Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Math Ind ; 14(1): 20, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39246392

RESUMEN

In the design process of large adaptive mirrors numerical simulations represent the first step to evaluate the system design compliance in terms of performance, stability and robustness. For the next generation of Extremely Large Telescopes increased system dimensions and bandwidths lead to the need of modeling not only the deformable mirror alone, but also all the system supporting structure or even the full telescope. The capability to perform the simulations with an acceptable amount of time and computational resources is highly dependent on finding appropriate methods to reduce the size of the resulting dynamic models. In this paper we present a framework developed together with the company Microgate to create a reduced order structural model of a large adaptive mirror as a preprocessing step to the control system simulations. The reduced dynamic model is then combined with the remaining system components allowing to simulate the full adaptive mirror in a computationally efficient way. We analyze the feasibility of our reduced models for Microgate's prototype of the adaptive mirror of the Giant Magellan Telescope.

2.
Int J Numer Method Biomed Eng ; : e3864, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250194

RESUMEN

Heat transfer in the human eyeball, a complex organ, is significantly influenced by various pathophysiological and external parameters. Particularly, heat transfer critically affects fluid behavior within the eye and ocular drug delivery processes. Overcoming the challenges of experimental analysis, this study introduces a comprehensive three-dimensional mathematical and computational model to simulate the heat transfer in a realistic geometry. Our work includes an extensive sensitivity analysis to address uncertainties and delineate the impact of different variables on heat distribution in ocular tissues. To manage the model's complexity, we employed a very fast model reduction technique with certified sharp error bounds, ensuring computational efficiency without compromising accuracy. Our results demonstrate remarkable consistency with experimental observations and align closely with existing numerical findings in the literature. Crucially, our findings underscore the significant role of blood flow and environmental conditions, particularly in the eye's internal tissues. Clinically, this model offers a promising tool for examining the temperature-related effects of various therapeutic interventions on the eye. Such insights are invaluable for optimizing treatment strategies in ophthalmology.

3.
Neurosci Bull ; 40(7): 905-920, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38491231

RESUMEN

Functional networks (FNs) hold significant promise in understanding brain function. Independent component analysis (ICA) has been applied in estimating FNs from functional magnetic resonance imaging (fMRI). However, determining an optimal model order for ICA remains challenging, leading to criticism about the reliability of FN estimation. Here, we propose a SMART (splitting-merging assisted reliable) ICA method that automatically extracts reliable FNs by clustering independent components (ICs) obtained from multi-model-order ICA using a simplified graph while providing linkages among FNs deduced from different-model orders. We extend SMART ICA to multi-subject fMRI analysis, validating its effectiveness using simulated and real fMRI data. Based on simulated data, the method accurately estimates both group-common and group-unique components and demonstrates robustness to parameters. Using two age-matched cohorts of resting fMRI data comprising 1,950 healthy subjects, the resulting reliable group-level FNs are greatly similar between the two cohorts, and interestingly the subject-specific FNs show progressive changes while age increases. Furthermore, both small-scale and large-scale brain FN templates are provided as benchmarks for future studies. Taken together, SMART ICA can automatically obtain reliable FNs in analyzing multi-subject fMRI data, while also providing linkages between different FNs.


Asunto(s)
Mapeo Encefálico , Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Adulto , Femenino , Masculino , Mapeo Encefálico/métodos , Adulto Joven , Persona de Mediana Edad , Procesamiento de Imagen Asistido por Computador/métodos , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Reproducibilidad de los Resultados , Anciano , Análisis de Componente Principal , Simulación por Computador
4.
Ann Biomed Eng ; 52(2): 208-225, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37962675

RESUMEN

Computational modeling can be a critical tool to predict deployment behavior for transcatheter aortic valve replacement (TAVR) in patients with aortic stenosis. However, due to the mechanical complexity of the aortic valve and the multiphysics nature of the problem, described by partial differential equations (PDEs), traditional finite element (FE) modeling of TAVR deployment is computationally expensive. In this preliminary study, a PDEs-based reduced order modeling (ROM) framework is introduced for rapidly simulating structural deformation of the Medtronic Evolut R valve stent frame. Using fifteen probing points from an Evolut model with parametrized loads enforced, 105 FE simulations were performed in the so-called offline phase, creating a snapshot library. The library was used in the online phase of the ROM for a new set of applied loads via the proper orthogonal decomposition-Galerkin (POD-Galerkin) approach. Simulations of small radial deformations of the Evolut stent frame were performed and compared to full order model (FOM) solutions. Linear elastic and hyperelastic constitutive models in steady and unsteady regimes were implemented within the ROM. Since the original POD-Galerkin method is formulated for linear problems, specific methods for the nonlinear terms in the hyperelastic case were employed, namely, the Discrete Empirical Interpolation Method. The ROM solutions were in strong agreement with the FOM in all numerical experiments, with a speed-up of at least 92% in CPU Time. This framework serves as a first step toward real-time predictive models for TAVR deployment simulations.


Asunto(s)
Estenosis de la Válvula Aórtica , Dietilestilbestrol/análogos & derivados , Prótesis Valvulares Cardíacas , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Stents , Diseño de Prótesis , Resultado del Tratamiento
5.
Front Robot AI ; 10: 1094114, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779576

RESUMEN

Soft robot's natural dynamics calls for the development of tailored modeling techniques for control. However, the high-dimensional configuration space of the geometrically exact modeling approaches for soft robots, i.e., Cosserat rod and Finite Element Methods (FEM), has been identified as a key obstacle in controller design. To address this challenge, Reduced Order Modeling (ROM), i.e., the approximation of the full-order models, and Model Order Reduction (MOR), i.e., reducing the state space dimension of a high fidelity FEM-based model, are enjoying extensive research. Although both techniques serve a similar purpose and their terms have been used interchangeably in the literature, they are different in their assumptions and implementation. This review paper provides the first in-depth survey of ROM and MOR techniques in the continuum and soft robotics landscape to aid Soft Robotics researchers in selecting computationally efficient models for their specific tasks.

6.
Plant Cell ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37824826

RESUMEN

Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant Tree of Life continues to improve. The intersection of these two research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade". These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis thaliana and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.

7.
Front Bioeng Biotechnol ; 11: 1201177, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456726

RESUMEN

The biomechanics of transplanted teeth remain poorly understood due to a lack of models. In this context, finite element (FE) analysis has been used to evaluate the influence of occlusal morphology and root form on the biomechanical behavior of the transplanted tooth, but the construction of a FE model is extremely time-consuming. Model order reduction (MOR) techniques have been used in the medical field to reduce computing time, and the present study aimed to develop a reduced model of a transplanted tooth using the higher-order proper generalized decomposition method. The FE model of a previous study was used to learn von Mises root stress, and axial and lateral forces were used to simulate different occlusions between 75 and 175N. The error of the reduced model varied between 0.1% and 5.9% according to the subdomain, and was the highest for the highest lateral forces. The time for the FE simulation varied between 2.3 and 7.2 h. In comparison, the reduced model was built in 17s and interpolation of new results took approximately 2.10-2s. The use of MOR reduced the time for delivering the root stresses by a mean 5.9 h. The biomechanical behavior of a transplanted tooth simulated by FE models was accurately captured with a significant decrease of computing time. Future studies could include using jaw tracking devices for clinical use and the development of more realistic real-time simulations of tooth autotransplantation surgery.

8.
Int J Numer Methods Eng ; 124(5): 1193-1210, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37064778

RESUMEN

Nowadays, the shipbuilding industry is facing a radical change toward solutions with a smaller environmental impact. This can be achieved with low emissions engines, optimized shape designs with lower wave resistance and noise generation, and by reducing the metal raw materials used during the manufacturing. This work focuses on the last aspect by presenting a complete structural optimization pipeline for modern passenger ship hulls which exploits advanced model order reduction techniques to reduce the dimensionality of both input parameters and outputs of interest. We introduce a novel approach which incorporates parameter space reduction through active subspaces into the proper orthogonal decomposition with interpolation method. This is done in a multi-fidelity setting. We test the whole framework on a simplified model of a midship section and on the full model of a passenger ship, controlled by 20 and 16 parameters, respectively. We present a comprehensive error analysis and show the capabilities and usefulness of the methods especially during the preliminary design phase, finding new unconsidered designs while handling high dimensional parameterizations.

9.
Materials (Basel) ; 16(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36837277

RESUMEN

An enhanced lightness and thinness is the inevitable trend of modern industrial production, which will also lead to prominent low-frequency vibration problems in the associated structure. To solve the vibration problem of thin plate structures in various engineering fields, the active constrained layer damping (ACLD) thin plate structure is taken as the research object to study vibration control. Based on the FEM method, energy method, and Hamilton principle, the dynamic model of an ACLD thin plate structure is derived, in which the Golla-Hughes-McTavish (GHM) model is used to characterize the damping characteristics of the viscoelastic layer, and the equivalent Rayleigh damping is used to characterize the damping characteristics of the base layer. The order of the model is reduced based on the high-precision physical condensation method and balance reduction method, and the model has good controllability and observability. An LQR controller is designed to actively control the ACLD sheet, and the controller parameters and piezoelectric sheet parameters are optimized. The results show that the finite element model established in this paper is accurate under different boundary conditions, and the model can still accurately and reliably describe the dynamic characteristics of the original system in the time and frequency domain after using the joint reduction method. Under different excitation and boundary conditions, LQR control can effectively suppress structural vibration. Considering the performance and cost balance, the most suitable control parameter for the system is: Q-matrix coefficient is between 1 × 104 and 1 × 105, the R-matrix coefficient is between 1 and 10, and the thickness of the piezoelectric plate is 0.5 mm.

10.
Materials (Basel) ; 16(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36837383

RESUMEN

In the present work, the general and well-known model reduction technique, PGD (Proper Generalized Decomposition), is used for parametric analysis of thermo-elasticity of FGMs (Functionally Graded Materials). The FGMs have important applications in space technologies, especially when a part undergoes an extreme thermal environment. In the present work, material gradation is considered in one, two and three directions, and 3D heat transfer and theory of elasticity equations are solved to have an accurate temperature field and be able to consider all shear deformations. A parametric analysis of FGM materials is especially useful in material design and optimization. In the PGD technique, the field variables are separated to a set of univariate functions, and the high-dimensional governing equations reduce to a set of one-dimensional problems. Due to the curse of dimensionality, solving a high-dimensional parametric problem is considerably more computationally intensive than solving a set of one-dimensional problems. Therefore, the PGD makes it possible to handle high-dimensional problems efficiently. In the present work, some sample examples in 4D and 5D computational spaces are solved, and the results are presented.

11.
Materials (Basel) ; 16(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36769904

RESUMEN

A finite element dynamic model of the sandwich composite plate was developed based on classical laminate theory and Hamilton's principle. A 4-node, 7-degree-of-freedom three-layer plate cell is constructed to simulate the interaction between the substrate, the viscoelastic damping layer, and the piezoelectric material layer. Among them, the viscoelastic layer is referred to as the complex constant shear modulus model, and the equivalent Rayleigh damping is introduced to represent the damping of the substrate. The established dynamics model has too many degrees of freedom, and the obtained dynamics model has good controllability and observability after adopting the joint reduced-order method of dynamic condensation in physical space and equilibrium in state space. The optimal quadratic (LQR) controller is designed for the active control of the sandwich panel, and the parameters of the controller parameters, the thickness of the viscoelastic layer, and the optimal covering position of the sandwich panel are optimized through simulation analysis. The results show that the finite element model established in this paper is still valid under different boundary conditions and different covering methods, and the model can still accurately and reliably represent the dynamic characteristics of the original system after using the joint step-down method. Under different excitation signals and different boundary conditions, the LQR control can effectively suppress the vibration of the sandwich plate. The optimal cover position of the sandwich plate is near the solid support end and far from the free-degree end. The parameters of controller parameters and viscoelastic layer thickness are optimized from several angles, respectively, and a reasonable optimization scheme can be selected according to the actual requirements.

12.
Sensors (Basel) ; 23(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36850543

RESUMEN

This paper presents a data-driven structural health monitoring (SHM) method by the use of so-called reduced-order models relying on an offline training/online use for unidirectional fiber and matrix failure detection in a 3D woven composite plate. During the offline phase (or learning) a dataset of possible damage localization, fiber and matrix failure ratios is generated through high-fidelity simulations (ABAQUS software). Then, a reduced model in a lower-dimensional approximation subspace based on the so-called sparse proper generalized decomposition (sPGD) is constructed. The parametrized approach of the sPGD method reduces the computational burden associated with a high-fidelity solver and allows a faster evaluation of all possible failure configurations. However, during the testing phase, it turns out that classical sPGD fails to capture the influence of the damage localization on the solution. To alleviate the just-referred difficulties, the present work proposes an adaptive sPGD. First, a change of variable is carried out to place all the damage areas on the same reference region, where an adapted interpolation can be done. During the online use, an optimization algorithm is employed with numerical experiments to evaluate the damage localization and damage ratio which allow us to define the health state of the structure.

13.
Materials (Basel) ; 15(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36295247

RESUMEN

Forming simulation requires a constitutive model whose parameters are typically determined with tensile tests assumed static. However, this conventional approach is impractical for high-speed forming simulation characterized by high strain rates inducing transient effects. To identify constitutive parameters in relation to high-speed forming simulation, we formulated the problem of constitutive modeling as inverse parameter estimation addressed by regularized nonlinear least squares. Regarding the proposed inverse constitutive modeling, we adopted the L-curve method for proper regularization and model order reduction for rapid simulation. For demonstration, we corroborated the proposed strategy by identifying the modified Johnson-Cook model in the context of a free bulge test with electromagnetic metal forming simulation. The L-curve method allowed us to systematically choose a regularization parameter, and model order reduction brought enormous computational savings. After identifying constitutive parameters, we successfully verified and validated the reduced and original simulation models, respectively, with a manufactured workpiece. In addition, we validated the numerically identified constitutive model with a dynamic material test using a split Hopkinson pressure bar. Overall, we showed that inverse constitutive modeling for high-speed forming simulation can be effectively tackled by regularized nonlinear least squares with the help of an L-curve and a reduced-order model.

14.
OMICS ; 26(6): 348-355, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35648077

RESUMEN

Markov models have frequently been used in genetic sequence analysis. The number of parameters of a Markov model increases exponentially with model order, so it is often recommended that the order be chosen based on the size of data being modeled, lower orders for small and higher orders for large dataset sizes. Approaches based on model selection criterion have also been proposed. An important problem in microbiology and evolutionary biology is to decipher chimeric genomes of microbes, particularly, identify segments of distinct ancestries in genomes and reconstruct the plausible evolutionary scenarios that might have shaped the chimeric genomes in the microbial world. In this study, we assessed a Markov model-based segmentation method for its ability to detect compositionally disparate segments in chimeric sequence constructs as a function of model order, sequence length, and phylogenetic divergence. Our results show that the choice of Markov model order depends on both sequence size and composition. Higher order Markov models were found to be more effective in delineating sequence segments arising from closely related organisms in longer constructs; on the other hand, lower order Markov models were found to be more appropriate in delineating sequence segments arising from distantly related organisms in shorter constructs. These findings are important and timely, with broad implications in fields such as epidemiology that has to deal with the emergence of novel pathogenic chimeras that arise by foreign DNA acquisition, and ecology where chimeric structures may arise in various ecosystems, necessitating more robust approaches for their deconstruction and interpretation.


Asunto(s)
Ecosistema , Modelos Genéticos , Algoritmos , Secuencia de Bases , Cadenas de Markov , Filogenia , Análisis de Secuencia de ADN
15.
Netw Neurosci ; 6(2): 357-381, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35733435

RESUMEN

We introduce an extension of independent component analysis (ICA), called multiscale ICA, and design an approach to capture dynamic functional source interactions within and between multiple spatial scales. Multiscale ICA estimates functional sources at multiple spatial scales without imposing direct constraints on the size of functional sources, overcomes the limitation of using fixed anatomical locations, and eliminates the need for model-order selection in ICA analysis. We leveraged this approach to study sex-specific and sex-common connectivity patterns in schizophrenia. Results show dynamic reconfiguration and interaction within and between multi-spatial scales. Sex-specific differences occur (a) within the subcortical domain, (b) between the somatomotor and cerebellum domains, and (c) between the temporal domain and several others, including the subcortical, visual, and default mode domains. Most of the sex-specific differences belong to between-spatial-scale functional interactions and are associated with a dynamic state with strong functional interactions between the visual, somatomotor, and temporal domains and their anticorrelation patterns with the rest of the brain. We observed significant correlations between multi-spatial-scale functional interactions and symptom scores, highlighting the importance of multiscale analyses to identify potential biomarkers for schizophrenia. As such, we recommend such analyses as an important option for future functional connectivity studies.

16.
Adv Contin Discret Model ; 2022(1): 29, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35531267

RESUMEN

This paper studies the compression of partial differential operators using neural networks. We consider a family of operators, parameterized by a potentially high-dimensional space of coefficients that may vary on a large range of scales. Based on the existing methods that compress such a multiscale operator to a finite-dimensional sparse surrogate model on a given target scale, we propose to directly approximate the coefficient-to-surrogate map with a neural network. We emulate local assembly structures of the surrogates and thus only require a moderately sized network that can be trained efficiently in an offline phase. This enables large compression ratios and the online computation of a surrogate based on simple forward passes through the network is substantially accelerated compared to classical numerical upscaling approaches. We apply the abstract framework to a family of prototypical second-order elliptic heterogeneous diffusion operators as a demonstrating example.

17.
J Magn Reson ; 338: 107173, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35366620

RESUMEN

We present NMR-EsPy (NMR Estimation in Python), a versatile, simple-to-use Python package for estimating the signal parameters that describe one-dimensional time-domain NMR data. The software is fully integrated into Topspin, a widely used NMR platform, and comes with a Graphical User Interface, allowing users unfamiliar with the underlying theory and/or Python programming to access the full functionality of the software package. NMR-EsPy utilises Newton's method, an iterative non-linear programming technique. By including the variance of oscillator phases in the optimization, NMR-EsPy can generate parsimonious parameter estimates, giving NMR users access to meaningful quantitative information. This principle is easily extendable to study specific regions of an NMR spectrum to reduce computational cost. The complete mathematical treatment along with examples of the implementation of the estimation routine are presented.


Asunto(s)
Imagen por Resonancia Magnética , Programas Informáticos , Espectroscopía de Resonancia Magnética
18.
J Sci Comput ; 91(2): 31, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35310540

RESUMEN

The Loewner framework is one of the most successful data-driven model order reduction techniques. If N is the cardinality of a given data set, the so-called Loewner and shifted Loewner matrices L ∈ C N × N and S ∈ C N × N can be defined by solely relying on information encoded in the considered data set and they play a crucial role in the computation of the sought rational model approximation.In particular, the singular value decomposition of a linear combination of S and L provides the tools needed to construct accurate models which fulfill important approximation properties with respect to the original data set. However, for highly-sampled data sets, the dense nature of L and S leads to numerical difficulties, namely the failure to allocate these matrices in certain memory-limited environments or excessive computational costs. Even though they do not possess any sparsity pattern, the Loewner and shifted Loewner matrices are extremely structured and, in this paper, we show how to fully exploit their Cauchy-like structure to reduce the cost of computing accurate rational models while avoiding the explicit allocation of L and S . In particular, the use of the hierarchically semiseparable format allows us to remarkably lower both the computational cost and the memory requirements of the Loewner framework obtaining a novel scheme whose costs scale with N log N .

19.
J Math Ind ; 12(1): 2, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35036278

RESUMEN

In the field of model order reduction for frequency response problems, the minimal rational interpolation (MRI) method has been shown to be quite effective. However, in some cases, numerical instabilities may arise when applying MRI to build a surrogate model over a large frequency range, spanning several orders of magnitude. We propose a strategy to overcome these instabilities, replacing an unstable global MRI surrogate with a union of stable local rational models. The partitioning of the frequency range into local frequency sub-ranges is performed automatically and adaptively, and is complemented by a (greedy) adaptive selection of the sampled frequencies over each sub-range. We verify the effectiveness of our proposed method with two numerical examples.

20.
Br J Clin Pharmacol ; 88(4): 1430-1440, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-32621550

RESUMEN

Quantitative systems pharmacology (QSP) is a relatively new discipline within modelling and simulation that has gained wide attention over the past few years. The application of QSP models spans drug-target identification and validation, through all drug development phases as well as clinical applications. Due to their detailed mechanistic nature, QSP models are capable of extrapolating knowledge to predict outcomes in scenarios that have not been tested experimentally, making them an important resource in experimental and clinical pharmacology. However, these models are complicated to work with due to their size and inherent complexity. This makes many applications of QSP models for simulation, parameter estimation and trial design computationally intractable. A number of techniques have been developed to simplify QSP models into smaller models that are more amenable to further analyses while retaining their accurate predictive capabilities. Different simplification techniques have different strengths and weaknesses and hence different utilities. Understanding the utilities of different methods is essential for selection of the best method for a particular situation. In this paper, we have created an overall framework for model simplification techniques that allows a natural categorisation of methods based on their utility. We provide a brief description of the concept underpinning the different methods and example applications. A summary of the utilities of methods is intended to provide a guide to modellers in their model endeavours to simplify these complicated models.


Asunto(s)
Farmacología Clínica , Farmacología , Simulación por Computador , Desarrollo de Medicamentos/métodos , Humanos , Modelos Biológicos , Farmacología en Red , Farmacología/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA