Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Angew Chem Int Ed Engl ; : e202414960, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39282722

RESUMEN

Organic fluorophores with tunable π-conjugated paths have attracted considerable attention owing to their diverse properties and promising applications. Herein, we present a tailored butterfly like molecule, 2,2'-(2,5-bis (2,2-diphenylvinyl)-1,4-phenylene)dinaphtha-lene (BDVPN), which exhibits diverse photophysical features in its two polymorphs. The BP phase crystal, with its "aligned wings" conformation, possesses emissive characteristics that are nearly identical to those in dilute solutions. In contrast, the BN phase crystal, which adopts an "orthogonal wings" conformation, exhibits an unusual hypsochromic-shifted emission compared to its dilute solution counterparts. This intriguing hypsochromic-shifted emission originates from the reduction in the effective conjugated length of the molecular skeleton. Notably, BN phase crystals also exhibit exceptional optical performance, featuring high-efficiency emission (76.6%), low-loss optical waveguides (0.571 dB mm-1), deep-blue amplified spontaneous emission (ASE) with a narrow full width at half maximum (FWHM: 6.4 nm), and a unique 200 nm bathochromic shift of piezochromic luminescence.

2.
Materials (Basel) ; 17(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39124328

RESUMEN

Harnessing the photoinduced phase transitions in organic crystals, especially the changes in shape and structure across various dimensions, offers a fascinating avenue for exact spatiotemporal control, which is crucial for developing future smart devices. In our study, we report a new photoactive molecular crystal made from (E)-2-(3-phenyl-allylidene)malonate ((E)-PADM). When exposed to ultraviolet (UV) light at 365 nm, this compound experiences an E-to-Z photoisomerization in liquid solution and a crystal-to-liquid phase transition in solid crystals. Remarkably, nanoscopic crystalline rods boost their melting rate and degree compared to bulk crystals, indicating that miniaturization enhances the photoinduced melting effect. Our results demonstrate a simple approach to rapidly drive molecular crystals into liquids via photochemical reactions and phase transitions.

3.
Adv Mater ; : e2409550, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39188186

RESUMEN

Neuromorphic visual systems (NVSs) hold the potential to not only preserve but also enhance human visual capabilities. One such augmentation lies in harnessing polarization information from light reflected or scattered off surfaces like bees, which can disclose unique characteristics imperceptible to the human eyes. While creating polarization-sensitive optoelectronic synapses presents an intriguing avenue for equipping NVS with this capability, integrating functions like polarization sensitivity, photodetection, and synaptic operations into a singular device has proven challenging. This integration typically necessitates distinct functional components for each performance metric, leading to intricate fabrication processes and constraining overall performance. Herein, a pioneering linear polarized light sensitive synaptic organic phototransistor (OPT) based on 2D molecular crystals (2DMCs) with highly integrated, all-in-one functionality, is demonstrated. By leveraging the superior crystallinity and molecular thinness of 2DMC, the synaptic OPT exhibits comprehensive superior performance, including a linear dichroic ratio up to 3.85, a high responsivity of 1.47 × 104 A W-1, and the adept emulation of biological synapse functions. A sophisticated application in noncontact fingerprint detection achieves a 99.8% recognition accuracy, further highlights its potential. The all-in-one 2DMC optoelectronic synapse for polarization-sensitive NVS marks a new era for intelligent perception systems.

4.
Angew Chem Int Ed Engl ; : e202411405, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38988192

RESUMEN

Crystal adaptronics, a burgeoning field at the intersection of materials science and engineering, focuses on harnessing the unique properties of organic molecular crystals to achieve unprecedented levels of maneuverability and processability in various applications. Increasingly, ordered stacks of crystalline materials are being endowed with fascinating mechanical compliance changes in response to external environments. Understanding how these crystals can be manipulated and tailored for specific functions has become paramount in the pursuit of advanced materials with customizable properties. Simultaneously, the processability of organic molecular crystals plays a pivotal role in shaping their utility in real-world applications. From growth methodologies to fabrication techniques, the ability to precisely machine these crystals opens new avenues for engineering materials with enhanced functionality. These processing methods enhance the versatility of organic crystals, allowing their integration into various devices and technologies, and further expanding the potential applications. This review aims to provide a concise overview of the current landscape in the study of dynamic organic molecular crystals, with an emphasis on the interconnected themes of operability and processability.

5.
Chemistry ; : e202401506, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046339

RESUMEN

Room temperature phosphorescence from organic materials has attracted an increasing attention in the recent years due to their potential application in various advancing technologies, notably in bioimaging and displays. In this context, heavy atoms such as halogen ones revealed useful tools to enhance the spin-orbit coupling (SOC) of molecular organic phosphors. However, the effect of halogen at the supramolecular level remains less understood, especially in the field of molecular crystals where additional factors can impact the phosphorescence emission. Here, we investigate external effect of halogens on the phosphorescence of chiral phthalimides molecular crystals. The results show that changing the nature of the halogen atom onto the phthalimide core leads to an evolution of the photophysical properties of the materials which does not necessarily follow the classical trend imposed by the expected internal heavy atom effect. Beyond this aspect, we showed that the halogen atom has a profound impact on the packing between the chromophores at the supramolecular level which is of paramount importance towards the optical properties (PLQY and lifetimes) of the different phosphors examined.

6.
IUCrJ ; 11(Pt 4): 438-439, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38958012

RESUMEN

From its conception, X-ray crystallography has provided a unique understanding of the structure, bonding and electronic state of materials, which, in turn, unlocks a means of examining the properties and function of crystalline systems. Using state-of-the-art single-crystal X-ray diffraction, along with UV-Vis spectroscopy and DFT calculations, Zwolenik et al. [(2024). IUCrJ, 11, 519-527] have provided a comprehensive study of the structure-optical property relationship of 1,3-diacetylpyrene with methodologies that are increasingly accessible to non-specialist laboratories.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124801, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39053118

RESUMEN

The study of Na-carbonates stability and their transformations in aqueous carbonate fluid under high P-T conditions is relevant from the point of view of the understanding geochemical processes of the Na-assisted carbon circulation in the Earth's crust and subduction zones. In situ Raman study of Na-bearing carbonate-water-Fe-metal system in diamond anvil cell (DAC) at high P-T conditions revealed that carbonates decompose with abiogenic formation of formates and other organic compounds that differs from behavior of carbonates in dry system. XRD and FTIR methods have been used additionally to determine the phase composition. Na-bearing carbonates (nahcolite NaHCO3, shortite Na2Ca2(CO3)3 and cancrinite Na7Ca[(CO3)1.5Al6Si6O24]⋅2H2O) in aqueous fluid decompose to form simple carbonates and formates (as dominant organic molecules) at moderate P-T parameters (above ∼0.2 GPa, 200 °C). Our experimental results directly confirm the hypothesis of Horita and Berndt (Science, 1999) about possible yield of organic formates in the carbonate-water-metal system. Nahcolite NaHCO3 in aqueous fluid in the presence of Fe metal decomposes into anhydrous phases: natrite γ-Na2CO3, siderite, magnetite (due to dissolution of Fe steel gasket), Na-formate and likely organic molecular crystalline solvate of Na-formate and methyl formate. Shortite decays into anhydrous phases: aragonite CaCO3, Na-Ca-formates and an amorphous phase. Cancrinite decomposes to unidentified carbonate-alumonosilicate phases, Na-Ca-formates and unknown organic molecular crystal. Magnetite is also formed in this system due to dissolution of Fe steel gasket used in DAC. The present study provides a new insight in processes of abiogenic formation of organic matter from carbonates in the crust and upper mantle.

8.
IUCrJ ; 11(Pt 4): 538-555, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38842120

RESUMEN

Crystallography is a quintessential method for determining the atomic structure of crystals. The most common implementation of crystallography uses single crystals that must be of sufficient size, typically tens of micrometres or larger, depending on the complexity of the crystal structure. The emergence of serial data-collection methods in crystallography, particularly for time-resolved experiments, opens up opportunities to develop new routes to structure determination for nanocrystals and ensembles of crystals. Fluctuation X-ray scattering is a correlation-based approach for single-particle imaging from ensembles of identical particles, but has yet to be applied to crystal structure determination. Here, an iterative algorithm is presented that recovers crystal structure-factor intensities from fluctuation X-ray scattering correlations. The capabilities of this algorithm are demonstrated by recovering the structure of three small-molecule crystals and a protein crystal from simulated fluctuation X-ray scattering correlations. This method could facilitate the recovery of structure-factor intensities from crystals in serial crystallography experiments and relax sample requirements for crystallography experiments.

9.
Acta Crystallogr D Struct Biol ; 80(Pt 7): 528-534, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38935341

RESUMEN

When solving a structure of a protein from single-wavelength anomalous diffraction X-ray data, the initial phases obtained by phasing from an anomalously scattering substructure usually need to be improved by an iterated electron-density modification. In this manuscript, the use of convolutional neural networks (CNNs) for segmentation of the initial experimental phasing electron-density maps is proposed. The results reported demonstrate that a CNN with U-net architecture, trained on several thousands of electron-density maps generated mainly using X-ray data from the Protein Data Bank in a supervised learning, can improve current density-modification methods.


Asunto(s)
Aprendizaje Profundo , Proteínas , Cristalografía por Rayos X/métodos , Proteínas/química , Conformación Proteica , Redes Neurales de la Computación , Bases de Datos de Proteínas , Modelos Moleculares
10.
IUCrJ ; 11(Pt 4): 519-527, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38727170

RESUMEN

A new polymorph of 1,3-diacetylpyrene has been obtained from its melt and thoroughly characterized using single-crystal X-ray diffraction, steady-state UV-Vis spectroscopy and periodic density functional theory calculations. Experimental studies covered the temperature range from 90 to 390 K and the pressure range from atmospheric to 4.08 GPa. Optimal sample placement in a diamond anvil cell according to our previously presented methodology ensured over 80% data coverage up to 0.8 Šfor a monoclinic sample. Unrestrained Hirshfeld atom refinement of the high-pressure crystal structures was successful and anharmonic behavior of carbonyl oxygen atoms was observed. Unlike the previously characterized polymorph, the structure of 2°AP-ß is based on infinite π-stacks of antiparallel 2°AP molecules. 2°AP-ß displays piezochromism and piezofluorochromism which are directly related to the variation in interplanar distances within the π-stacking. The importance of weak intermolecular interactions is reflected in the substantial negative thermal expansion coefficient of -55.8 (57) MK-1 in the direction of C-H...O interactions.

11.
Angew Chem Int Ed Engl ; 63(24): e202320223, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38588224

RESUMEN

Structurally ordered soft materials that respond to complementary stimuli are susceptible to control over their spatial and temporal morphostructural configurations by intersectional or combined effects such as gating, feedback, shape-memory, or programming. In the absence of general and robust design and prediction strategies for their mechanical properties, at present, combined chemical and crystal engineering approaches could provide useful guidelines to identify effectors that determine both the magnitude and time of their response. Here, we capitalize on the purported ability of soft intermolecular interactions to instigate mechanical compliance by using halogenation to elicit both mechanical and photochemical activity of organic crystals. Starting from (E)-1,4-diphenylbut-2-ene-1,4-dione, whose crystals are brittle and photoinert, we use double and quadruple halogenation to introduce halogen-bonded planes that become interfaces for molecular gliding, rendering the material mechanically and photochemically plastic. Fluorination diversifies the mechanical effects further, and crystals of the tetrafluoro derivative are not only elastic but also motile, displaying the rare photosalient effect.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38657128

RESUMEN

The inherent linear dichroism (LD), high absorption, and solution processability of organic semiconductors hold immense potential to revolutionize polarized light detection. However, the disordered molecular packing inherent to polycrystalline thin films obscures their intrinsic diattenuation, resulting in diminished polarization sensitivity. In this study, we develop filter-free organic polarization-sensitive phototransistors (PSPs) with both a high linear dichroic ratio (LDR) and exceptional photosensitivity utilizing molecularly thin dithieno[3,2-b:2',3'-d]thiophene derivatives (DTT-8) two-dimensional molecular crystals (2DMCs) as the active layer. The orderly molecular packing in 2DMCs amplifies the inherent LD, and their molecular-scale thickness enables complete channel depletion, significantly reducing the dark current. As a result, PSPs with an impressive LDR of 3.15 and a photosensitivity reaching 3.02 × 106 are obtained. These findings present a practical demonstration of using the polarization angle as an encryption key in optical communication, showcasing the potential of 2DMCs as a viable and promising category of semiconductors for filter-free, polarization-sensitive photodetectors.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38323797

RESUMEN

The structural strain induced by temperature (`phonon pressure') and radiation damage (`defect pressure') is not necessarily correlated because of different underlying structural mechanisms. Here synchrotron experiments may provide new and yet unexplored opportunities. A recent publication by McMonagle et al. [(2024), Acta Cryst. B80, 13-18] is an excellent illustration of this.

14.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 80(Pt 1): 13-18, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38174727

RESUMEN

The interaction of intense synchrotron radiation with molecular crystals frequently modifies the crystal structure by breaking bonds, producing fragments and, hence, inducing disorder. Here, a second-rank tensor of radiation-induced lattice strain is proposed to characterize the structural susceptibility to radiation. Quantitative estimates are derived using a linear response approximation from experimental data collected on three materials Hg(NO3)2(PPh3)2, Hg(CN)2(PPh3)2 and BiPh3 [PPh3 = triphenylphosphine, P(C6H5)3; Ph = phenyl, C6H5], and are compared with the corresponding thermal expansivities. The associated eigenvalues and eigenvectors show that the two tensors are not the same and therefore probe truly different structural responses. The tensor of radiative expansion serves as a measure of the susceptibility of crystal structures to radiation damage.

15.
IUCrJ ; 11(Pt 2): 168-181, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38275161

RESUMEN

In the search for new active pharmaceutical ingredients, the precise control of the chemistry of cocrystals becomes essential. One crucial step within this chemistry is proton migration between cocrystal coformers to form a salt, usually anticipated by the empirical ΔpKa rule. Due to the effective role it plays in modifying intermolecular distances and interactions, pressure adds a new dimension to the ΔpKa rule. Still, this variable has been scarcely applied to induce proton-transfer reactions within these systems. In our study, high-pressure X-ray diffraction and Raman spectroscopy experiments, supported by DFT calculations, reveal modifications to the protonation states of the 4,4'-bipyridine (BIPY) and malonic acid (MA) cocrystal (BIPYMA) that allow the conversion of the cocrystal phase into ionic salt polymorphs. On compression, neutral BIPYMA and monoprotonated (BIPYH+MA-) species coexist up to 3.1 GPa, where a phase transition to a structure of P21/c symmetry occurs, induced by a double proton-transfer reaction forming BIPYH22+MA2-. The low-pressure C2/c phase is recovered at 2.4 GPa on decompression, leading to a 0.7 GPa hysteresis pressure range. This is one of a few studies on proton transfer in multicomponent crystals that shows how susceptible the interconversion between differently charged species is to even slight pressure changes, and how the proton transfer can be a triggering factor leading to changes in the crystal symmetry. These new data, coupled with information from previous reports on proton-transfer reactions between coformers, extend the applicability of the ΔpKa rule incorporating the pressure required to induce salt formation.

16.
Small ; 20(2): e2305473, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37688298

RESUMEN

Traditional nonlinear optical (NLO) crystals are exclusively limited to ionic crystals with π-conjugated groups and it is a great challenge to achieve a subtle balance between second-harmonic generation, bandgap, and birefringence for them, especially in the deep-UV spectrum region (Eg  > 6.20 eV). Herein, a non-π-conjugated molecular crystal, NH3 BH3 , which realizes such balance with a large second-harmonic generation response (2.0 × KH2 PO4 at 1064 nm, and 0.45 × ß-BaB2 O4 at 532 nm), deep-UV transparency (Eg > 6.53 eV), and moderate birefringence (Δn = 0.056@550 nm) is reported. As a result, NH3 BH3 exhibits a large quality factor of 0.32, which is evidently larger than those of non-π-conjugated sulfate and phosphate ionic crystals. Using an unpolished NH3 BH3 crystal, effective second-harmonic generation outputs are observed at different wavelengths. These attributes indicate that NH3 BH3 is a promising candidate for deep-UV NLO applications. This work opens up a new door for developing high-performance deep-UV NLO crystals.

17.
IUCrJ ; 11(Pt 1): 34-44, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37962471

RESUMEN

Many technologically important material properties are underpinned by disorder and short-range structural correlations; therefore, elucidating structure-property relationships in functional materials requires understanding both the average and the local structures. The latter information is contained within diffuse scattering but is challenging to exploit, particularly in single-crystal systems. Separation of the diffuse scattering into its constituent components can greatly simplify analysis and allows for quantitative parameters describing the disorder to be extracted directly. Here, a deep-learning method, DSFU-Net, is presented based on the Pix2Pix generative adversarial network, which takes a plane of diffuse scattering as input and factorizes it into the contributions from the molecular form factor and the chemical short-range order. DSFU-Net was trained on 198 421 samples of simulated diffuse scattering data and performed extremely well on the unseen simulated validation dataset in this work. On a real experimental example, DSFU-Net successfully reproduced the two components with a quality sufficient to distinguish between similar structural models based on the form factor and to refine short-range-order parameters, achieving values comparable to other established methods. This new approach could streamline the analysis of diffuse scattering as it requires minimal prior knowledge of the system, allows access to both components in seconds and is able to compensate for small regions with missing data. DSFU-Net is freely available for use and represents a first step towards an automated workflow for the analysis of single-crystal diffuse scattering.

18.
ACS Biomater Sci Eng ; 9(12): 6715-6723, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38032859

RESUMEN

Self-organized peptides are unique materials with various applications in biology, medicine, and nanotechnology. Many of these applications require fabrication of homogeneous thin films having high piezoelectric effect and sufficiently low roughness. Recently, a facile method for the controlled deposition of flat solid films of the most studied peptide, diphenylalanine (FF), has been proposed, which is based on the crystallization of FF in the amorphous phase under the action of water vapor. This method is very advantageous compared with crystallization from a liquid phase reported previously. Here, we thoroughly investigate the mechanism of solid-state transformation from the amorphous to crystalline phase. The study revealed that the process proceeds in two distinct stages, maintaining clamped condition of self-assembling building blocks that preserve the films' morphology and high piezoelectric activity. We emphasize the critical role of water diffusion that governs two-dimensional growth of crystalline domains in FF films, merging in very dense, flat, and homogeneous films. These findings open a wide perspective for using this methodology for the direct fabrication of biofilms from the amorphous phase. We thus expect the application of these films to various nanotechnological applications of self-assembled structures.


Asunto(s)
Nanoestructuras , Nanoestructuras/química , Dipéptidos/química , Péptidos/química
19.
IUCrJ ; 10(Pt 6): 754-765, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37903099

RESUMEN

The calculation of intermolecular interactions in molecular crystals using model energies provides a unified route to understanding the complex interplay of driving forces in crystallization, elastic properties and more. Presented here is a new single-parameter interaction energy model (CE-1p), extending the previous CrystalExplorer energy model and calibrated using density functional theory (DFT) calculations at the ωB97M-V/def2-QZVP level over 1157 intermolecular interactions from 147 crystal structures. The new model incorporates an improved treatment of dispersion interactions and polarizabilities using the exchange-hole dipole model (XDM), along with the use of effective core potentials (ECPs), facilitating application to molecules containing elements across the periodic table (from H to Rn). This new model is validated against high-level reference data with outstanding performance, comparable to state-of-the-art DFT methods for molecular crystal lattice energies over the X23 set (mean absolute deviation 3.6 kJ mol-1) and for intermolecular interactions in the S66x8 benchmark set (root mean-square deviation 3.3 kJ mol-1). The performance of this model is further examined compared to the GFN2-xTB tight-binding model, providing recommendations for the evaluation of intermolecular interactions in molecular crystal systems.

20.
Chemistry ; 29(62): e202302333, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37539653

RESUMEN

A chloroplatinum complex was arylated to obtain stimuli-responsive molecular crystals. The resulting arylplatinum complex showed polymorph-dependent emission, mechano- and thermochromic luminescence as well as comproportionation and π-bridged dimerization. Simple mixing of structurally similar arylplatinum complexes at room temperature resulted in the transfer of their aryl groups (comproportionation), which allowed their mechanochromic profiles to be tuned. We also found that recrystallization of the complex afforded a dimerized product in which two platinum ions are bridged by aryl groups resulting in a very short (3.0466(10) Å) Pt-Pt distance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA