Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Food Chem ; 463(Pt 1): 141121, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39255709

RESUMEN

Electrochemical sensors have a broad range of industrial applications due to their sensitivity, speed, and cost-effectiveness. These sensors enable the continuous monitoring and control of critical parameters in various industrial processes. For instance, they are essential in food safety, environmental monitoring, biomedical applications, and pharmaceutical production. In the food industry, electrochemical sensors facilitate the rapid and reliable detection of contaminants and pathogens in food products, thus enhancing product quality and consumer safety. An electrochemical sensor was developed with the molecularly imprinted polymer (MIP) technique to detect deltamethrin with high sensitivity and selectivity. The sensor was fabricated by electrodeposition of Co3O4 on indium tin oxide (ITO), followed by electropolymerization of o-phenylenediamine with deltamethrin as a template molecule. The template molecules were then removed from the modified electrode by a methanol. The MIP-based electrochemical sensor exhibited high sensitivity and selectivity towards deltamethrin. Under the optimized conditions, the LOD values for the MIP/Co3O4/ITO electrode in the first and second linear regressions were 1.53 nM for linear range of 2.82 nM to 56.5 nM and 0.34 µM for linear range of 0.25 µM to 3.98 µM. Moreover, the LOD values for the NIP/Co3O4/ITO electrode in the first and second regressions were 2.43 nM for the linear range of 3.91 nM to 65.0 nM and 726.0 nM for the linear range of 0.023 µM to 4.5 µM. The developed electrochromic pesticide sensor, being an electrochemical-based molecularly imprinted polymer (MIP) sensor incorporating electrochromic materials, enables both target-specific pesticide detection and visual pesticide identification based on color changes dependent on pesticide concentration. Consequently, this system is more advantageous compared to electrochemical-based MIP sensors, as it provides both qualitative and quantitative determinations. The qualitative assessment aims to enhance the ease of use of the sensor, thereby increasing the potential for it to become a commercially viable product by reducing the need for instrumental devices.

2.
J Hazard Mater ; 479: 135753, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39259989

RESUMEN

Wastewater surveillance is an effective and objective approach to monitor contaminant releases and drug usage in the catchment, the estimation requires accurate measurement. In this study, a novel diffusive gradients in thin-film (DGT) technique based on molecularly imprinted polymers (MIPs) for selective measurement of a class of widely prescribed cardiovascular drugs (ß-blockers) in wastewater was developed. The synthesized MIPs showed strong affinity and selectivity for the target compounds. The MIP-DGT had large effective capacities, its performance was independent of a wide range of environmental conditions, including pH (4.58 - 8.89), ionic strength (0.01 - 0.5 M) and dissolved organic matter (< 20 mg L-1). Biofouling had little effect on the uptake of target compounds within 7 days. MIP-DGT devices were applied in a Chinese urban WWTP alongside an auto-sampler. Metoprolol concentrations detected were much higher than other ß-blockers. Concentrations obtained using MIP-DGT were comparable to the 24 h composite samples using an autosampler. The estimated daily consumption calculated based on the data obtained with MIP-DGT implied that metoprolol and propranolol were the most popular ß-blockers in the studied area. Overall, the results in this study demonstrate that the MIP-DGT is a cost-effective, reliable and efficient tool for in situ wastewater monitoring.


Asunto(s)
Antagonistas Adrenérgicos beta , Monitoreo del Ambiente , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Aguas Residuales/análisis , Antagonistas Adrenérgicos beta/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Monitoreo del Ambiente/métodos , Polímeros Impresos Molecularmente/química , Polímeros/química
3.
Anal Chim Acta ; 1325: 343120, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39244306

RESUMEN

The present study elucidates the effectiveness of a molecularly imprinted polyacrylonitrile-imbued graphite-base electrode (MAN@G) for the selective detection of folic acid (FA) in food samples. The prime objective of the recognition and quantification of vitamin compounds like FA is the overall quality assessment of vegetables and fruits. The cost-effective, reproducible, and durable MAN@G electrode has been fabricated using acrylonitrile (AN) as the monomer and FA as the template over graphite-base. The characterization of the synthesized MAN@G electrode material has been accomplished by utilizing UV-visible (UV-vis) spectroscopy and scanning electron microscopy (SEM). A tri-electrode system based on differential pulse voltammetry (DPV) and cyclic voltammetry (CV) techniques was employed to explore the analytical performance of the synthesized electrode. Rigorous analyses divulged that a widespread linearity window could be exhibited by the electrode under an optimized experimental environment, ranging from 20 µM to 400 µM concentrations with an acceptable lower limit of detection (LOD) and limit of quantification (LOQ) of 18 nM, and 60 nM respectively. Additionally, this electrode exhibits high reproducibility, good stability, and high repeatability, with RSD values of 1.72 %, 1.32 %, and 1.19 %, respectively. The detection efficacy of the proposed electrode has been further examined in food extracts, namely orange, spinach, papaya, soybean, and cooked rice, which endorsed high accuracy compared to the high-performance liquid chromatography (HPLC) method. Moreover, the statistical results obtained from the t-test analysis were also satisfactory for the FA concentrations present in those five samples.


Asunto(s)
Resinas Acrílicas , Técnicas Electroquímicas , Electrodos , Ácido Fólico , Grafito , Grafito/química , Resinas Acrílicas/química , Ácido Fólico/análisis , Impresión Molecular , Límite de Detección , Análisis de los Alimentos/métodos , Polímeros Impresos Molecularmente/química , Frutas/química
4.
Sensors (Basel) ; 24(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39204956

RESUMEN

2-Furaldehyde (2-FAL) is one of the main by-products of the degradation of hemicellulose, which is the solid material of the oil-paper insulating system of oil-filled transformers. For this reason, it has been suggested as a marker of the degradation of the insulating system; sensing devices for 2-FAL analysis in a wide concentration range are of high interest in these systems. An optical sensor system is proposed; this consists of a chemical chip, able to capture 2-FAL from the insulating oil, coupled with a surface plasmon resonance (SPR) probe, both realized on multimode plastic optical fibers (POFs). The SPR platform exploits gold nanofilm or, alternatively, a double layer of gold and silicon oxide to modulate the sensor sensitivity. The capturing chip is always based on the same molecularly imprinted polymer (MIP) as a receptor specific for 2-FAL. The system with the SPR probe based on a gold nanolayer had a higher sensitivity and a lower detection limit of fractions of µg L-1. Instead, the SPR probe, based on a double layer (gold and silicon oxide), has a lower sensitivity with a worse detection limit, and it is suitable for the detection of 2-FAL at concentrations of 0.01-1 mg L-1.

5.
Se Pu ; 42(6): 508-523, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-38845512

RESUMEN

Given continuous improvements in industrial production and living standards, the analysis and detection of complex biological sample systems has become increasingly important. Common complex biological samples include blood, serum, saliva, and urine. At present, the main methods used to separate and recognize target analytes in complex biological systems are electrophoresis, spectroscopy, and chromatography. However, because biological samples consist of complex components, they suffer from the matrix effect, which seriously affects the accuracy, sensitivity, and reliability of the selected separation analysis technique. In addition to the matrix effect, the detection of trace components is challenging because the content of the analyte in the sample is usually very low. Moreover, reasonable strategies for sample enrichment and signal amplification for easy analysis are lacking. In response to the various issues described above, researchers have focused their attention on immuno-affinity technology with the aim of achieving efficient sample separation based on the specific recognition effect between antigens and antibodies. Following a long period of development, this technology is now widely used in fields such as disease diagnosis, bioimaging, food testing, and recombinant protein purification. Common immuno-affinity technologies include solid-phase extraction (SPE) magnetic beads, affinity chromatography columns, and enzyme linked immunosorbent assay (ELISA) kits. Immuno-affinity techniques can successfully reduce or eliminate the matrix effect; however, their applications are limited by a number of disadvantages, such as high costs, tedious fabrication procedures, harsh operating conditions, and ligand leakage. Thus, developing an effective and reliable method that can address the matrix effect remains a challenging endeavor. Similar to the interactions between antigens and antibodies as well as enzymes and substrates, biomimetic molecularly imprinted polymers (MIPs) exhibit high specificity and affinity. Furthermore, compared with many other biomacromolecules such as antigens and aptamers, MIPs demonstrate higher stability, lower cost, and easier fabrication strategies, all of which are advantageous to their application. Therefore, molecular imprinting technology (MIT) is frequently used in SPE, chromatographic separation, and many other fields. With the development of MIT, researchers have engineered different types of imprinting strategies that can specifically extract the target analyte in complex biological samples while simultaneously avoiding the matrix effect. Some traditional separation technologies based on MIP technology have also been studied in depth; the most common of these technologies include stationary phases used for chromatography and adsorbents for SPE. Analytical methods that combine MIT with highly sensitive detection technologies have received wide interest in fields such as disease diagnosis and bioimaging. In this review, we highlight the new MIP strategies developed in recent years, and describe the applications of MIT-based separation analysis methods in fields including chromatographic separation, SPE, diagnosis, bioimaging, and proteomics. The drawbacks of these techniques as well as their future development prospects are also discussed.


Asunto(s)
Impresión Molecular , Humanos , Cromatografía de Afinidad/métodos , Extracción en Fase Sólida/métodos , Ensayo de Inmunoadsorción Enzimática
6.
Biosens Bioelectron ; 255: 116269, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38579624

RESUMEN

Saxitoxin (STX), which is produced by certain dinoflagellate species, is a type of paralytic shellfish poisoning toxin that poses a serious threat to human health and the environment. Therefore, developing a technology for the convenient and cost-effective detection of STX is imperative. In this study, we developed an affinity peptide-imprinted polymer-based indirect competitive ELISA (ic-ELISA) without using enzyme-toxin conjugates. AuNP/Co3O4@Mg/Al cLDH was synthesized by calcining AuNP/ZIF-67@Mg/Al LDH, which was obtained by combining AuNPs, ZIF-67, and flower-like Mg/Al LDH. This synthesized nanozyme exhibited high catalytic activity (Km = 0.24 mM for TMB and 132.5 mM for H2O2). The affinity peptide-imprinted polymer (MIP) was imprinted with an STX-specific template peptide (STX MIP) on a multi-well microplate and then reacted with an STX-specific signal peptide (STX SP). The interaction between the STX SP and MIP was detected using a streptavidin-coated nanozyme (SA-AuNP/Co3O4@Mg/Al cLDH). The developed MIP-based ic-ELISA exhibited excellent selectivity and sensitivity, with a limit of detection of 3.17 ng/mL (equivalent: 0.317 µg/g). Furthermore, the system was validated using a commercial ELISA kit and mussel tissue samples, and it demonstrated a high STX recovery with a low coefficient of variation. These results imply that the developed ic-ELISA can be used to detect STX in real samples.


Asunto(s)
Técnicas Biosensibles , Cobalto , Nanopartículas del Metal , Óxidos , Humanos , Toxinas Marinas/análisis , Polímeros Impresos Molecularmente , Oro , Peróxido de Hidrógeno , Mariscos/análisis , Saxitoxina , Ensayo de Inmunoadsorción Enzimática/métodos , Péptidos , Polímeros
7.
J Hazard Mater ; 470: 134199, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593660

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are priority pollutants and need to be measured reliably in waters and other media, to understand their sources, fate, behaviour and to meet regulatory monitoring requirements. Conventional water sampling requires large water volumes, time-consuming pre-concentration and clean-up and is prone to analyte loss or contamination. Here, for the first time, we developed and validated a novel diffusive gradients in thin-films (DGT) passive sampler for PAHs. Based on the well-known DGT principles, the sampler pre-concentrates PAHs with typical deployment times of days/weeks, with minimal sample handling. For the first time, DGT holding devices made of metal and suitable for sampling hydrophobic organic compounds were designed and tested. They minimize sorption and sampling lag times. Following tests on different binding layer resins, a MIP-DGT was preferred - the first time applying MIP for PAHs. It samples PAHs independent of pH (3.9 -8.1), ionic strength (0.01 -0.5 M) and dissolved organic matter < 20 mg L-1, making it suitable for applications across a wide range of environments. Field trials in river water and wastewater demonstrated that DGT is a convenient and reliable tool for monitoring labile PAHs, readily achieving quantitative detection of environmental levels (sub-ng and ng/L range) when coupled with conventional GC-MS or HPLC. ENVIRONMENTAL IMPLICATIONS: PAHs are carcinogenic and genotoxic compounds. They are environmentally ubiquitous and must be monitored in waters and other media. This study successfully developed a new DGT passive sampler for reliable in situ time-integrated measurements of PAHs in waters at the ng/L level. This is the first time to use passive samplers for accurate measurements of hydrophobic organic contaminants in aquatic systems without calibration, a big step forward in monitoring PAHs. The application of this new sampler will enhance our understanding of the sources, fate, behavior and ecotoxicology of PAHs, enabling improved environmental risk assessment and management of these compounds.


Asunto(s)
Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/instrumentación , Difusión
8.
Mikrochim Acta ; 191(3): 163, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38413431

RESUMEN

Carbendazim (CBD) is widely used as a fungicide that acts as a pesticide in farming to prevent crop diseases. However, CBD can remain on crops for a long time. When consumed by humans and animals, it produces a range of toxic symptoms and poses a serious threat to their health. Therefore, the detection of CBD is necessary. Traditional assay strategies for CBD detection, although sensitive and practical, can hardly achieve fast, robust monitoring during food processing and daily life. Here, we designed a novel electrochemical sensor for CBD detection. In this method, iron oxyhydroxide nanomaterial (ß-FeOOH) was first prepared by hydrothermal method. Then, a molecularly imprinted polymer (MIP) layer was electropolymerized on the surface using CBD as the template and resorcinol (RC) as the functional monomer. The synergistic interaction between ß-FeOOH and MIP endows the MIP/ß-FeOOH/CC-based electrochemical sensor with high specificity and sensitivity. Under optimal conditions, the MIP/ß-FeOOH/CC-based sensor showed a wide linear range of 39 pM-80 nM for CBD and a detection limit as low as 25 pM. Therefore, the as-prepared sensor can be a practical and effective tool for pesticide residue detection.


Asunto(s)
Bencimidazoles , Carbamatos , Compuestos Férricos , Impresión Molecular , Polímeros , Animales , Humanos , Polímeros/química , Impresión Molecular/métodos , Polímeros Impresos Molecularmente
9.
Biosens Bioelectron ; 251: 116043, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38368643

RESUMEN

This article aims to present a comparative study of three polypyrrole-based molecularly imprinted polymer (MIP) systems for the detection of the recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (rN). The rN is known for its relatively low propensity to mutate compared to other SARS-CoV-2 antigens. The aforementioned systems include screen-printed carbon electrodes (SPCE) modified with gold nanostructures (MIP1), platinum nanostructures (MIP2), and the unmodified SPCE (MIP3), which was used for control. Pulsed amperometric detection (PAD) was employed as the detection technique, offering the advantage of label-free detection without the need for an additional redox probe. Calibration curves were constructed using the obtained data to evaluate the response of each system. Non-imprinted systems were also tested in parallel to evaluate the contribution of non-specific binding and assess the affinity sensor's efficiency. The analysis of calibration curves revealed that the AuNS-based MIP1 system exhibited the lowest contribution of non-specific binding and displayed a better fit with the chosen fitting model compared to the other systems. Further analysis of this system included determining the limit of detection (LOD) (51.2 ± 2.8 pg/mL), the limit of quantification (LOQ) (153.9 ± 8.3 pg/mL), and a specificity test using a recombinant receptor-binding domain of SARS-CoV-2 spike protein as a control. Based on the results, the AuNS-based MIP1 system demonstrated high specificity and sensitivity for the label-free detection of SARS-CoV-2 nucleocapsid protein. The utilization of PAD without the need for additional redox probes makes this sensing system convenient and valuable for rapid and accurate virus detection.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Polímeros/química , Pirroles , Proteínas de la Nucleocápside/análisis
10.
Biotechnol Adv ; 71: 108318, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38266935

RESUMEN

Molecularly imprinted polymers (MIPs), a type of biomimetic material, have attracted considerable interest owing to their cost-effectiveness, good physiochemical stability, favourable specificity and selectivity for target analytes, and widely used for various biological applications. It was demonstrated that MIPs with significant selectivity towards protein-based targets could be applied in medicine, diagnostics, proteomics, environmental analysis, sensors, various in vivo and/or in vitro applications, drug delivery systems, etc. This review provides an overview of MIPs dedicated to biomedical applications and insights into perspectives on the application of MIPs in newly emerging areas of biotechnology. Many different protocols applied for the synthesis of MIPs are overviewed in this review. The templates used for molecular imprinting vary from the minor glycosylated glycan-based structures, amino acids, and proteins to whole bacteria, which are also overviewed in this review. Economic, environmental, rapid preparation, stability, and reproducibility have been highlighted as significant advantages of MIPs. Particularly, some specialized MIPs, in addition to molecular recognition properties, can have high catalytic activity, which in some cases could be compared with other bio-catalytic systems. Therefore, such MIPs belong to the class of so-called 'artificial enzymes'. The discussion provided in this manuscript furnishes a comparative analysis of different approaches developed, underlining their relative advantages and disadvantages highlighting trends and possible future directions of MIP technology.


Asunto(s)
Impresión Molecular , Impresión Molecular/métodos , Reproducibilidad de los Resultados , Polímeros/química , Proteínas , Sistemas de Liberación de Medicamentos
11.
Polymers (Basel) ; 15(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37765523

RESUMEN

The illicit use of fentanyl has led to hundreds of thousands of opioid-related deaths worldwide. Therefore, the detection of fentanyl by law enforcement and recreational users is of utmost importance. However, current detection methods are expensive, time-consuming, require special storage conditions, and necessitate complex instrumentation that is generally unportable and requires skilled personnel to operate. An alternative approach would be using molecularly imprinted polymers (MIPs) as the recognition component of a handheld sensor, testing strip, or color-based assay. In this work, a molecularly imprinted polymer was constructed using the functional monomer methacrylic acid (MAA) and the cross-linking monomer ethyleneglycol dimethacrylate (EGDMA), with benzylfentanyl (Bfen) as the template. The use of benzylfentanyl is advantageous because it closely mimics fentanyl's structure but does not cause any physiological narcotic effects. Important studies herein determined the optimum ratio of the template/functional monomer, with subsequent evaluations of selectivity of the MIP for the template and fentanyl versus the commonly encountered narcotics such as methamphetamine, cocaine, and heroin. The data obtained from the HPLC analysis showed that the Bfen-MIP was successful in selectively binding the template and actual fentanyl, better than other common narcotics.

12.
J Biomol Struct Dyn ; : 1-11, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37643016

RESUMEN

The present study aimed to strategically design a Molecularly Imprinted Polymer (MIP) with selective extraction capabilities for volatile compounds found in pork. These specific volatile compounds, such as 3-methyl-1-butanol, 1-nonanal, octanal, hexanal, 2-pentyl-furan, 1-penten-3-one, N-morpholinomethyl-isopropyl-sulfide, methyl butyrate, and (E,E)-2,4-decadienal, are primarily responsible for the distinctive aroma and flavor characteristics associated with pork. Molecular dynamics simulations were employed to investigate the stability of the pre-polymerization system, simulating the interactions between the volatile compounds as templates, 4-hydroxyethyl methacrylate (HEMA) as monomers, and ethylene glycol dimethacrylate (EGDMA) as crosslinkers. Computational simulations revealed that the optimal mole ratio of 1:4:20 for templates, monomers, and crosslinkers resulted in the most favorable functional radial distribution and exhibited the strongest interactions. To validate the computational findings, additional analyses were performed utilizing Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA), radial distribution function (RDF), and hydrogen bond (HBond) occupancy. The calculated binding free energy demonstrated that all template molecules were capable to bind with both the monomers and crosslinkers, including 1-penten-3-one and N-morpholinomethyl-isopropyl-sulfide displaying the strongest interactions, with values of -12,674 kJ/mol and -11,646 kJ/mol, respectively. The congruence between the results obtained from the molecular simulation analyses highlights the crucial role of molecular dynamics simulations in the study and development of MIP for the analysis of marker compounds present in pork.Communicated by Ramaswamy H. Sarma.

13.
Polymers (Basel) ; 15(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37571173

RESUMEN

Styrene, a chemical widely used in various industries, undergoes metabolic breakdown in the human body, resulting in the production of phenylglyoxylic acid (PGA). A novel molecularly imprinted polymer (MIP) was synthesised for selective extraction and enrichment of PGA in urine samples prior to high-performance liquid chromatography. The MIP employed in this research was a 4-vinylpyridine molecularly imprinted polymer (4-VPMIP) prepared via mass polymerisation using a noncovalent method. The structural and morphological characteristics of the molecularly imprinted polymers (MIPs) and non-imprinted polymers (NIPs) were evaluated using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The efficiency of the molecularly imprinted solid-phase extraction (MISPE) process was optimised by investigating critical variables such as sample pH, sorbent mass, sample flow rate, and volume of the elution solvent. A central composite design (CCD) within the response surface methodology was utilised to develop separate models for the adsorption and desorption steps. Analysis of variance (ANOVA) confirmed the excellent fit of the experimental data to the proposed response models. Under the optimised conditions, the molecularly imprinted polymers exhibited a higher degree of selectivity and affinity for PGA, with a relative selectivity coefficient (α) of 2.79 against hippuric acid. The limits of detection (LOD) and quantification (LOQ) for PGA were determined to be 0.5 mg/L and 1.6 mg/L, respectively. The recoveries of PGA ranged from 97.32% to 99.06%, with a relative standard deviation (RSD) lower than 4.6%. Furthermore, MIP(4VP)SPE demonstrated the potential for recycling up to three times without significant loss in analyte recovery.

14.
Biosensors (Basel) ; 13(7)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37504117

RESUMEN

We present a critical review of the current progress in wearable insulin biosensors. For over 40 years, glucose biosensors have been used for diabetes management. Measurement of blood glucose is an indirect method for calculating the insulin administration dosage, which is critical for insulin-dependent diabetic patients. Research and development efforts aiming towards continuous-insulin-monitoring biosensors in combination with existing glucose biosensors are expected to offer a more accurate estimation of insulin sensitivity, regulate insulin dosage and facilitate progress towards development of a reliable artificial pancreas, as an ultimate goal in diabetes management and personalised medicine. Conventional laboratory analytical techniques for insulin detection are expensive and time-consuming and lack a real-time monitoring capability. On the other hand, biosensors offer point-of-care testing, continuous monitoring, miniaturisation, high specificity and sensitivity, rapid response time, ease of use and low costs. Current research, future developments and challenges in insulin biosensor technology are reviewed and assessed. Different insulin biosensor categories such as aptamer-based, molecularly imprinted polymer (MIP)-based, label-free and other types are presented among the latest developments in the field. This multidisciplinary field requires engagement between scientists, engineers, clinicians and industry for addressing the challenges for a commercial, reliable, real-time-monitoring wearable insulin biosensor.


Asunto(s)
Técnicas Biosensibles , Diabetes Mellitus , Dispositivos Electrónicos Vestibles , Humanos , Insulina/uso terapéutico , Técnicas Biosensibles/métodos , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/tratamiento farmacológico , Glucosa
15.
Biosensors (Basel) ; 13(6)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37366985

RESUMEN

The appearance of biological molecules, so-called biomarkers in body fluids at abnormal concentrations, is considered a good tool for detecting disease. Biomarkers are usually looked for in the most common body fluids, such as blood, nasopharyngeal fluids, urine, tears, sweat, etc. Even with significant advances in diagnostic technology, many patients with suspected infections receive empiric antimicrobial therapy rather than appropriate treatment, which is driven by rapid identification of the infectious agent, leading to increased antimicrobial resistance. To positively impact healthcare, new tests are needed that are pathogen-specific, easy to use, and produce results quickly. Molecularly imprinted polymer (MIP)-based biosensors can achieve these general goals and have enormous potential for disease detection. This article aimed to overview recent articles dedicated to electrochemical sensors modified with MIP to detect protein-based biomarkers of certain infectious diseases in human beings, particularly the biomarkers of infectious diseases, such as HIV-1, COVID-19, Dengue virus, and others. Some biomarkers, such as C-reactive protein (CRP) found in blood tests, are not specific for a particular disease but are used to identify any inflammation process in the body and are also under consideration in this review. Other biomarkers are specific to a particular disease, e.g., SARS-CoV-2-S spike glycoprotein. This article analyzes the development of electrochemical sensors using molecular imprinting technology and the used materials' influence. The research methods, the application of different electrodes, the influence of the polymers, and the established detection limits are reviewed and compared.


Asunto(s)
Antiinfecciosos , COVID-19 , Enfermedades Transmisibles , Impresión Molecular , Humanos , Polímeros Impresos Molecularmente , Técnicas Electroquímicas/métodos , SARS-CoV-2 , Enfermedades Transmisibles/diagnóstico , Impresión Molecular/métodos , Biomarcadores , Proteína C-Reactiva , Electrodos , Límite de Detección , Prueba de COVID-19
16.
Polymers (Basel) ; 15(10)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37242973

RESUMEN

4-Vinylpyridine molecularly imprinted polymer (4-VPMIP) microparticles for mandelic acid (MA) metabolite as a major biomarker of exposure to styrene (S) were synthesized by bulk polymerization with a noncovalent approach. A common mole ratio of 1:4:20 (i.e., metabolite template: functional monomer: cross-linking agent, respectively) was applied to allow the selective solid-phase extraction of MA in a urine sample followed by high-performance liquid chromatography-diode array detection (HPLC-DAD). In this research, the 4-VPMIP components were carefully selected: MA was used as a template (T), 4-Vinylpyridine (4-VP) as a functional monomer (FM), ethylene glycol dimethacrylate (EGDMA) as a cross-linker (XL), and azobisisobutyronitrile (AIBN) as an initiator (I) and acetonitrile (ACN) as a porogenic solvent. Non-imprinted polymer (NIP) which serves as a "control" was also synthesized simultaneously under the same condition without the addition of MA molecules. Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were used to characterize the imprinted and nonimprinted polymer to explain the structural and morphological characteristics of the 4-VPMIP and surface NIP. The results obtained from SEM depicted that the polymers were irregularly shaped microparticles. Moreover, MIPs surfaces had cavities and were rougher than NIP. In addition, all particle sizes were less than 40 µm in diameter. The IR spectra of 4-VPMIPs before washing MA were a little different from NIP, while 4-VPMIP after elution had a spectrum that was almost identical to the NIP spectrum. The adsorption kinetics, isotherms, competitive adsorption, and reusability of 4-VPMIP were investigated. 4-VPMIP showed good recognition selectivity as well as enrichment and separation abilities for MA in the extract of human urine with satisfactory recoveries. The results obtained in this research imply that 4-VPMIP might be used as a sorbent for MA solid-phase extraction (MISPE), for the exclusive extraction of MA in human urine.

17.
Talanta ; 262: 124695, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37229813

RESUMEN

We developed a novel, compact, three-dimensional electrochemical paper-based analytical device (3D-ePAD) for patulin (PT) determination. The selective and sensitive PT-imprinted Origami 3D-ePAD was constructed based on a graphene screen-printed electrode modified with manganese-zinc sulfide quantum dots coated with patulin imprinted polymer (Mn-ZnS QDs@PT-MIP/GSPE). The Mn-ZnS QDs@PT-MIP was synthesized using 2-oxindole as the template, methacrylic acid (MAA) as a monomer, N,N'-(1,2-dihydroxyethylene) bis (acrylamide) (DHEBA) as cross-linker and 2,2'-azobis (2-methylpropionitrile) (AIBN) as initiator, respectively. The Origami 3D-ePAD was designed with hydrophobic barrier layers formed on filter paper to provide three-dimensional circular reservoirs and assembled electrodes. The synthesized Mn-ZnS QDs@PT-MIP was quickly loaded on the electrode surface by mixing with graphene ink and then screen-printing on the paper. The PT-imprinted sensor provides the greatest enhancement in redox response and electrocatalytic activity, which we attributed to synergetic effects. This arose from an excellent electrocatalytic activity and good electrical conductivity of Mn-ZnS QDs@PT-MIP, which improved electron transfer between PT and the electrode surface. Under the optimized DPV conditions, a well-defined PT oxidation peak appears at +0.15 V (vs Ag/AgCl) using 0.1 M of phosphate buffer (pH 6.5) containing 5 mM K3Fe(CN)6 as the supporting electrolyte. Our developed PT imprinted Origami 3D-ePAD revealed excellent linear dynamic ranges of 0.001-25 µM, with a detection limit of 0.2 nM. Detection performance indicated that our Origami 3D-ePAD possesses outstanding detection performance from fruits and CRM in terms of high accuracy (%Error for inter-day is 1.11%) and precision (%RSD less than 4.1%). Therefore, the proposed method is well-suited as an alternative platform for ready-to-use sensors in food safety. The imprinted Origami 3D-ePAD is an excellent disposable device with a simple, cost-effective, and fast analysis, and it is ready to use for determining patulin in actual samples.

18.
J Chromatogr A ; 1700: 464046, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37167804

RESUMEN

To solve the problems of unstable adsorption performance and high organic solvent consumption of traditional molecular imprinting materials, we developed a water-resistant and highly adsorptive molecularly imprinted sulfamethazine polymer (MIP) through a novel synthetic strategy consisting of the application of mixed functional monomers combined with hydrophobic crosslinkers. The results showed that the imprinting factor of the prepared MIP was increased from 0.93 to 4.38, and that the relative selection coefficient k' was 5.59. With the application of the material to be developed as a solid-phase extraction (SPE) filler for sulfonamides (SAs) in milk combined with UPLC-MS/MS, the validated method showed a sensitive quantification limit (0.89 µg/kg), a steady recovery (95.55%-97.97%) and an excellent precision (0.08%-2.92% RSD). Moreover, after 5 times usage, the recovery rate of MIP-SPE was still above 90%. Therefore, the prepared materials showed high performance of molecular adsorption and were water-resistant, which was also considered an excellent filler of SPE for SAs extraction in food or other fields.


Asunto(s)
Impresión Molecular , Polímeros Impresos Molecularmente , Animales , Polímeros/química , Espectrometría de Masas en Tándem , Leche/química , Cromatografía Liquida , Agua/química , Sulfonamidas/análisis , Extracción en Fase Sólida/métodos , Impresión Molecular/métodos , Adsorción , Cromatografía Líquida de Alta Presión/métodos
19.
J Pharm Biomed Anal ; 228: 115343, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36934618

RESUMEN

The appearance of the biomarkers in body fluids like blood, urine, saliva, tears, etc. can be used for the identification of many diseases. This article aimed to summarize the studies about electrochemical biosensors with molecularly imprinted polymers as sensitive and selective layers on the electrode to detect protein-based biomarkers of such neurodegenerative diseases as Alzheimer's disease, Parkinson's disease, and stress. The main attention in this article is focused on the detection methods of amyloid-ß oligomers and p-Tau which are representative biomarkers for Alzheimer's disease, α-synuclein as the biomarker of Parkinson's disease, and α-amylase and lysozyme as the biomarkers of stress using molecular imprinting technology. The research methods, the application of different electrodes, the influence of the polymers, and the established detection limits are reviewed and compared.


Asunto(s)
Enfermedad de Alzheimer , Impresión Molecular , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Polímeros Impresos Molecularmente , Enfermedades Neurodegenerativas/diagnóstico , Enfermedad de Alzheimer/diagnóstico , Biomarcadores , Impresión Molecular/métodos , Electrodos , Técnicas Electroquímicas/métodos
20.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36835517

RESUMEN

Biomarkers can provide critical information about cancer and many other diseases; therefore, developing analytical systems for recognising biomarkers is an essential direction in bioanalytical chemistry. Recently molecularly imprinted polymers (MIPs) have been applied in analytical systems to determine biomarkers. This article aims to an overview of MIPs used for the detection of cancer biomarkers, namely: prostate cancer (PSA), breast cancer (CA15-3, HER-2), epithelial ovarian cancer (CA-125), hepatocellular carcinoma (AFP), and small molecule cancer biomarkers (5-HIAA and neopterin). These cancer biomarkers may be found in tumours, blood, urine, faeces, or other body fluids or tissues. The determination of low concentrations of biomarkers in these complex matrices is technically challenging. The overviewed studies used MIP-based biosensors to assess natural or artificial samples such as blood, serum, plasma, or urine. Molecular imprinting technology and MIP-based sensor creation principles are outlined. Analytical signal determination methods and the nature and chemical structure of the imprinted polymers are discussed. Based on the reviewed biosensors, the results are compared, and the most suitable materials for each biomarker are discussed.


Asunto(s)
Biomarcadores de Tumor , Técnicas Biosensibles , Polímeros Impresos Molecularmente , Neoplasias , Humanos , Impresión Molecular/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA