Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202411863, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223086

RESUMEN

Sialic acids (Sias) are ubiquitously expressed on all types of glycans, typically as terminating residues. They usually link to galactose, N-acetylgalactosamine, or other Sia residues, forming ligands of many glycan-binding proteins. An atypical linkage to the C6 of N-acetylglucosamine (GlcNAc) has been identified in human milk oligosaccharides (HMOs, e.g., DSLNT) and tumor-associated glycoconjugates. Herein, we achieved the systematic synthesis of these HMOs in an enzymatic modular manner. The synthetic strategy relies on a novel activity of ST6GalNAc6 for efficient construction of the Neu5Acα2-6GlcNAc linkage, and another 12 specific enzyme modules for sequential HMO assembly. The structures enabled comprehensive exploration into their structure-function relationships using glycan microarray, revealing broad yet distinct recognitions by Siglecs to the atypical Neu5Acα2-6GlcNAc motif. The work provides tools and new insights for functional study and potential applications of Siglecs and HMOs.

2.
Angew Chem Int Ed Engl ; : e202411613, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140458

RESUMEN

Cage-type structures based on coordination and dynamic covalent chemistry have the characteristics of facile and efficient preparation but poor stability. Chemically stable organic cages, generally involving fragment coupling and multi-step reactions, are relatively difficult to synthesize. Herein, we offer a general and modular strategy to customize covalent organic cages with diverse skeletons and sizes. First, one skeleton (S) module with three extension (E) modules and three reaction (R) modules are connected by one- or two-step coupling to get the triangular monomer bearing three reaction sites. Then one-pot Friedel-Crafts condensation of the monomer and linking module of paraformaldehyde produces the designed organic cages. The cage forming could be regulated by the geometrical configuration of monomeric blocks. The S-E-R angles in the monomer is crucial; only 120o (2,4-dimethoxyphen as reaction module) or 60o (2,5-dimethoxyphen as reaction module) angle between S-E-R successfully affords the resulting cages. By the rational design of the three modules, a series of organic cages have been constructed. In addition, the host-guest properties show that the representative cages could strongly encapsulate neutral aromatic diimine guests driven by solvophobic interactions in polar solvents, giving the highest association constant of (2.58 ± 0.18) × 105 M-1.

3.
Angew Chem Int Ed Engl ; 63(34): e202405939, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39041421

RESUMEN

Alkyl chlorides are a class of versatile building blocks widely used to generate C(sp3)-rich scaffolds through transformation such as nucleophilic substitution, radical addition reactions and metal-catalyzed cross-coupling processes. Despite their utility in the synthesis of high-value functional molecules, distinct methods for the preparation of alkyl chlorides are underrepresented. Here, we report a visible-light-mediated dual catalysis strategy for the modular synthesis of highly functionalized and structurally diverse arylated chloroalkanes via the coupling of diaryliodonium salts, alkenes and potassium chloride. A distinctive aspect of this transformation is a ligand-design-driven approach for the development of a copper(II)-based atom-transfer catalyst that enables the aryl-chlorination of electron-poor alkenes, complementing its iron(III)-based counterpart that accommodates non-activated aliphatic alkenes and styrene derivatives. The complementarity of the two dual catalytic systems allows the efficient aryl-chlorination of alkenes bearing different stereo-electronic properties and a broad range of functional groups, maximizing the structural diversity of the 1-aryl, 2-chloroalkane products.

4.
Chemistry ; : e202402264, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981862

RESUMEN

Modular synthesis can combine different functional module to flexibly regulate comprehensive properties and study the diversity of compounds. This study established a modular bicyclic synthesis strategy of combining polynitro energetic module with iodine-containing biocidal module. Compounds 1-6 with high iodine content (48.72-69.56%) and high thermal stability (Td: 172-304 ˚C) were synthesized and exhaustively identified. By modular synthesis, the detonation properties and gas-production of 3-6 improved greatly expanding their biocidal efficacy and maintained the iodine atomic utilization of iodine-containing module. Notably, 4,5-diiodo-3,4',5'-trinitro-1,3'-bipyrazole (5) and 3,5-diiodo-4,4',5'-trinitro-1,3'-bipyrazole (6) exhibit high detonation velocities (D: 5903 m s-1, 5769 m s-1, respectively) and highest gas production of 212.85 L mol-1 and 217.66 L mol-1 after decomposition. This study diversifies polyiodio-nitro compounds, and also inspire the implementation of similar synthesis strategies to provide family-level synthetic solutions to energetic biocidal materials.

5.
Angew Chem Int Ed Engl ; : e202409653, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039028

RESUMEN

Acridine frameworks stand as pivotal architectural elements in pharmaceuticals and photocatalytic applications, owing to their chemical adaptability, biological activity, and unique excited-state dynamics. Conventional synthetic routes often entail specialized starting materials, anaerobic or moisture-free conditions, and elaborate multi-stage manipulations for incorporating diverse functionalities. Herein, we present a convergent approach integrating photo-excitation of readily available ortho-alkyl nitroarenes with copper-promoted cascade annulation. This innovative system enables an aerobic, one-pot reaction of o-alkyl nitroarenes with arylboronic acids, thereby streamlining the modular construction of a wide array of acridine dervatives with various functional groups. This encompasses symmetrical, unsymmetrical and polysubstituted varieties, some of which are otherwise exceptionally difficult to synthesize. Furthermore, it significantly improves the production of structurally varied acridinium salts, featuring enhanced photophysical properties, high excited state potentials (E*red = 2.08-3.15 V), and exhibiting superior performance in intricate photoredox transformations.

6.
Synth Syst Biotechnol ; 9(4): 694-700, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38868609

RESUMEN

Taxanes are kinds of diterpenoids with important bioactivities, such as paclitaxel (taxol®) is an excellent natural broad-spectrum anticancer drug. Attempts to biosynthesize taxanes have made with limited success, mainly due to the bottleneck of the low efficiency catalytic elements. In this study, we developed an artificial synthetic system to produce taxanes from mevalonate (MVA) by coupling biological and chemical methods, which comprises in vitro multi-enzyme catalytic module, chemical catalytic module and yeast cell catalytic module. Through optimizing in vitro multienzyme catalytic system, the yield of taxadiene was increased to 946.7 mg/L from MVA within 8 h and the productivity was 14.2-fold higher than microbial fermentation. By incorporating palladium catalysis, the conversion rate of Taxa-4(20),11(12)-dien-5α-yl acetate (T5α-AC) reached 48 %, effectively addressing the product promiscuity and the low yield rate of T5αOH. Finally, we optimized the expression of T10ßOH in yeast resulting in the biosynthesis of Taxa-4(20),11(12)-dien-5α-acetoxy-10ß-ol(T5α-AC-10ß-ol) at a production of 15.8 mg/L, which displayed more than 2000-fold higher than that produced by co-culture fermentation strategy. These technologies offered a promising new approach for efficient synthesis of taxanes.

7.
Adv Sci (Weinh) ; 11(26): e2400594, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38689503

RESUMEN

Proteolysis targeting chimeras (PROTACs) have emerged as a promising strategy for drug discovery and exploring protein functions, offering a revolutionary therapeutic modality. Currently, the predominant approach to PROTACs discovery mainly relies on an empirical design-synthesis-evaluation process involving numerous cycles of labor-intensive synthesis-purification and bioassay data collection. Therefore, the development of innovative methods to expedite PROTAC synthesis and exploration of chemical space remains highly desired. Here, a direct-to-biology strategy is reported to streamline the synthesis of PROTAC libraries on plates, enabling the seamless transfer of reaction products to cell-based bioassays without the need for additional purification. By integrating amide coupling and light-induced primary amines and o-nitrobenzyl alcohols cyclization (PANAC) photoclick chemistry into a plate-based synthetic process, this strategy produces PROTAC libraries with high efficiency and structural diversity. Moreover, by employing this platform for PROTACs screening, we smoothly found potent PROTACs effectively inhibit triple-negative breast cancer (TNBC) cell growth and induce rapid, selective targeted degradation of cyclin-dependent kinase 9 (CDK9). The study introduces a versatile platform for assembling PROTACs on plates, followed by direct biological evaluation. This approach provides a promising opportunity for high-throughput synthesis of PROTAC libraries, thereby enhancing the efficiency of exploring chemical space and accelerating the discovery of PROTACs.


Asunto(s)
Descubrimiento de Drogas , Proteolisis , Humanos , Descubrimiento de Drogas/métodos , Proteolisis/efectos de los fármacos , Línea Celular Tumoral , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Quimera Dirigida a la Proteólisis
8.
Angew Chem Int Ed Engl ; 63(18): e202401838, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38404165

RESUMEN

"Improbable" rotaxanes consisting of interlocked conjugated components represent non-trivial synthetic targets, not to mention those with all-benzene scaffolds. Herein, a modular synthetic strategy has been established using an isolable azo-linked pre-rotaxane as the core module, in which the azo group functions as a tracelessly removable template to direct mechanical bond formations. Through versatile connections of the pre-rotaxane and other customizable modules, [2]- and [3]rotaxanes derived from all-benzene scaffolds have been accomplished, demonstrating the utility and potential of the synthetic design for all-benzene interlocked supramolecules.

9.
Angew Chem Int Ed Engl ; 63(17): e202400956, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388935

RESUMEN

We have accomplished the first and asymmetric total synthesis of principinol B, a grayanoid possessing an oxabicyclo[3.2.1] architecture. A functionalized 5/7/6/5 tetracyclic intermediate was assembled in a convergent manner by a diastereoselective intermolecular aldol reaction and subsequent carbonyl-olefin metathesis of two enantiomerically enriched fragments. The oxabicyclo[3.2.1] architecture containing a 6,10-ether bridge was constructed by the Williamson ether synthesis.

10.
ChemSusChem ; 17(1): e202301072, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37607884

RESUMEN

5-Hydroxymethylfurfural (5-HMF) is regarded as one of the most promising platform feedstocks for producing valuable chemicals, fuels, and materials. In this study, we present a controllable fluorination technique for biomass-based 5-HMF and its oxygenated derivatives. This technique allows us to synthesize mono-fluoromethyl, difluoromethyl, and acylfluoro-substituted furan compounds by adjusting experimental conditions such as different fluorine sources and mole ratio. To gain a deeper understanding the reactivity order, we conducted intermolecular and intramolecular competition experiments. The results revealed that the hydroxyl group exhibited the highest reactivity, followed by the aldehyde group. This finding provides important theoretical support and opens up the possibility of selective fluorination. The reaction offers several advantages, including mild conditions, no need for inert gas protection, and easy operation. Furthermore, the fluoro-substituted furan compounds can be further transformed for the preparation of drug analogs, offering a new route for the high-value utilization of biomass molecules.

11.
J Pept Sci ; 30(3): e3546, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37704427

RESUMEN

N/C-terminal protected amyloidogenic peptides are valuable biomaterials. Optimization of the protective structures at both termini is, however, synthetically laborious because a linear sequence of solid-phase peptide synthesis protocol (on-resin peptide assembly/peptide removal from resin/high-performance liquid chromatography purification) is required for the peptides each time the protective group is modified. In this study, we demonstrate a modular synthetic strategy for the purpose of rapidly deriving the N/C-terminal structures of amyloidogenic peptides. The precursor sequences that can be easily synthesized due to a non-amyloidogenic property were stocked as the synthetic intermediates. Condensation of the intermediates with N/C-terminal units in a liquid phase followed by high-performance liquid chromatography purification gave the desired peptides P1-P8. The amyloidogenic peptides that have various N/C-terminal protective structures were therefore synthesized in a labor-effective manner. This method is suggested to be useful for synthesizing amyloidogenic peptides possessing divergent protective structures at the N/C-terminus.


Asunto(s)
Materiales Biocompatibles , Péptidos , Péptidos/química , Cromatografía Líquida de Alta Presión , Técnicas de Síntesis en Fase Sólida
12.
Innov Syst Softw Eng ; 19(4): 339-357, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37969812

RESUMEN

Reactive synthesis is the task of automatically deriving a correct implementation from a specification. It is a promising technique for the development of verified programs and hardware. Despite recent advances in terms of algorithms and tools, however, reactive synthesis is still not practical when the specified systems reach a certain bound in size and complexity. In this paper, we present a sound and complete modular synthesis algorithm that automatically decomposes the specification into smaller subspecifications. For them, independent synthesis tasks are performed, significantly reducing the complexity of the individual tasks. Our decomposition algorithm guarantees that the subspecifications are independent in the sense that completely separate synthesis tasks can be performed for them. Moreover, the composition of the resulting implementations is guaranteed to satisfy the original specification. Our algorithm is a preprocessing technique that can be applied to a wide range of synthesis tools. We evaluate our approach with state-of-the-art synthesis tools on established benchmarks: the runtime decreases significantly when synthesizing implementations modularly.

13.
Angew Chem Int Ed Engl ; 62(40): e202310320, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37582683

RESUMEN

Axially chiral N-substituted quinazolinones are important bioactive molecules, which are presented in many synthetic drugs. However, most strategies toward their atroposelective synthesis are mainly limited to the axially chiral arylquinazolinone frameworks. The development of modular synthetic methods to access diverse quinazolinone-based atropisomers remains scarce and challenging. Herein, we report the regio- and atroposelective synthesis of axially chiral N-vinylquinazolinones via the strategy of asymmetric allylic substitution-isomerization. The catalysis system utilized both asymmetric transition-metal catalysis and organocatalysis to efficiently afford trisubstituted and tetrasubstituted N-vinylquinazolinone atropisomers, respectively. With the meticulous design of ß-substituted allylic substrates, both Z- and E-tetrasubstituted axially chiral N-vinylquinazolinones were obtained in good yields and high enantioselectivities.

14.
Angew Chem Int Ed Engl ; 62(37): e202307626, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37439109

RESUMEN

Many terpenoids with isoprene unit(s) demonstrating critical biological activities have been isolated and characterized. In this study, we have developed a robust chem-stamp strategy for the construction of the key isoprene unit, which consists of two steps: one-carbon extension of aldehydes to the alkenyl boronates by the boron-Wittig reaction and the rhodium-catalyzed reaction of alkenyl boronates with 2,3-allenols to yield enals. This chem-stamp could readily be applied repeatedly and separately, enabling the modular concise synthesis of many natural and pharmaceutically active terpenoids, including retinal, ß-carotene, vitamin A, tretinoin, fenretinide, acitretin, ALRT1550, nigerapyrone C, peretinoin, and lycopene. Owing to the diversified availability of the starting materials, aldehydes and 2,3-allenols, creation of new non-natural terpenoids has been realized from four dimensions: the number of isoprene units, the side chain, and the two terminal groups.


Asunto(s)
Hemiterpenos , Terpenos , Butadienos , Aldehídos/química , Catálisis
15.
Adv Mater ; 35(39): e2301929, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37178057

RESUMEN

Several thermally activated delayed fluorescence (TADF) materials have been studied and developed to realize high-performance organic light-emitting diodes (OLEDs). However, TADF macrocycles have not been sufficiently investigated owing to the synthetic challenges, resulting in limited exploration of their luminescent properties and the corresponding highly efficient OLEDs. In this study, a series of TADF macrocycles is synthesized using a modularly tunable strategy by introducing xanthones as acceptors and phenylamine derivatives as donors. A detailed analysis of their photophysical properties combined with fragment molecules reveals characteristics of high-performance macrocycles. The results indicate that: a) the ideal structure decreases the energy loss, which in turn reduces the non-radiative transitions; b) reasonable building blocks increase the oscillator strength providing a higher radiation transition rate; c) the horizontal dipole orientation (Θ) of the extended macrocyclic emitters is increased. Owing to the high photoluminescence quantum yields of ≈100% and 92% and excellent Θ of 80 and 79% for macrocycles MC-X and MC-XT in 5 wt% doped films, the corresponding devices exhibit record-high external quantum efficiencies of 31.6% and 26.9%, respectively, in the field of TADF macrocycles.

16.
Chempluschem ; 88(1): e202200425, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36631290

RESUMEN

In this report, we describe a modular synthesis approach towards a new series of non-centrosymmetric, dipolar 4,4'-bipyridines bearing 2,6- and 3,5-functionalized pyridyl moieties at the peripheries. Central to our strategy is the selective substitution on only one pyridyl motif that could contain electron-donating (-CH3 ) or electron-withdrawing (-F, -Cl, -CF3 ) groups which causes electronic/steric effects on one nitrogen atom in 4,4'-bipyridines. This synthetic protocol was further applied to prepare azo-functionalized (-N=N-) asymmetric bipyridines and non-centrosymmetric 4,4'-bipyridine N-oxide scaffolds, which overcome the synthetic hurdles oxidizing 4,4'-bipyridines to N-monoxides selectively at only one pyridine. Compared to the conventional symmetrical bipyridines, the dipolar non-centrosymmetric molecular tectons pave the way for the realization of non-centrosymmetric supramolecular assemblies because of the difference in the binding energy of the pyridyl nitrogen atoms.

17.
Chemistry ; 29(22): e202203981, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36695295

RESUMEN

A series of zigzag-edged polycyclic aromatic hydrocarbons (PAHs) (Z1-Z3) were synthesized from 2,12-dibromo-7,14-diphenyl-benzo[m]tetraphene (9) as a versatile building block. Their structures were unambiguously confirmed by laser desorption/ionization time-of-flight mass spectrometry, 1 H NMR, Raman, and Fourier-transformed infrared (FTIR) spectroscopies as well as scanning tunneling microscopy. The fingerprint vibrational modes were elucidated with theoretical support. The edge- and size-dependent optical properties were characterized by UV-Vis absorption and fluorescence spectroscopy and DFT calculations. Moreover, ultrafast transient absorption spectroscopy revealed distinct modulation of the photophysical properties upon π-extension from Z1 to Z2, the latter having a gulf edge.

18.
Angew Chem Int Ed Engl ; 61(32): e202206183, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35704446

RESUMEN

A modular total synthesis of kibdelomycin is disclosed that should enable structure-activity relationship (SAR) studies of this interesting class of antibiotics. The route uses simple building blocks and addresses lingering questions about its structural assignment and relationship to amycolamicin, a recently described natural product reported to have a similar structure. Initial antibacterial assays reveal that both C-22 epimers (the N-glycosidic linkage) of the natural product have similar activity while structurally truncated analogs lose activity.


Asunto(s)
Productos Biológicos , Pirrolidinonas , Antibacterianos/química , Pirroles , Pirrolidinonas/química , Relación Estructura-Actividad
19.
Angew Chem Int Ed Engl ; 61(35): e202206516, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35579067

RESUMEN

Click chemistry is a concept wherein modular synthesis is used for rapid functional discovery. To this end, continuous discovery of clickable chemical transformations is the pillar to support the development of this field. This report details the development of a clickable C3-H selenylation of indole that is suitable for on-plate parallel and DNA-encoded library (SeDEL) synthesis via bioinspired LUMO activation strategy. This reaction is modular, robust and highly site-selective, and it features a simple and mild reaction system (catalyzed by nonmetallic B(C6 F5 )3 at room temperature), high yields and excellent functional group compatibility. Using this method, a library of 1350 indole-selenides was parallel synthesized in an efficient and practical manner, enabling the rapid identification of 3 ai as a promising compound with nanomolar antiproliferative activity in cancer cells via in situ phenotypic screening. These results indicate the great potential of this new clickable selenylation reaction in high-throughput medicinal chemistry and chemical biology.


Asunto(s)
Química Farmacéutica , Química Clic , Química Farmacéutica/métodos , Química Clic/métodos , Biblioteca de Genes , Indoles
20.
Disabil Rehabil Assist Technol ; : 1-15, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35549593

RESUMEN

PURPOSE: Enormous assistance is required during rehabilitation activities, which might result in a variety of complications if performed manually. To solve this issue, several solutions in the form of assistive devices have been presented recently. Another issue highlighted is the lack of kinematic compatibility in low degrees-of-freedom (dof) systems. The proposed approach of developing a human-motion-oriented rehabilitation device deals with the problem through hybrid architectures. A novel modular synthesis approach is used for the purpose to induce generality in the design process. MATERIALS AND METHODS: Using a modular strategy, three planar hybrid configurations are generated for two-dof mechanisms for supporting flexion/extension motion. Three such architectures are optimally synthesised and kinematically analysed over the entire workspace. A Genetic Algorithm (GA) is used to synthesise the architecture parameters optimally. Moreover, the outcomes are evaluated against a set of seven poses and posture locations of the wrist to choose the most suitable configuration among the others. Subsequently, kinematic compatibility is analysed for the coupled system - formed by the selected architecture and the human arm - while wearing the proposed mechanism. RESULTS: According to the findings of optimal synthesis, workspace and singularity analysis, configuration-III is capable of achieving the optimal postures for all task space locations (TSLs). Further, the work modifies the design by attaching additional three revolute passive joints for correcting misalignment concerns using coupled mobility analysis. CONCLUSION: The modular strategy for hybrid architectures and the subsequent mobility analysis provides an algorithmic framework for synthesising a task-based rehabilitation device.IMPLICATIONS OF REHABILITATIONManual physiotherapy is reported as repeated task, expensive and time-consuming, and considered stressful for the therapist or assistants to provide one-on-one physiotherapy to each patient in the traditional method. Robotic rehabilitation is, therefore, a viable option.In the several reported works on robotic rehabilitation exoskeletons, misalignment of the exoskeleton and the human motion is considered an open challenge. Normally, it is being managed through large number of degrees of freedom, which is certainly expensive and complex in control. The proposed approach of developing a human-motion-oriented rehabilitation device deals with the problem through hybrid architectures and modular strategy to develop them.While focusing upon the emulation of natural human motion trajectory, the compatibility of orthotic joint and human joint motion needs attention. As biological joint possesses complex kinematic characteristics, closed-loops are used in the design.Overall, a complete framework of a cost effective low-dof rehabilitation device is proposed and detailed through coupled analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA