layer may be essential for normal visual acuity development.