Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.096
Filtrar
1.
Methods Mol Biol ; 2856: 309-324, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39283461

RESUMEN

Polymer modeling has been playing an increasingly important role in complementing 3D genome experiments, both to aid their interpretation and to reveal the underlying molecular mechanisms. This chapter illustrates an application of Hi-C metainference, a Bayesian approach to explore the 3D organization of a target genomic region by integrating experimental contact frequencies into a prior model of chromatin. The method reconstructs the conformational ensemble of the target locus by combining molecular dynamics simulation and Monte Carlo sampling from the posterior probability distribution given the data. Using prior chromatin models at both 1 kb and nucleosome resolution, we apply this approach to a 30 kb locus of mouse embryonic stem cells consisting of two well-defined domains linking several gene promoters together. Retaining the advantages of both physics-based and data-driven strategies, Hi-C metainference can provide an experimentally consistent representation of the system while at the same time retaining molecular details necessary to derive physical insights.


Asunto(s)
Teorema de Bayes , Cromatina , Simulación de Dinámica Molecular , Animales , Ratones , Cromatina/genética , Cromatina/química , Cromatina/metabolismo , Genoma , Genómica/métodos , Método de Montecarlo , Células Madre Embrionarias de Ratones/metabolismo
2.
Front Immunol ; 15: 1454394, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221241

RESUMEN

The increasing and ongoing issue of antibiotic resistance in bacteria is of huge concern globally, mainly to healthcare facilities. It is now crucial to develop a vaccine for therapeutic and preventive purposes against the bacterial species causing hospital-based infections. Among the many antibiotic- resistant bacterial pathogens, the Enterobacter cloacae complex (ECC) including six species, E. Colcae, E. absuriae, E. kobie, E. hormaechei, E. ludwigii, and E. nimipressuralis, are dangerous to public health and may worsen the situation. Vaccination plays a vital role in the prevention of infections and infectious diseases. This research highlighted the construction and design of a multi-epitope vaccine for the E. cloacae complex by retrieving their complete sequenced proteome. The retrieved proteome was assessed to opt for potential vaccine candidates using immunoinformatic tools. Both B and T-cell epitopes were predicted in order to create both humoral and cellular immunity and further scrutinized for antigenicity, allergenicity, water solubility, and toxicity analysis. The final potential epitopes were subjected to population coverage analysis. Major histocompatibility complex (MHC) class combined, and MHC Class I and II world population coverage was obtained as 99.74%, and 98.55% respectively while a combined 81.81% was covered. A multi-epitope peptide-based vaccine construct consisting of the adjuvant, epitopes, and linkers was subjected to the ProtParam tool to calculate its physiochemical properties. The total amino acids were 236, the molecular weight was 27.64kd, and the vaccine construct was stable with an instability index of 27.01. The Grand Average of Hydropathy (GRAVY) (hydrophilicity) value obtained was -0.659, being more negative and depicting the hydrophilic character. It was non-allergen antigenic with an antigenicity of 0.8913. The vaccine construct was further validated for binding efficacy with immune cell receptors MHC-I, MHC-II, and Toll-like receptor (TLR)-4. The molecular docking results depict that the designed vaccine has good binding potency with immune receptors crucial for antigen presentation and processing. Among the Vaccine-MHC-I, Vaccine-MHC-II, and Vaccine-TLR-4 complexes, the best-docked poses were identified based on their lowest binding energy scores of -886.8, -995.6, and -883.6, respectively. Overall, we observed that the designed vaccine construct can evoke a proper immune response and the construct could help experimental researchers in the formulation of a vaccine against the targeted pathogens.


Asunto(s)
Vacunas Bacterianas , Enterobacter cloacae , Epítopos de Linfocito B , Epítopos de Linfocito T , Enterobacter cloacae/inmunología , Humanos , Vacunas Bacterianas/inmunología , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/química , Epítopos de Linfocito B/inmunología , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/prevención & control , Biología Computacional/métodos , Simulación del Acoplamiento Molecular , Desarrollo de Vacunas , Vacunología/métodos , Modelos Moleculares
3.
Bioorg Chem ; 153: 107783, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39255610

RESUMEN

In the pursuit of novel antidiabetic agents, a series of isatin-thiazole derivatives (7a-7j) were synthesized and characterized using a range of spectroscopic techniques. The enzyme inhibitory activities of the target analogues were assessed using both in vitro and in vivo assays. The tested compounds 7a-7j demonstrated In vitro inhibitory potential against α-glucosidase, as indicated by their IC50 values ranging from 28.47 to 46.61 µg/ml as compared to standard drug acarbose IC50 value of 27.22 ± 2.30 µg/ml. Additionally, compounds 7d and 7i were chosen for in vivo evaluation of their antidiabetic efficacy in streptozotocin-induced diabetic Wistar rats. These compounds exhibited significant antidiabetic activity both in vitro and in vivo, compound 7d produces therapeutic effects compared to standard pioglitazone by decreasing glycaemia and triglyceride levels in diabetic animals. Furthermore, a molecular docking study was conducted to elucidate the binding interactions of the compounds within the α-glucosidase enzyme binding pocket (PDB ID 3A47) and stability was confirmed by dynamics simulation trajectories. Thus, from the above findings, it may demonstrate that isatin-thiazole hybrids constitute promising candidates in the pursuit of developing newer oral antidiabetic agents.

4.
Cell Biochem Biophys ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259407

RESUMEN

Type 2 Diabetes Mellitus (T2DM) presents a substantial health concern on a global scale, driving the search for innovative therapeutic strategies. Phytochemicals from medicinal plants, particularly Ocimum tenuiflorum (Holy Basil), have garnered attention for their potential in T2DM management. The increased focus on plant-based treatments stems from their perceived safety profile, lower risk of adverse effects, and the diverse range of bioactive molecules they offer, which can target multiple pathways involved in T2DM. Computational techniques explored the binding interactions between O. tenuiflorum phytochemicals and Human Omentin-1, a potential T2DM target. ADMET evaluation and targeted docking identified lead compounds: Luteolin (-4.84 kcal/mol), Madecassic acid (-4.12 kcal/mol), Ursolic acid (-5.91 kcal/mol), Stenocereol (-5.59 kcal/mol), and Apigenin (-4.64 kcal/mol), to have a better binding affinity to target protein compared to the control drug, Metformin (-2.01 kcal/mol). Subsequent molecular dynamics simulations evaluated the stability of Stenocereol, Luteolin, and Metformin complexes for 200 nanoseconds, analysing RMSD, RMSF, RG, SASA, PCA, FEL, and MM-PBSA parameters. Results indicated Stenocereol's strong binding affinity with Omentin-1, suggesting its potential as a potent therapeutic agent for T2DM management. These findings lay the groundwork for further experimental validation and drug discovery endeavours.

5.
J Colloid Interface Sci ; 678(Pt B): 50-66, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39241447

RESUMEN

HYPOTHESIS: Water-soluble KDP (KH2PO4) crystals possess excellent optical properties and are employed as frequency converters in clean fusion energy. To improve their performances, there is an immediate necessity to lithograph surface nano-patterns on them. Although the Scanning Probe Microscope (SPM) provides a promising way to achieve this purpose through the water menisci, the driving mechanisms of the lithographic behaviors have not yet been revealed. SIMULATIONS AND EXPERIMENTS: Multi-scale investigations are constructed to explore the underlying driving mechanisms. The SPM probe-induced ion diffusion-transport behaviors are investigated by molecular dynamics. The ion adsorption-enrichment mechanisms are revealed by 18 adsorption models via the ab initio. The SPM probe-induced self-assembly experiments are performed to prove the local heavy concentration. A comprehensive model is developed to describe the lithography mechanisms of the probe-induced self-assembly nano-dots on water-soluble substrates. FINDINGS: It is interestingly found that the KDP growth units (H2PO4-) exhibit obvious adsorption-enrichment effect at 3.16 Å from the probe surface, causing local heavy concentration. The H2PO4- would spontaneously adsorb onto the probe surface, which is dominated by the Si-O bonding reactions. The nano-dots with the height of 27 âˆ¼ 48 nm and diameter of 2.0 âˆ¼ 2.7 µm are lithographed on the KDP substrate. The proposed model further confirms that the lithography processes are driven by the solution supersaturation, solute diffusion, and surface free energy.

6.
Macromol Rapid Commun ; : e2400589, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264522

RESUMEN

Cryogenic transmission electron microscopy (cryo-TEM) combined with single particle analysis (SPA) is an emerging imaging approach for soft materials. However, the accuracy of SPA-reconstructed nanostructures, particularly those formed by synthetic polymers, remains uncertain due to potential packing heterogeneity of the nanostructures. In this study, the combination of molecular dynamics (MD) simulations and image simulations is utilized to validate the accuracy of cryo-TEM 3D reconstructions of self-assembled polypeptoid fibril nanostructures. Using CryoSPARC software, image simulations, 2D classifications, ab initio reconstructions, and homogenous refinements are performed. By comparing the results with atomic models, the recovery of molecular details is assessed, heterogeneous structures are identified, and the influence of extraction location on the reconstructions is evaluated. These findings confirm the fidelity of single particle analysis in accurately resolving complex structural characteristics and heterogeneous structures, exhibiting its potential as a valuable tool for detailed structural analysis of synthetic polymers and soft materials.

7.
Int J Biol Macromol ; 279(Pt 3): 135337, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39241998

RESUMEN

Obg, a GTPase, binds to the premature 50S ribosomal subunit and facilitates recruitment of rproteins and rRNA processing to form the mature 50S subunit. This binding depends on nucleotide-induced conformational changes (GDP/GTP). However, the mechanism by which Obg undergoes conformational changes to associate with the premature 50S subunit is unknown. Therefore, 1000 ns molecular dynamics simulations were conducted to investigate this mechanism. Visualization of the simulated trajectory showed that in GDP and GTP-bound states, the C-domain moved towards the SwI region, while in GTP-Mg2+ and ppGpp-bound states, the C-domain shifted towards the N-tails. Further, positioning these conformations of Obg on the 50S subunit suggests possible mechanisms by which the GTP-Mg2+ bound state is responsible for recruiting rprotein, as well as the impact of the absence of Mg2+ in the GTP-bound state. Furthermore, the study provides insights into the conformational changes that may lead to the dissociation of the GDP-bound state from the 50S subunit and explores the potential role of the ppGpp-bound state in inhibiting 70S ribosome formation. Additionally, RMSF and community network analyses reveal how internal dynamics and intricate connections within Obg affect C-domain motion.

8.
Int J Biol Macromol ; 277(Pt 4): 134443, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39217672

RESUMEN

Laccases hold great potential for biotechnological applications, particularly in environmental pollutant remediation. Laccase activity is governed by the solvent environment, and ionic liquids (ILs) emerge as a versatile solvent for activation or stabilization of enzymes. Herein, effects of cholinium-based ILs formulated with carboxylic acids, inorganic acid, and amino acids as anionic species, on the catalytic activity of laccase from Trametes versicolor were investigated by experimental and computational approaches. Experimental results showed that laccase activity was enhanced by 21.39 % in 0.5 M cholinium dihydrogen citrate ([Cho][DHC]), in relation to the laccase activity in phosphate buffer medium. However, cholinium aminoate ILs negatively affected laccase activity, as evidenced by the partial deactivation of laccase in both cholinium glycinate and cholinium phenylalaninate, at concentrations of 0.1 M and 0.5 M, respectively. Molecular dynamics studies revealed that the enhancement of laccase activity in [Cho][DHC] might be attributed to the highly stabilized and compact structure of laccase, facilitating a better internal electron transfer during the laccase-substrate interactions. Enhanced catalytic performance of laccase in [Cho][DHC] was postulated to be driven by the high accumulation level of dihydrogen citrate anions around laccase's surface. [Cho][DHC] holds great promise as a cosolvent in laccase-catalyzed biochemical reactions.


Asunto(s)
Líquidos Iónicos , Lacasa , Simulación de Dinámica Molecular , Lacasa/química , Lacasa/metabolismo , Líquidos Iónicos/química , Trametes/enzimología , Solventes/química , Colina/química , Polyporaceae
9.
Heliyon ; 10(16): e36161, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39247361

RESUMEN

KRAS protein is known to be frequently mutated in various cancers. The most common mutations being at position 12, 13 and 61. The positions 12 and 13 form part of the phosphate binding region (P-loop) of KRAS. Owing to mutation, the protein remains in continuous active state and affects the normal cellular process. Understanding the structural changes owing to mutations in GDP-bound (inactive state) and GTP-bound (active state) may help in the design of better therapeutics. To understand the structural flexibility due to the mutations specifically located at P-loop regions (G12D, G12V and G13D), extensive molecular dynamics simulations (24 µs) have been carried for both inactive (GDP-bound) and active (GTP-bound) structures for the wild type and these mutants. The study revealed that the local structural changes at the site of mutations allosterically guide changes in distant regions of the protein through hydrogen bond and hydrophobic signalling network. The dynamic cross correlation analysis and the comparison of the correlated motions among different systems manifested that changes in SW-I, SW-II, α3 and the loop preceding α3 affects the interactions of GDP/GTP with different regions of the protein thereby affecting its hydrolysis. Further, the Markov state modelling analysis confirmed that the mutations, especially G13D imparts rigidity to structure compared to wild type and thus limiting its conformational state in either intermediate state or active state. The study suggests that along with SW-I and SW-II regions, the loop region preceding the α3 helix and α3 helix are also involved in affecting the hydrolysis of nucleotides and may be considered while designing therapeutics against KRAS.

10.
Foods ; 13(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39272451

RESUMEN

Catechins, a class of polyphenolic compounds found in tea, have attracted significant attention due to their numerous health benefits, particularly for the treatment and protection of hypertension. However, the potential targets and mechanisms of action of catechins in combating hypertension remain unclear. This study systematically investigates the anti-hypertensive mechanisms of tea catechins using network pharmacology, molecular docking, and molecular dynamics simulation techniques. The results indicate that 23 potential anti-hypertensive targets for eight catechin components were predicted through public databases. The analysis of protein-protein interaction (PPI) identified three key targets (MMP9, BCL2, and HIF1A). KEGG pathway and GO enrichment analyses revealed that these key targets play significant roles in regulating vascular smooth muscle contraction, promoting angiogenesis, and mediating vascular endothelial growth factor receptor signaling. The molecular docking results demonstrate that the key targets (MMP9, BCL2, and HIF1A) effectively bind with catechin components (CG, GCG, ECG, and EGCG) through hydrogen bonds and hydrophobic interactions. Molecular dynamics simulations further confirmed the stability of the binding between catechins and the targets. This study systematically elucidates the potential mechanisms by which tea catechins treat anti-hypertension and provides a theoretical basis for the development and application of tea catechins as functional additives for the prevention of hypertension.

11.
Cells ; 13(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39273071

RESUMEN

Alkaptonuria (AKU) is a rare autosomal recessive metabolic disorder caused by mutations in the homogentisate 1,2-dioxygenase (HGD) gene, leading to the accumulation of homogentisic acid (HGA), causing severe inflammatory conditions. Recently, the presence of serum amyloid A (SAA) has been reported in AKU tissues, classifying AKU as novel secondary amyloidosis; AA amyloidosis is characterized by the extracellular tissue deposition of fibrils composed of fragments of SAA. AA amyloidosis may complicate several chronic inflammatory conditions, like rheumatoid arthritis, ankylosing spondylitis, inflammatory bowel disease, chronic infections, neoplasms, etc. Treatments of AA amyloidosis relieve inflammatory disorders by reducing SAA concentrations; however, no definitive therapy is currently available. SAA regulation is a crucial step to improve AA secondary amyloidosis treatments. Here, applying a comprehensive in vitro and in silico approach, we provided evidence that HGA is a disruptor modulator of SAA, able to enhance its polymerization, fibril formation, and aggregation upon SAA/SAP colocalization. In silico studies deeply dissected the SAA misfolding molecular pathway and SAA/HGA binding, suggesting novel molecular insights about it. Our results could represent an important starting point for identifying novel therapeutic strategies in AKU and AA secondary amyloidosis-related diseases.


Asunto(s)
Alcaptonuria , Ácido Homogentísico , Proteína Amiloide A Sérica , Alcaptonuria/metabolismo , Alcaptonuria/patología , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/genética , Humanos , Ácido Homogentísico/metabolismo , Agregado de Proteínas , Amiloidosis/metabolismo , Amiloidosis/patología , Amiloide/metabolismo , Modelos Biológicos , Homogentisato 1,2-Dioxigenasa/metabolismo , Homogentisato 1,2-Dioxigenasa/genética
12.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39273592

RESUMEN

Bioinformatics has emerged as a valuable tool for screening drugs and understanding their effects. This systematic review aimed to evaluate whether in silico studies using anti-obesity peptides targeting therapeutic pathways for obesity, when subsequently evaluated in vitro and in vivo, demonstrated effects consistent with those predicted in the computational analysis. The review was framed by the question: "What peptides or proteins have been used to treat obesity in in silico studies?" and structured according to the acronym PECo. The systematic review protocol was developed and registered in PROSPERO (CRD42022355540) in accordance with the PRISMA-P, and all stages of the review adhered to these guidelines. Studies were sourced from the following databases: PubMed, ScienceDirect, Scopus, Web of Science, Virtual Heath Library, and EMBASE. The search strategies resulted in 1015 articles, of which, based on the exclusion and inclusion criteria, 7 were included in this systematic review. The anti-obesity peptides identified originated from various sources including bovine alpha-lactalbumin from cocoa seed (Theobroma cacao L.), chia seed (Salvia hispanica L.), rice bran (Oryza sativa), sesame (Sesamum indicum L.), sea buckthorn seed flour (Hippophae rhamnoides), and adzuki beans (Vigna angularis). All articles underwent in vitro and in vivo reassessment and used molecular docking methodology in their in silico studies. Among the studies included in the review, 46.15% were classified as having an "uncertain risk of bias" in six of the thirteen criteria evaluated. The primary target investigated was pancreatic lipase (n = 5), with all peptides targeting this enzyme demonstrating inhibition, a finding supported both in vitro and in vivo. Additionally, other peptides were identified as PPARγ and PPARα agonists (n = 2). Notably, all peptides exhibited different mechanisms of action in lipid metabolism and adipogenesis. The findings of this systematic review underscore the effectiveness of computational simulation as a screening tool, providing crucial insights and guiding in vitro and in vivo investigations for the discovery of novel anti-obesity peptides.


Asunto(s)
Simulación por Computador , Obesidad , Péptidos , Animales , Humanos , Fármacos Antiobesidad/química , Fármacos Antiobesidad/farmacología , Biología Computacional , Simulación del Acoplamiento Molecular , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Péptidos/química , Péptidos/farmacología
13.
Polymers (Basel) ; 16(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39274053

RESUMEN

Molecular dynamics simulation (MD) technology can be used to simulate and study the physicochemical properties of polymer materials on the basis of material data obtained in traditional experiments. In this study, we use MD to construct models of crosslinked carbon nanotubes/epichlorohydrin rubber composites with different carbon nanotube diameters and study the effect of CNT tube diameter on crosslinked ECO. The results show that with the increase in CNT tube diameter, the contact area between the CNTs and rubber matrix increases, the interaction force is enhanced, the free volume fraction of rubber matrix decreases by 21.36%, the glass transition temperature increases by 6.5%, the mean square displacement decreases, the radius of gyration decreases by 3.18 Å, and the radial distribution function of the C-atom group and the H-atom group in the system gradually decreases. The binding energy between the two is elevated, which in turn verifies the enhancement of the interaction force.

14.
Molecules ; 29(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39275084

RESUMEN

BACKGROUND: In recent years, the advancement of computational chemistry has offered new insights into the rational design of molecularly imprinted polymers (MIPs). From this aspect, our study tried to give quantitative parameters for evaluating imprinting efficiency and exploring the formation mechanism of MIPs by combining simulation and experiments. METHODS: The pre-polymerization system of sulfadimethoxine (SDM) was investigated using a combination of quantum chemical (QC) calculations and molecular dynamics (MD) simulations. MIPs were prepared on the surface of silica gel by a surface-initiated supplemental activator and reducing agent atom transfer radical polymerization (SI-SARA ATRP). RESULTS: The results of the QC calculations showed that carboxylic monomers exhibited higher bonding energies with template molecules than carboxylic ester monomers. MD simulations confirmed the hydrogen bonding sites predicted by QC calculations. Furthermore, it was observed that only two molecules of monomers could bind up to one molecule of SDM, even when the functional monomer ratio was up to 10. Two quantitative parameters, namely, the effective binding number (EBN) and the maximum hydrogen bond number (HBNMax), were defined. Higher values of EBN and HBNMax indicated a higher effective binding efficiency. Hydrogen bond occupancies and RDF analysis were performed to analyze the hydrogen bond formation between the template and the monomer from different perspectives. Furthermore, under the influence of the EBN and collision probability of the template and the monomers, the experimental results show that the optimal molar ratio of template to monomer is 1:3. CONCLUSIONS: The method of monomer screening presented in this study can be extended to future investigations of pre-polymerization systems involving different templates and monomers.

15.
Food Chem ; 463(Pt 2): 141194, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39278074

RESUMEN

Protein deterioration caused by ice crystals is an important factors affecting the frozen storage of fish. In this study, antifreeze peptides extracted from hydrolysates of sea cucumber intestinal protein with inhibition of protein denaturation were screened and characterized. The peptide Leu-Pro-Glu-Phe-Thr-Glu-Glu-Glu-Lys (LPEFTEEEK), derived from neutral protease hydrolysates of sea cucumber intestinal protein, was investigated for its potential to enhance the quality of salmon fillets during three freeze-thaw cycles. The results showed that the application of LPEFTEEEK effectively maintained the texture of fish fillets, as well as the oxidative and conformation stability of myofibrillar protein during the freezing process. Additionally, molecular dynamics simulations verified that LPEFTEEEK could bind to ice crystals and inhibit their recrystallization, thus preventing organisms from being damaged by freezing. This suggests that LPEFTEEEK holds significant promise as a novel cryoprotective agent for marine-derived antifreeze peptides.

16.
Sci Rep ; 14(1): 21073, 2024 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256448

RESUMEN

The mitochondrial enzyme methylenetetrahydrofolate dehydrogenase (MTHFD2) is involved in purine and thymidine synthesis via 1C metabolism. MTHFD2 is exclusively overexpressed in cancer cells but absent in most healthy adult human tissues. However, the two close homologs of MTHFD2 known as MTHFD1 and MTHFD2L are expressed in healthy adult human tissues and share a great structural resemblance to MTHFD2 with 54% and 89% sequence similarity, respectively. It is therefore notably challenging to find selective inhibitors of MTHFD2 due to the structural similarity, in particular protein binding site similarity with MTHFD1 and MTHFD2L. Tricyclic coumarin-based compounds (substrate site binders) and xanthine derivatives (allosteric site binders) are the only selective inhibitors of MTHFD2 reported till date. Nanomolar potent diaminopyrimidine-based inhibitors of MTHFD2 have been reported recently, however, they also demonstrate significant inhibitory activities against MTHFD1 and MTHFD2L. In this study, we have employed extensive computational modeling involving molecular docking and molecular dynamics simulations in order to investigate the binding modes and key interactions of diaminopyrimidine-based inhibitors at the substrate binding sites of MTHFD1, MTHFD2 and MTHFD2L, and compare with the tricyclic coumarin-based selective MTHFD2 inhibitor. The outcomes of our study provide significant insights into desirable and undesirable structural elements for rational structure-based design of new and selective inhibitors of MTHFD2 against cancer.


Asunto(s)
Aminohidrolasas , Inhibidores Enzimáticos , Metilenotetrahidrofolato Deshidrogenasa (NADP) , Antígenos de Histocompatibilidad Menor , Enzimas Multifuncionales , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/antagonistas & inhibidores , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Metilenotetrahidrofolato Deshidrogenasa (NADP)/química , Humanos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Antígenos de Histocompatibilidad Menor/química , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/antagonistas & inhibidores , Enzimas Multifuncionales/metabolismo , Enzimas Multifuncionales/química , Aminohidrolasas/genética , Aminohidrolasas/metabolismo , Aminohidrolasas/antagonistas & inhibidores , Aminohidrolasas/química , Pirimidinas/farmacología , Pirimidinas/química , Simulación del Acoplamiento Molecular , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/antagonistas & inhibidores , Sitios de Unión , Unión Proteica
17.
Environ Pollut ; 362: 124912, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39245201

RESUMEN

Tire microplastics (TMPs) and antibiotics are emerging pollutants that widely exist in water environments. The coexistence of these pollutants poses severe threats to aquatic organisms. However, the toxicity characteristics and key molecular factors of the combined exposure to TMPs in aquatic organisms remain unknown. Therefore, the joint toxicity of styrene-butadiene rubber TMPs (SBR-TMPs) and 32 antibiotics (macrolides, fluoroquinolones, ß-lactams, sulfonamides, tetracyclines, nitroimidazoles, highly toxic antibiotics, high-content antibiotics, and common antibiotics) in zebrafish was investigated using a full factorial design, molecular docking, and molecular dynamics simulation. Sixty-four combinations of antibiotics were designed to investigate the hepatotoxicity of the coexistence of SBR-TMPs additives and antibiotics in zebrafish. Results indicated that low-order effects of antibiotics (e.g., enoxacin-lomefloxacin and ofloxacin-enoxacin-lomefloxacin) had relatively notable toxicity. The van der Waals interaction between additives and zebrafish cytochrome P450 enzymes primarily affected zebrafish hepatotoxicity. Zebrafish hepatotoxicity was also affected by the ability of SBR-TMPs to adsorb antibiotics, the relation between antibiotics, the affinity of antibiotics docking to zebrafish cytochrome P450 enzymes, electronegativity, atomic mass, and the hydrophobicity of the antibiotic molecules. This study aimed to eliminate the joint toxicity of TMPs and antibiotics and provide more environmentally friendly instructions for using different chemicals.

18.
SAR QSAR Environ Res ; 35(8): 729-756, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39246138

RESUMEN

Human neutrophil elastase (HNE) plays a key role in initiating inflammation in the cardiopulmonary and systemic contexts. Pathological auto-proteolysed two-chain (tc) HNE exhibits reduced binding affinity with inhibitors. Using AutoDock Vina v1.2.0, 66 flavonoid inhibitors, sivelestat and alvelestat were docked with single-chain (sc) HNE and tcHNE. Schrodinger PHASE v13.4.132 was used to generate a 3D-QSAR model. Molecular dynamics (MD) simulations were conducted with AMBER v18. The 3D-QSAR model for flavonoids with scHNE showed r2 = 0.95 and q2 = 0.91. High-activity compounds had hydrophobic A/A2 and C/C2 rings in the S1 subsite, with hydrogen bond donors at C5 and C7 positions of the A/A2 ring, and the C4' position of the B/B1 ring. All flavonoids except robustaflavone occupied the S1'-S2' subsites of tcHNE with decreased AutoDock binding affinities. During MD simulations, robustaflavone remained highly stable with both HNE forms. Principal Component Analysis suggested that robustaflavone binding induced structural stability in both HNE forms. Cluster analysis and free energy landscape plots showed that robustaflavone remained within the sc and tcHNE binding site throughout the 100 ns MD simulation. The robustaflavone scaffold likely inhibits both tcHNE and scHNE. It is potentially superior to sivelestat and alvelestat and can aid in developing therapeutics targeting both forms of HNE.


Asunto(s)
Biflavonoides , Elastasa de Leucocito , Humanos , Biflavonoides/química , Biflavonoides/farmacología , Flavonoides/química , Flavonoides/farmacología , Glicina/análogos & derivados , Elastasa de Leucocito/antagonistas & inhibidores , Elastasa de Leucocito/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Sulfonamidas
19.
Indian J Microbiol ; 64(3): 1057-1074, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39282169

RESUMEN

The emergence of zoonotic monkeypox (MPX) disease, caused by the double-stranded DNA monkeypox virus (MPXV), has become a global threat. Due to unavailability of a specific small molecule drug for MPX, this study investigated Moringa oleifera phytochemicals to find potent and safe inhibitors of DNA Polymerase (DNA Pol), a poxvirus drug target due to its role in the viral life cycle. For that, 146 phytochemicals were screened through drug-likeness and molecular docking analyses. Among these, 136 compounds exhibited drug-like properties, with Gossypetin showing the highest binding affinity (- 7.8 kcal/mol), followed by Riboflavin (- 7.6 kcal/mol) and Ellagic acid (- 7.6 kcal/mol). In comparison, the control drugs Cidofovir and Brincidofovir displayed lower binding affinities, with binding energies of - 6.0 kcal/mol and - 5.1 kcal/mol, respectively. Hydrogen bonds, electrostatic and hydrophobic interactions were the main non-bond interactions between inhibitors and protein active site. The identified compounds were further evaluated using molecular dynamics simulation, density functional theory analysis and ADMET analysis. Molecular dynamics simulations conducted over 200 ns revealed that DNA Pol-Gossypetin complex was not stable, however, Riboflavin and Ellagic acid complexes showed excellent stability indicating them as better DNA Pol inhibitors. The density functional theory analysis exhibited the chemical reactivity of these inhibitor compounds. The ADMET analysis suggested that the top phytochemicals were safe and showed no toxicity. In conclusion, this study has identified Riboflavin and Ellagic acid as potential DNA Pol inhibitors to control MPXV. Further experimental assays and clinical trials are needed to confirm their activity against the disease.

20.
J Cell Biochem ; : e30618, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39286955

RESUMEN

Human metapneumovirus (hMPV) has gained prominence in recent times as the predominant etiological agent of acute respiratory tract infections. This virus targets children, the elderly, and individuals with compromised immune systems. Given the protracted duration of hMPV transmission, it is probable that the majority of children will have acquired the virus by the age of 5. In individuals with compromised immune systems, recurrence of hMPV infection is possible. As hMPV matures, it remains latent from the time of acquisition. The genome of hMPV encompasses a pivotal protein referred to as the nucleocapsid protein (N). This protein assumes the form of a left-handed helical nucleocapsid, enveloping the viral RNA genome. The primary function of this structure is to protect nucleases, rendering it a potentially promising target for therapeutic advancements. The present study employs a methodology that involves structure-based virtual screening, followed by molecular dynamics simulation at a 250-ns time scale, to identify potential natural molecules or their derivatives from the ZINC Database. These molecules are investigated for their binding properties against the hMPV nucleoprotein. Based on an evaluation of the docking score, binding site interaction, and molecular dynamics studies, it has been found that two naturally occurring molecules, namely M1 (ZINC85629735) and M3 (ZINC85569125), have shown notable docking scores of -9.6 and -10.7 kcal/mol, acceptable RMSD, RMSF, Rg, and so on calculated from molecular dynamics trajectory associated with MMGBSA binding energy of -81.94 and -99.63 kcal/mol, respectively. These molecules have shown the highest binding affinity toward nucleocapsid protein and demonstrated promising attributes as potential binders against hMPV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA