Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
Sci Total Environ ; 954: 176175, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270868

RESUMEN

The excessive use of pesticides (an important group of chemicals) in the agricultural as well as public sectors raises a health concern. Pesticides affect humans and other living organisms via the food chain. Therefore, it is very necessary to calculate the dissipation half-life of pesticides in plants. Experimental prediction of pesticide dissipation half-lives requires complex environmental conditions, high cost, and a long time. Thus, in-silico half-life predictions are suitable and the best alternative. Herein, a total of six PLS (partial least squares) models namely, M1 (overall), M2 (fruit), M3 (plant interior), M4 (leaf), M5 (plant surface), and M6 (whole plant) alongside two MLR (multiple linear regression) models i.e. M7 (fruit surface) and model M8 (straw) were generated using dissipation half-lives (log10(T1/2)) of pesticides in plants and their different parts. Models were constructed in strict accordance with the guidelines outlined by the Organization for Economic Co-operation and Development (OECD) and extensively validated using globally accepted validation metrics (determination coefficient (R2) = 0.610-0.795, leave-one-out (LOO) cross-validated correlation coefficient (Q2LOO) = 0.520-0.660, MAE-FITTED TRAIN (mean absolute error fitted train) = 0.119-0.148, MAE-LOOTRAIN = 0.132-0.177, predictive R2 or Q2F1 = 0.538-0.567, Q2F2 = 0.500-0.565, MAETEST = 0.122-0.232), confirming their accuracy, reliability, predictivity, and robustness. Lipophilicity, the presence of a cyclomatic ring, suphur, aromatic amine fragments, and chlorine atom fragments are responsible (+ve contribution) for high dissipation half-lives of pesticides in plants. In contrast, hydrophilicity, pyrazine fragments, and rotatable bonds reduce (-ve negative contribution) the dissipation half-lives of pesticides in plants. To address the real-world applicability, the models were employed to screen the PPDB (Pesticide Properties Database) database, which revealed the top 10 pesticides with the highest log(T1/2) in the whole plant and respective parts of the plant body. The present work will aid in developing safer and novel pesticides, regulatory risk assessment, various risk assessments for the sustenance of public health, screening of databases, and data-gap filling.

2.
Biosystems ; 246: 105331, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260761

RESUMEN

The classification of amino acids has proven to be a useful tool for understanding the importance of sequence in protein function. The reduced amino acid alphabets are an example of these classifications, which, when built from physicochemical, structural and quantum characteristics of the amino acids, allow it to simplify the representation of the sequences, being useful in the modelling, design and understanding of proteins. So, an objective selection of amino acids properties is important, due classes formed in a reduced alphabet depend on the descriptors used for classification. In this research, based on a careful selection of descriptors for the 20 amino acids, through techniques such as the information content index and hierarchical cluster analysis with ties in proximity, 20,871,586 reduced amino acid alphabets were constructed. This large collection of reduced alphabets was been used to interpret alterations in the function of three proteins: N-carbamylase, Luciferase, and PI3K, caused by amino acid changes in their sequences. For this, the similar and different descriptors linked to these mutations were studied. Properties such as volume, hydrophobicity, charge and autocorrelation can be associated with variations in the behaviour of these proteins, while the frequency in specific secondary structures, the Gibbs free energy and some topological and quantum properties can be considered as the causes of preventing the deactivation of protein function. This work offers the most complete collection of reduced alphabets that promise to be a useful tool for the interpretation of alterations caused by amino acid mutations in the protein sequence.

3.
Curr Med Chem ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39225210

RESUMEN

BACKGROUND: Staphylococcus aureus is a widely distributed and highly pathogenic zoonotic bacterium. Sortase A represents a crucial target for the research and development of novel antibacterial drugs. OBJECTIVE: This study aims to establish quantitative structure-activity relationship models based on the chemical structures of a class of benzofuranene cyanide derivatives. The models will be used to screen new antibacterial agents and predict the properties of these molecules. METHOD: The compounds were randomly divided into a training set and a test set. A large number of descriptors were calculated using the software, and then the appropriate descriptors were selected to build the models through the heuristic method and the gene expression programming algorithm. RESULTS: In the heuristic method, the determination coefficient, determination coefficient of cross-validation, F-test, and mean squared error values were 0.530, 0.395, 9.006, and 0.047, respectively. In the gene expression programming algorithm, the determination coefficient and the mean squared error values in the training set were 0.937 and 0.008, respectively, while in the test set, they were 0.849 and 0.035. The results showed that the minimum bond order of a C atom and the relative number of benzene rings had a significant positive contribution to the activity of compounds. CONCLUSION: In this study, two quantitative structure-activity relationship models were successfully established to predict the inhibitory activity of a series of compounds targeting Staphylococcus aureus Sortase A, providing insights for further development of novel anti-Staphylococcus aureus drugs.

4.
Comput Struct Biotechnol J ; 23: 2964-2977, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39148608

RESUMEN

Artificial Intelligence is transforming drug discovery, particularly in the hit identification phase of therapeutic compounds. One tool that has been instrumental in this transformation is Quantitative Structure-Activity Relationship (QSAR) analysis. This computer-aided drug design tool uses machine learning to predict the biological activity of new compounds based on the numerical representation of chemical structures against various biological targets. With diabetes mellitus becoming a significant health challenge in recent times, there is intense research interest in modulating antidiabetic drug targets. α-Glucosidase is an antidiabetic target that has gained attention due to its ability to suppress postprandial hyperglycaemia, a key contributor to diabetic complications. This review explored a detailed approach to developing QSAR models, focusing on strategies for generating input variables (molecular descriptors) and computational approaches ranging from classical machine learning algorithms to modern deep learning algorithms. We also highlighted studies that have used these approaches to develop predictive models for α-glucosidase inhibitors to modulate this critical antidiabetic drug target.

5.
BioData Min ; 17(1): 25, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090651

RESUMEN

PURPOSE: The analysis of absorption, distribution, metabolism, and excretion (ADME) molecular properties is of relevance to drug design, as they directly influence the drug's effectiveness at its target location. This study concerns their prediction, using explainable Machine Learning (ML) models. The aim of the study is to find which molecular features are relevant to the prediction of the different ADME properties and measure their impact on the predictive model. METHODS: The relative relevance of individual features for ADME activity is gauged by estimating feature importance in ML models' predictions. Feature importance is calculated using feature permutation and the individual impact of features is measured by SHAP additive explanations. RESULTS: The study reveals the relevance of specific molecular descriptors for each ADME property and quantifies their impact on the ADME property prediction. CONCLUSION: The reported research illustrates how explainable ML models can provide detailed insights about the individual contributions of molecular features to the final prediction of an ADME property, as an effort to support experts in the process of drug candidate selection through a better understanding of the impact of molecular features.

6.
SAR QSAR Environ Res ; 35(8): 693-706, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39212162

RESUMEN

In the search for natural and non-toxic products alternatives to synthetic pesticides, the fumigant and repellent activities of 35 essential oils are predicted in the human head louse (Pediculus humanus capitis) through the Quantitative Structure-Activity Relationships (QSAR) theory. The number of constituents of essential oils with weight percentage composition greater than 1% varies from 1 to 15, encompassing up to 213 structurally diverse compounds in the entire dataset. The 27,976 structural descriptors used to characterizing these complex mixtures are calculated as linear combinations of non-conformational descriptors for the components. This approach is considered simple enough to evaluate the effects that changes in the composition of each component could have on the studied bioactivities. The best linear regression models found, obtained through the Replacement Method variable subset selection method, are applied to predict 13 essential oils from a previous study with unknown property data. The results show that the simple methodology applied here could be useful for predicting properties of interest in complex mixtures such as essential oils.


Asunto(s)
Insecticidas , Aceites Volátiles , Pediculus , Relación Estructura-Actividad Cuantitativa , Aceites Volátiles/química , Aceites Volátiles/farmacología , Pediculus/efectos de los fármacos , Pediculus/química , Animales , Insecticidas/química , Insecticidas/farmacología , Modelos Lineales , Humanos
7.
Int J Mol Sci ; 25(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38999999

RESUMEN

This study investigates the clustering patterns of human ß-secretase 1 (BACE-1) inhibitors using complex network methodologies based on various distance functions, including Euclidean, Tanimoto, Hamming, and Levenshtein distances. Molecular descriptor vectors such as molecular mass, Merck Molecular Force Field (MMFF) energy, Crippen partition coefficient (ClogP), Crippen molar refractivity (MR), eccentricity, Kappa indices, Synthetic Accessibility Score, Topological Polar Surface Area (TPSA), and 2D/3D autocorrelation entropies are employed to capture the diverse properties of these inhibitors. The Euclidean distance network demonstrates the most reliable clustering results, with strong agreement metrics and minimal information loss, indicating its robustness in capturing essential structural and physicochemical properties. Tanimoto and Hamming distance networks yield valuable clustering outcomes, albeit with moderate performance, while the Levenshtein distance network shows significant discrepancies. The analysis of eigenvector centrality across different networks identifies key inhibitors acting as hubs, which are likely critical in biochemical pathways. Community detection results highlight distinct clustering patterns, with well-defined communities providing insights into the functional and structural groupings of BACE-1 inhibitors. The study also conducts non-parametric tests, revealing significant differences in molecular descriptors, validating the clustering methodology. Despite its limitations, including reliance on specific descriptors and computational complexity, this study offers a comprehensive framework for understanding molecular interactions and guiding therapeutic interventions. Future research could integrate additional descriptors, advanced machine learning techniques, and dynamic network analysis to enhance clustering accuracy and applicability.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/química , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/química , Ácido Aspártico Endopeptidasas/metabolismo , Humanos , Análisis por Conglomerados , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/metabolismo , Modelos Moleculares , Relación Estructura-Actividad , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología
8.
J Chromatogr A ; 1730: 465144, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38996513

RESUMEN

Ionic liquids, i.e., organic salts with a low melting point, can be used as gas chromatographic liquid stationary phases. These stationary phases have some advantages such as peculiar selectivity, high polarity, and thermostability. Many previous works are devoted to such stationary phases. However, there are still no large enough retention data sets of structurally diverse compounds for them. Consequently, there are very few works devoted to quantitative structure-retention relationships (QSRR) for ionic liquid-based stationary phases. This work is aimed at closing this gap. Three ionic liquids with substituted pyridinium cations are considered. We provide large enough data sets (123-158 compounds) that can be used in further works devoted to QSRR and related methods. We provide a QSRR study using this data set and demonstrate the following. The retention index for a polyethylene glycol stationary phase (denoted as RI_PEG), predicted using another model, can be used as a molecular descriptor. This descriptor significantly improves the accuracy of the QSRR model. Both deep learning-based and linear models were considered for RI_PEG prediction. The ability to predict the retention indices for ionic liquid-based stationary phases with high accuracy is demonstrated. Particular attention is paid to the reproducibility and reliability of the QSRR study. It was demonstrated that adding/removing several compounds, small perturbations of the data set can considerably affect the results such as descriptor importance and model accuracy. These facts have to be considered in order to avoid misleading conclusions. For the QSRR research, we developed a software tool with a graphical user interface, which we called CHERESHNYA. It is intended to select molecular descriptors and construct linear equations connecting molecular descriptors with gas chromatographic retention indices for any stationary phase. The software allows the user to generate several hundred molecular descriptors (one-dimensional and two-dimensional). Among them, predicted retention indices for popular stationary phases such as polydimethylsiloxane and polyethylene glycol are used as molecular descriptors. Various methods for selecting (and assessing the importance of) molecular descriptors have been implemented, in particular the Boruta algorithm, partial least squares, genetic algorithms, L1-regularized regression (LASSO) and others. The software is free, open-source and available online: https://github.com/mtshn/chereshnya.


Asunto(s)
Líquidos Iónicos , Compuestos de Piridinio , Programas Informáticos , Líquidos Iónicos/química , Cromatografía de Gases/métodos , Compuestos de Piridinio/química , Reproducibilidad de los Resultados , Relación Estructura-Actividad Cuantitativa , Modelos Lineales , Polietilenglicoles/química
9.
J Chromatogr A ; 1730: 465146, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39025025

RESUMEN

Quantitative Structure-Retention Relationship models were developed to identify phenolic compounds using a typical LC- system, with both UV and MS detection. A new chromatographic method was developed for the separation of fifty-two standard phenolic compounds. Over 5000 descriptors for each standard were calculated using AlvaDesc software and then selected through Genetic Algorithm. The selected descriptors were used as variables for models construction and to obtain a better understanding of the retention behaviour of phenols during reverse-phase separation. Three distinct molecule sets, including fifty-two phenolic compounds (Set 1), 32 flavonoids (Set 2) and 15 mono-substituted flavonoids were divided into training and validation sets to build Partial Least Square, Multiple Linear Regression and Partial Least Square-Artificial Neural Network models. To assess the predictivity of the models, these were tested on a bergamot juice sample. Partial Least Square and Partial Least Square-Artificial Neural Network exhibit the lowest prediction error, and the latter showed the best predictive power in real sample recognition. The building and implementation of such predictive models showed to be a powerful tool to identify phenolic compounds based on retention data and avoiding the use of expensive and sophisticated detectors such as tandem MS.


Asunto(s)
Cromatografía de Fase Inversa , Redes Neurales de la Computación , Fenoles , Fenoles/análisis , Fenoles/química , Cromatografía de Fase Inversa/métodos , Relación Estructura-Actividad Cuantitativa , Análisis de los Mínimos Cuadrados , Flavonoides/química , Flavonoides/análisis , Modelos Lineales , Algoritmos , Modelos Químicos , Cromatografía Líquida de Alta Presión/métodos
10.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39063220

RESUMEN

Reproductive toxicity poses significant risks to fertility and progeny health, making its identification in pharmaceutical compounds crucial. In this study, we conducted a comprehensive in silico investigation of reproductive toxic molecules, identifying three distinct categories represented by Dimethylhydantoin, Phenol, and Dicyclohexyl phthalate. Our analysis included physicochemical properties, target prediction, and KEGG and GO pathway analyses, revealing diverse and complex mechanisms of toxicity. Given the complexity of these mechanisms, traditional molecule-target research approaches proved insufficient. Support Vector Machines (SVMs) combined with molecular descriptors achieved an accuracy of 0.85 in the test dataset, while our custom deep learning model, integrating molecular SMILES and graphs, achieved an accuracy of 0.88 in the test dataset. These models effectively predicted reproductive toxicity, highlighting the potential of computational methods in pharmaceutical safety evaluation. Our study provides a robust framework for utilizing computational methods to enhance the safety evaluation of potential pharmaceutical compounds.


Asunto(s)
Reproducción , Máquina de Vectores de Soporte , Reproducción/efectos de los fármacos , Humanos , Simulación por Computador , Biología Computacional/métodos , Análisis por Conglomerados , Ácidos Ftálicos/toxicidad , Animales
11.
J Photochem Photobiol B ; 257: 112975, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38970967

RESUMEN

The physiological parameters such as growth, Chl a content, and photosynthetic performance of the experimental cyanobacterium Anabaenopsis circularis HKAR-22 were estimated to evaluate the cumulative effects of photosynthetically active radiation (PAR) and ultraviolet (UV) radiation. Maximum induction of UV-screening molecules, MAAs, was observed under the treatment condition of PAR + UV-A + UV-B (PAB) radiations. UV/VIS absorption spectroscopy and HPLC-PDA detection primarily confirmed the presence of MAA-shinorine (SN) having absorption maxima (λmax) at 332.3 nm and retention time (RT) of 1.47 min. For further validation of the presence of SN, HRMS, FTIR and NMR were utilized. UV-stress elevated the in vivo ROS scavenging and in vitro enzymatic antioxidant capabilities. SN exhibited substantial and concentration-dependent antioxidant capabilities which was determined utilizing 2,2-diphenyl-1-picryl-hydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate (ABTS), ferric reducing power (FRAP) and superoxide radical scavenging assay (SRSA). The density functional theory (DFT) method using B3LYP energy model and 6-311G++(d,p) basis set was implied to perform the quantum chemical calculation to systematically investigate the antioxidant nature of SN. The principal pathways involved in the antioxidant reactions along with the basic molecular descriptors affecting the antioxidant potentials of a compound were also studied. The results favor the potential of SN as an active ingredient to be used in cosmeceutical formulations.


Asunto(s)
Antioxidantes , Cianobacterias , Teoría Funcional de la Densidad , Rayos Ultravioleta , Antioxidantes/química , Cianobacterias/química , Cianobacterias/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Ciclohexanonas/química , Fotosíntesis , Especies Reactivas de Oxígeno/metabolismo , Clorofila A/química , Clorofila A/metabolismo , Compuestos de Bifenilo/química , Picratos/antagonistas & inhibidores , Picratos/química , Depuradores de Radicales Libres/química , Ciclohexilaminas , Glicina/análogos & derivados , Ácidos Sulfónicos , Benzotiazoles
12.
J Hazard Mater ; 476: 134953, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38908176

RESUMEN

The widespread introduction of organic compounds into environments poses significant risks to ecosystems. Assessing the adverse effects of organic contaminants on crops is crucial for ensuring food safety. However, laboratory research is often time-consuming and costly, and machine learning (ML) methods can offer a viable solution to address these challenges. This study aimed at developing a ML model that incorporates chemical descriptors to predict the phytotoxicity of organic contaminants on rice. A dataset was compiled by gathering published experimental data on the phytotoxicity of 60 organic compounds, with a focus on morphological inhibition, photosynthesis perturbation, and oxidative stress. Four ML models (RF, SVM, GBM, ANN) were developed using chemical molecular descriptors (CMD) and the Molecular ACCess System (MACCS) keys. RF-MACCS model demonstrated the highest fitness, achieving an R2 value of 0.79 and an RMSE of 0.14. Feature importance analysis highlighted nAtom, HBA, logKow, and TPSA as the most influential CMDs in our model. Additionally, substructures containing oxygen atoms, carbonyl group and carbon chains with nitrogen and oxygen atoms were identified as significant factors associated with phytotoxicity. This data-driven study could aid in predicting the phytotoxicity of organic contaminants on crops and evaluating the potential risks of emerging contaminants in agroecosystems.


Asunto(s)
Aprendizaje Automático , Oryza , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Compuestos Orgánicos/toxicidad , Fotosíntesis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Contaminantes del Suelo/toxicidad
13.
Anal Bioanal Chem ; 416(18): 4007-4014, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38829383

RESUMEN

The chemical and biological conversion of biomass-derived lignin is a promising pathway for producing valuable low molecular weight aromatic chemicals, such as vanillin or guaiacol, known as lignin monomers (LMs). Various methods employing chromatography and electrospray ionization-mass spectrometry (ESI-MS) have been developed for LM analysis, but the impact of LM chemical properties on analytical performance remains unclear. This study systematically optimized ESI efficiency for 24 selected LMs, categorized by functionality. Fractional factorial designs were employed for each LM to assess ESI parameter effects on ionization efficiency using ultra-high-performance supercritical fluid chromatography/ESI-MS (UHPSFC/ESI-MS). Molecular descriptors were also investigated to explain variations in ESI parameter responses and chromatographic retention among the LMs. Structural differences among LMs led to complex optimal ESI settings. Notably, LMs with two methoxy groups benefited from higher gas and sheath gas temperatures, likely due to their lower log P and higher desolvation energy requirements. Similarly, vinyl acids and ketones showed advantages at elevated gas temperatures. The retention in UHPSFC using a diol stationary phase was correlated with the number of hydrogen bond donors. In summary, this study elucidates structural features influencing chromatographic retention and ESI efficiency in LMs. The findings can aid in developing analytical methods for specific technical lignins. However, the absence of an adequate number of LM standards limits the prediction of LM structures solely based on ESI performance data.

14.
J Cheminform ; 16(1): 72, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907264

RESUMEN

Temperature-responsive liquid chromatography (TRLC) offers a promising alternative to reversed-phase liquid chromatography (RPLC) for environmentally friendly analytical techniques by utilizing pure water as a mobile phase, eliminating the need for harmful organic solvents. TRLC columns, packed with temperature-responsive polymers coupled to silica particles, exhibit a unique retention mechanism influenced by temperature-induced polymer hydration. An investigation of the physicochemical parameters driving separation at high and low temperatures is crucial for better column manufacturing and selectivity control. Assessment of predictability using a dataset of 139 molecules analyzed at different temperatures elucidated the molecular descriptors (MDs) relevant to retention mechanisms. Linear regression, support vector regression (SVR), and tree-based ensemble models were evaluated, with no standout performer. The precision, accuracy, and robustness of models were validated through metrics, such as r and mean absolute error (MAE), and statistical analysis. At 45 ∘ C , logP predominantly influenced retention, akin to reversed-phase columns, while at 5 ∘ C , complex interactions with lipophilic and negative MDs, along with specific functional groups, dictated retention. These findings provide deeper insights into TRLC mechanisms, facilitating method development and maximizing column potential.

15.
Mol Inform ; : e202300327, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864837

RESUMEN

The assessment of compound blood-brain barrier (BBB) permeability poses a significant challenge in the discovery of drugs targeting the central nervous system. Conventional experimental approaches to measure BBB permeability are labor-intensive, cost-ineffective, and time-consuming. In this study, we constructed six machine learning classification models by combining various machine learning algorithms and molecular representations. The model based on ExtraTree algorithm and random partitioning strategy obtains the best prediction result, with AUC value of 0.932±0.004 and balanced accuracy (BA) of 0.837±0.010 for the test set. We employed the SHAP method to identify important features associated with BBB permeability. In addition, matched molecular pair (MMP) analysis and representative substructure derivation method were utilized to uncover the transformation rules and distinctive structural features of BBB permeable compounds. The machine learning models proposed in this work can serve as an effective tool for assessing BBB permeability in the drug discovery for central nervous system disease.

16.
Curr Med Chem ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38847382

RESUMEN

Active pharmaceutical ingredients (APIs) have gained direct pharmaceutical interest, along with their in vitro properties, and thus utilized as auxiliary solid dosage forms upon FDA guidance and approval on pharmaceutical cocrystals when reacting with coformers, as a potential and attractive route for drug substance development. However, screening and selecting suitable and appropriate coformers that may potentially react with APIs to successfully form cocrystals is a time-consuming, inefficient, costly, and labour intensive task. In this study, we implemented graph neural networks to predict the formation of cocrystals using our first created API coformers interactions graph dataset. We further compared our work with previous studies that implemented descriptor-based models (e.g., random forest, support vector machine, extreme gradient boosting, and artificial neural networks). All built graph-based models show compelling performance accuracies (i.e., 91.36, 94.60 and 95. 95% for GCN, GraphSAGE, and R-GCN respectively). Furthermore, R-GCN prevailed among the built graph-based models because of its capability to learn the topological structure of the graph from the additionally provided information (i.e., non-ionic and non-covalent interactions or link information) between APIs and coformers.

17.
Environ Sci Pollut Res Int ; 31(24): 35455-35469, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38730215

RESUMEN

Plant volatilomics such as essential oils (EOs) and volatile phytochemicals (PCs) are known as potential natural sources for the development of biofumigants as an alternative to conventional fumigant pesticides. This present work was aimed to evaluate the fumigant toxic effect of five selected EOs (cinnamon, garlic, lemon, orange, and peppermint) and PCs (citronellol, limonene, linalool, piperitone, and terpineol) against the Callosobruchus maculatus, Sitophilus oryzae, and Tribolium castaneum adults. Furthermore, for the estimation of the relationship between molecular descriptors and fumigant toxicity of plant volatiles, quantitative structural activity relationship (QSAR) models were developed using principal component analysis and multiple linear regression. Amongst the tested EOs, garlic EO was found to be the most toxic fumigant. The PCs toxicity analysis revealed that terpineol, limonene, linalool, and piperitone as potential fumigants to C. maculatus (< 20 µL/L air of LC50), limonene and piperitone as potential fumigants to T. castaneum (14.35 and 154.11 µL/L air of LC50, respectively), and linalool and piperitone as potential fumigants to S. oryzae (192.27 and 69.10 µL/L air of LC50, respectively). QSAR analysis demonstrated the role of various molecular descriptors of EOs and PCs on the fumigant toxicity in insect pest species. In specific, dipole and Randic index influence the toxicity in C. maculatus, molecular weight and maximal projection area influence the toxicity in S. oryzae, and boiling point and Dreiding energy influence the toxicity in T. castaneum. The present findings may provide insight of a new strategy to select effective EOs and/or PCs against stored product insect pests.


Asunto(s)
Escarabajos , Fumigación , Aceites Volátiles , Animales , Escarabajos/efectos de los fármacos , Aceites Volátiles/química , Aceites Volátiles/farmacología , Relación Estructura-Actividad Cuantitativa , Insecticidas/química , Insecticidas/farmacología , Tribolium/efectos de los fármacos
18.
Int J Pharm ; 659: 124217, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38734275

RESUMEN

Amino acids (AAs) have been used as excipients in protein formulations both in solid and liquid state products due to their stabilizing effect. However, the mechanisms by which they can stabilize a protein have not been fully elucidated yet. The purpose of this study was to investigate the effect of AAs with distinct physicochemical properties on the stability of a model protein (lysozyme, LZM) during the spray-drying process and subsequent storage. Molecular descriptor based multivariate data analysis was used to select distinct AAs from the group of 20 natural AAs. Then, LZM and the five selected AAs (1:1 wt ratio) were spray-dried (SD). The solid form, residual moisture content (RMC), hygroscopicity, morphology, secondary/tertiary structure and enzymatic activity of LZM were evaluated before and after storage under 40 °C/75 % RH for 30 days. Arginine (Arg), leucine (Leu), glycine (Gly), tryptophan (Trp), aspartic acid (Asp) were selected because of their distinct properties by using principal component analysis (PCA). The SD LZM powders containing Arg, Trp, or Asp were amorphous, while SD LZM powders containing Leu or Gly were crystalline. Recrystallization of Arg, Trp, Asp and polymorph transition of Gly were observed after the storage under accelerated conditions. The morphologies of the SD particles vary upon the different AAs formulated with LZM, implying different drying kinetics of the five model systems. A tertiary structural change of LZM was observed in the SD powder containing Arg, while a decrease in the enzymatic activity of LZM was observed in the powders containing Arg or Asp after the storage. This can be attributed to the extremely basic and acidic conditions that Arg and Asp create, respectively. This study suggests that when AAs are used as stabilizers instead of traditional disaccharides, not only do classic vitrification theory and water replacement theory play a role, but the microenvironmental pH conditions created by basic or acidic AAs in the starting solution or during the storage of solid matter are also crucial for the stability of SD protein products.


Asunto(s)
Aminoácidos , Almacenaje de Medicamentos , Excipientes , Muramidasa , Secado por Pulverización , Muramidasa/química , Aminoácidos/química , Excipientes/química , Polvos/química , Estabilidad de Medicamentos , Humectabilidad , Química Farmacéutica/métodos
19.
Sci Rep ; 14(1): 8228, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589405

RESUMEN

Nowadays, an efficient and robust virtual screening procedure is crucial in the drug discovery process, especially when performed on large and chemically diverse databases. Virtual screening methods, like molecular docking and classic QSAR models, are limited in their ability to handle vast numbers of compounds and to learn from scarce data, respectively. In this study, we introduce a universal methodology that uses a machine learning-based approach to predict docking scores without the need for time-consuming molecular docking procedures. The developed protocol yielded 1000 times faster binding energy predictions than classical docking-based screening. The proposed predictive model learns from docking results, allowing users to choose their preferred docking software without relying on insufficient and incoherent experimental activity data. The methodology described employs multiple types of molecular fingerprints and descriptors to construct an ensemble model that further reduces prediction errors and is capable of delivering highly precise docking score values for monoamine oxidase ligands, enabling faster identification of promising compounds. An extensive pharmacophore-constrained screening of the ZINC database resulted in a selection of 24 compounds that were synthesized and evaluated for their biological activity. A preliminary screen discovered weak inhibitors of MAO-A with a percentage efficiency index close to a known drug at the lowest tested concentration. The approach presented here can be successfully applied to other biological targets as target-specific knowledge is not incorporated at the screening phase.


Asunto(s)
Inhibidores de la Monoaminooxidasa , Farmacóforo , Simulación del Acoplamiento Molecular , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Relación Estructura-Actividad Cuantitativa , Aprendizaje Automático , Ligandos
20.
Sci Total Environ ; 927: 172215, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38580117

RESUMEN

Water pollution has become a critical global concern requiring effective monitoring techniques and robust protection strategies. Contaminants of emerging concern (CECs) are increasingly detected in various water sources, with their harmful effects on humans and ecosystems continually evolving. Based on literature reports highlighting the promising sorption properties of metal-organic frameworks (MOFs), the aim of this study was to evaluate the suitability of NH2-MIL-125 (Ti) and UiO-66 (Ce) as sorbents in passive sampling devices (MOFs-PSDs) for the collection and extraction of a wide group of CECs. Solvothermal methods were used to synthesize MOFs, and the characterization of the obtained materials was performed using field-emission scanning electron microscopy (FE-SEM), powder X-ray diffractometry (pXRD) and Fourier-transform infrared (FTIR) spectroscopy. The research demonstrated the sorption capabilities of the tested MOFs, the ease and rapidity of their chemical regeneration and the possibility of reuse as sorbents. Using chemometric analysis, the structural properties of CECs determining the sorption efficiency on the surface of NH2-MIL-125 (Ti) were identified. The MOFs-PSDs were lab-calibrated to examine the kinetics of analytes sorption and determine the sampling rates (Rs). MOFs-PSDs and CNTs-PSDs (PSDs containing carbon nanotubes as a sorbent) were then placed in the Elblag River and the Vistula Lagoon to sampling and extraction of the target compounds from the water. CNTs-PSDs were selected, based on our previous research, for the comparison of the effectiveness of the MOFs-PSDs in environmental monitoring. MOFs-PSDs were successfully used in monitoring of CECs in water. The time-weighted average concentrations (CTWA) of 2-hydroxycarbamazepine, carbamazepine-10,11-epoxide, p-nitrophenol, 3,5-dichlorophenol and caffeine were determined in the Elblag River and CTWA of metoprolol, diclofenac, 2-hydroxycarbamazepine, carbamazepine-10,11-epoxide, p-nitrophenol, 3,5-dichlorophenol and caffeine were determine in the Vistula Lagoon using MOFs-PSDs and a high-performance liquid chromatography coupled with triple quadrupole mass spectrometer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA