Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39254809

RESUMEN

Mobile monitoring provides high-resolution observation on temporal and spatial scales compared to traditional fixed-site measurement. This study demonstrates the use of high spatio-temporal resolution of air pollution data collected by Google Air View vehicles to identify hotspots and assess compliance with WHO Air Quality Guidelines (AQGs) in Dublin City. The mobile monitoring was conducted during weekdays, typically from 7:00 to 19:00, between 6 May 2021 and 6 May 2022. One-second data were aggregated to 377,113 8 s road segments, and 8 s rolling medians were aggregated to hourly and daily levels for further analysis. We assessed the temporal variability of fine particulate matter (PM2.5), nitrogen monoxide (NO), nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO), and carbon dioxide (CO2) concentrations at hyperlocal levels. The average daytime median concentrations of NO2 (28.4 ± 15.7 µg/m3) and PM2.5 (7.6 ± 4.7 µg/m3) exceeded the WHO twenty-four hours (24 h) Air Quality Guidelines in 49.4% and 9% of the 1-year sampling time, respectively. For the diurnal variation of measured pollutants, the morning (8:00) and early evening (18:00) showed higher concentrations for NO2 and PM2.5, mostly happening in the winter season, while the afternoon is the least polluted time except for O3. The low-percentile approach along with 1-h and daytime minima method allowed for decomposing pollutant time series into the background and local contributions. Background contributions for NO2 and PM2.5 changed along with the seasonal variation. Local contributions for PM2.5 changed slightly; however, NO2 showed significant diurnal and seasonal variability related to traffic emissions. Short-lived event enhancement (1 min to 1 h) accounts for 36.0-40.6% and 20.8-42.2% of the total concentration for NO2 and PM2.5. The highly polluted days account for 56.3% of total NO2, highlighting local traffic is the dominant contributor to short-term NO2 concentrations. The longer-lived events (> 8 h) enhancement accounts for 25% of the monitored concentrations. Additionally, conducting optimal hotspot analysis enables mapping the spatial distribution of "hot" spots for PM2.5 and NO2 on highly polluted days. Overall, this investigation suggests both background and local emissions contribute to PM2.5 and NO2 pollution in urban areas and emphasize the urgent need for mitigating NO2 from traffic pollution in Dublin.

2.
Sci Total Environ ; 950: 175249, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39098424

RESUMEN

Neglecting indoor air quality in exposure assessments may lead to biased exposure estimates and erroneous conclusions about the health impacts of exposure and environmental health disparities. This study assessed these biases by comparing two types of personal exposure estimates for 100 individuals: one derived from real-time particulate matter (PM2.5) measurements collected both indoors and outdoors using a low-cost portable air monitor (GeoAir2.0) and the other from PurpleAir sensor network data collected exclusively outdoors. The PurpleAir measurement data were used to create smooth air pollution surfaces using geostatistical methods. To obtain mobility-based exposure estimates, both sets of air pollution data were combined with the individuals' GPS tracking data. Paired-sample t-tests were then performed to examine the differences between these two estimates. This study also investigated whether GeoAir2.0- and PurpleAir-based estimates yielded consistent conclusions about gender and economic disparities in exposure by performing Welch's t-tests and ANOVAs and comparing their t-values and F-values. The study revealed significant discrepancies between GeoAir2.0- and PurpleAir-based estimates, with PurpleAir data consistently overestimating exposure (t = 5.94; p < 0.001). It also found that females displayed a higher average exposure than males (15.65 versus. 8.55 µg/m3) according to GeoAir2.0 data (t = 4.654; p = 0.055), potentially due to greater time spent indoors engaging in pollution-generating activities traditionally associated with females, such as cooking. This contrasted with the PurpleAir data, which indicated higher exposure for males (43.78 versus. 46.26 µg/m3) (t = 3.793; p = 0.821). Additionally, GeoAir2.0 data revealed significant economic disparities (F = 7.512; p < 0.002), with lower-income groups experiencing higher exposure-a disparity not captured by PurpleAir data (F = 0.756; p < 0.474). These findings highlight the importance of considering both indoor and outdoor air quality to reduce bias in exposure estimates and more accurately represent environmental disparities.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Exposición a Riesgos Ambientales , Monitoreo del Ambiente , Material Particulado , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Humanos , Monitoreo del Ambiente/métodos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Sistemas de Información Geográfica , Masculino , Femenino , Sesgo
3.
Environ Res ; 262(Pt 1): 119795, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147187

RESUMEN

Urban Heat Island (UHI) is acknowledged to generate harmful consequences on human health, and it is one of the main anthropogenic challenges to face in modern cities. Due to the urban dynamic complexity, a full microclimate decoding is required to design tailored mitigation strategies for reducing heat-related vulnerability. This study proposes a new method to assess intra-urban microclimate variability by combining for the first time two dedicated monitoring systems consisting of fixed and mobile techniques. Data from three fixed weather stations were used to analyze long-term trends, while mobile devices (a vehicle and a wearable) were used in short-term monitoring campaigns conducted in summer and winter to assess and geo-locate microclimate spatial variations. Additionally, data from mobile devices were used as input for Kriging interpolation in the urban area of Florence (Italy) as case study. Mobile monitoring sessions provided high-resolution spatial data, enabling the detection of hyperlocal variations in air temperature. The maximum air temperature amplitudes were verified with the wearable system: 3.3 °C in summer midday and 4.3 °C in winter morning. Physiological Equivalent Temperature (PET) demonstrated to be similar when comparing green areas and their adjacent built-up zone, showing up the microclimate mitigation contribution of greenery in its surrounding. Results also showed that mixing the two data acquisition and varied analysis techniques succeeded in investigating the UHI and the site-specific role of potential mitigation actions. Moreover, mobile dataset was reliable for elaborating maps by interpolating the monitored parameters. Interpolation results demonstrated the possibility of optimizing mobile monitoring campaigns by focusing on targeted streets and times of day since interpolation errors increased by 10% only with properly reduced and simplified input samples. This allowed an enhanced detection of the site-specific granularity, which is important for urban planning and policymaking, adaptation, and risk mitigation actions to overcome the UHI and anthropogenic climate change effects.

4.
Environ Monit Assess ; 196(8): 767, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073498

RESUMEN

In near-road neighborhoods, residents are more frequently exposed to traffic-related air pollution (TRAP), and they are increasingly aware of pollution levels. Given this consideration, this study adopted portable air pollutant sensors to conduct a mobile monitoring campaign in two near-road neighborhoods, one in an urban area and one in a suburban area of Shanghai, China. The campaign characterized spatiotemporal distributions of fine particulate matter (PM2.5) and black carbon (BC) to help identify appropriate mitigation measures in these near-road micro-environments. The study identified higher mean TRAP concentrations (up to 4.7-fold and 1.7-fold higher for PM2.5 and BC, respectively), lower spatial variability, and a stronger inter-pollutant correlation in winter compared to summer. The temporal variations of TRAP between peak hour and off-peak hour were also investigated. It was identified that district-level PM2.5 increments occurred from off-peak to peak hours, with BC concentrations attributed more to traffic emissions. In addition, the spatiotemporal distribution of TRAP inside neighborhoods revealed that PM2.5 concentrations presented great temporal variability but almost remained invariant in space, while the BC concentrations showed notable spatiotemporal variability. These findings provide valuable insights into the unique spatiotemporal distributions of TRAP in different near-road neighborhoods, highlighting the important role of hyperlocal monitoring in urban micro-environments to support tailored designing and implementing appropriate mitigation measures.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Material Particulado , Emisiones de Vehículos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Emisiones de Vehículos/análisis , China , Contaminación del Aire/estadística & datos numéricos , Contaminación por Tráfico Vehicular/análisis , Hollín/análisis
5.
Environ Sci Technol ; 58(28): 12563-12574, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38950186

RESUMEN

Urban air pollution can vary sharply in space and time. However, few monitoring strategies can concurrently resolve spatial and temporal variation at fine scales. Here, we present a new measurement-driven spatiotemporal modeling approach that transcends the individual limitations of two complementary sampling paradigms: mobile monitoring and fixed-site sensor networks. We develop, validate, and apply this model to predict black carbon (BC) using data from an intensive, 100-day field study in West Oakland, CA. Our spatiotemporal model exploits coherent spatial patterns derived from a multipollutant mobile monitoring campaign to fill spatial gaps in time-complete BC data from a low-cost sensor network. Our model performs well in reconstructing patterns at fine spatial and temporal resolution (30 m, 15 min), demonstrating strong out-of-sample correlations for both mobile (Pearson's R ∼ 0.77) and fixed-site measurements (R ∼ 0.95) while revealing features that are not effectively captured by a single monitoring approach in isolation. The model reveals sharp concentration gradients near major emission sources while capturing their temporal variability, offering valuable insights into pollution sources and dynamics.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Carbono , Hollín , Ciudades
6.
Environ Pollut ; 356: 124353, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38866318

RESUMEN

The development of high-resolution spatial and spatiotemporal models of air pollutants is essential for exposure science and epidemiological applications. While fixed-site sampling has conventionally provided input data for statistical predictive models, the evolving mobile monitoring method offers improved spatial resolution, ideal for measuring pollutants with high spatial variability such as ultrafine particles (UFP). The Quebec Air Pollution Exposure and Epidemiology (QAPEE) study measured and modelled the spatial and spatiotemporal distributions of understudied pollutants, such as UFPs, black carbon (BC), and brown carbon (BrC), along with fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) in Quebec City, Canada. We conducted a combined fixed-site (NO2 and O3) and mobile monitoring (PM2.5, BC, BrC, and UFPs) campaign over 10-months. Mobile monitoring routes were monitored on a weekly basis between 8am-10am and designed using location/allocation modelling. Seasonal fixed-site sampling campaigns captured continuous 24-h measurements over two-week periods. Generalized Additive Models (GAMs), which combined data on pollution concentrations with spatial, temporal, and spatiotemporal predictor variables were used to model and predict concentration surfaces. Annual models for PM2.5, NO2, O3 as well as seven of the smallest size fractions in the UFP range, had high out of sample predictive accuracy (range r2: 0.54-0.86). Varying spatial patterns were observed across UFP size ranges measured as Particle Number Counts (PNC). The monthly spatiotemporal models for PM2.5 (r2 = 0.49), BC (r2 = 0.27), BrC (r2 = 0.29), and PNC (r2 = 0.49) had moderate or moderate-low out of sample predictive accuracy. We conducted a sensitivity analysis and found that the minimum number of 'n visits' (mobile monitoring sessions) required to model annually representative air pollution concentrations was between 24 and 32 visits dependent on the pollutant. This study provides a single source of exposure models for a comprehensive set of air pollutants in Quebec City, Canada. These exposure models will feed into epidemiological research on the health impacts of ambient UFPs and other pollutants.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ciudades , Monitoreo del Ambiente , Ozono , Material Particulado , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Material Particulado/análisis , Quebec , Ozono/análisis , Análisis Espacio-Temporal , Dióxido de Nitrógeno/análisis
7.
Environ Sci Technol ; 58(25): 11084-11095, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38860676

RESUMEN

Ethylene oxide ("EtO") is an industrially made volatile organic compound and a known human carcinogen. There are few reliable reports of ambient EtO concentrations around production and end-use facilities, however, despite major exposure concerns. We present in situ, fast (1 Hz), sensitive EtO measurements made during February 2023 across the southeastern Louisiana industrial corridor. We aggregated mobile data at 500 m spatial resolution and reported average mixing ratios for 75 km of the corridor. Mean and median aggregated values were 31.4 and 23.3 ppt, respectively, and a majority (75%) of 500 m grid cells were above 10.9 ppt, the lifetime exposure concentration corresponding to 100-in-one million excess cancer risk (1 × 10-4). A small subset (3.3%) were above 109 ppt (1000-in-one million cancer risk, 1 × 10-3); these tended to be near EtO-emitting facilities, though we observed plumes over 10 km from the nearest facilities. Many plumes were highly correlated with other measured gases, indicating potential emission sources, and a subset was measured simultaneously with a second commercial analyzer, showing good agreement. We estimated EtO for 13 census tracts, all of which were higher than EPA estimates (median difference of 21.3 ppt). Our findings provide important information about EtO concentrations and potential exposure risks in a key industrial region and advance the application of EtO analytical methods for ambient sampling and mobile monitoring for air toxics.


Asunto(s)
Monitoreo del Ambiente , Óxido de Etileno , Louisiana , Monitoreo del Ambiente/métodos , Humanos , Contaminantes Atmosféricos/análisis
8.
Heliyon ; 10(8): e29077, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38628757

RESUMEN

Refined volatile organic compound (VOC) emission characteristics are crucial for accurate source apportionment in chemical industrial parks. The data from mobile monitoring platforms in chemical industrial parks contain pollution information that is not intuitively displayed, requiring further excavation. A novel approach was proposed to identify VOC emission characteristics using the class activation map (CAM) technology of convolutional neural network (CNN), which was applied on the mobile monitoring platform data (MD) derived from a typical fine chemical industrial park. It converts a large amount of monitoring data with high spatiotemporal complexity into simple and interpretable characteristic maps, effectively improving the identification effect of VOC emission characteristics, supporting more accurate source apportionment of VOC pollution around the park. Using this method, the VOC emission characteristics of eight key factories were identified. VOC source apportionment in the park was conducted for one day using a positive matrix factorization (PMF) model and seven combined factor profiles (CFPs) were calculated. Based on the identified VOC emission characteristics, the main pollution sources and their contributions to surrounding schools and residential areas were determined, revealing that one pesticide factory (named LKA) had the highest contribution ratio. The source apportionment results indicated that the impact of the chemical industrial park on the surrounding areas varied from morning to afternoon, which to some extent reflected the intermittent production methods employed for fine chemicals.

9.
J Diabetes Sci Technol ; : 19322968241231279, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38439547

RESUMEN

BACKGROUND: Individuals with intellectual disabilities (IDs) are at risk of diabetes mellitus (DM) and diabetic peripheral neuropathy (DPN), which can lead to foot ulcers and lower-extremity amputations. However, cognitive differences and communication barriers may impede some methods for screening and prevention of DPN. Wearable and mobile technologies-such as smartphone apps and pressure-sensitive insoles-could help to offset these barriers, yet little is known about the effectiveness of these technologies among individuals with ID. METHODS: We conducted a scoping review of the databases Embase, PubMed, and Web of Science using search terms for DM, DPN, ID, and technology to diagnose or monitor DPN. Finding a lack of research in this area, we broadened our search terms to include any literature on technology to diagnose or monitor DPN and then applied these findings within the context of ID. RESULTS: We identified 88 articles; 43 of 88 (48.9%) articles were concerned with gait mechanics or foot pressures. No articles explicitly included individuals with ID as the target population, although three articles involved individuals with other cognitive impairments (two among patients with a history of stroke, one among patients with hemodialysis-related cognitive changes). CONCLUSIONS: Individuals with ID are not represented in studies using technology to diagnose or monitor DPN. This is a concern given the risk of DM complications among patients with ID and the potential for added benefit of such technologies to reduce barriers to screening and prevention. More studies should investigate how wearable devices can be used among patients with ID.

10.
Sci Total Environ ; 922: 171251, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38417522

RESUMEN

Mobile monitoring campaigns have effectively captured spatial hyperlocal variations in long-term average concentrations of regulated and unregulated air pollutants. However, their application in estimating spatiotemporally varying maps has rarely been investigated. Tackling this gap, we investigated whether mobile measurements can assess long-term average nitrogen dioxide (NO2) concentrations for each hour of the day. Using mobile NO2 data monitored for 10 months in Amsterdam, we examined the performance of two spatiotemporal land use regression (LUR) methods, Spatiotemporal-Kriging and GTWR (Geographical and Temporal Weighted Regression), alongside two classical spatial LUR models developed separately for each hour. We found that mobile measurements follow the general pattern of fixed-site measurements, but with considerable deviations (indicating collection uncertainty). Leveraging heterogeneous spatiotemporal autocorrelations, GTWR smoothed these deviations and achieved an overall performance of an R2 of 0.49 and a Mean Absolute Error of 6.33 µg/m3, validated by long-term fixed-site measurements (out-of-sample). The other models tested were more affected by the collection uncertainty. We highlighted that the spatiotemporal variations captured in mobile measurements can be used to reconstruct long-term average hourly air pollution maps. These maps facilitate dynamic exposure assessments considering spatiotemporal human activity patterns.

11.
Sensors (Basel) ; 24(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38257613

RESUMEN

The use of low-cost sensors (LCSs) for the mobile monitoring of oil and gas emissions is an understudied application of low-cost air quality monitoring devices. To assess the efficacy of low-cost sensors as a screening tool for the mobile monitoring of fugitive methane emissions stemming from well sites in eastern Colorado, we colocated an array of low-cost sensors (XPOD) with a reference grade methane monitor (Aeris Ultra) on a mobile monitoring vehicle from 15 August through 27 September 2023. Fitting our low-cost sensor data with a bootstrap and aggregated random forest model, we found a high correlation between the reference and XPOD CH4 concentrations (r = 0.719) and a low experimental error (RMSD = 0.3673 ppm). Other calibration models, including multilinear regression and artificial neural networks (ANN), were either unable to distinguish individual methane spikes above baseline or had a significantly elevated error (RMSDANN = 0.4669 ppm) when compared to the random forest model. Using out-of-bag predictor permutations, we found that sensors that showed the highest correlation with methane displayed the greatest significance in our random forest model. As we reduced the percentage of colocation data employed in the random forest model, errors did not significantly increase until a specific threshold (50 percent of total calibration data). Using a peakfinding algorithm, we found that our model was able to predict 80 percent of methane spikes above 2.5 ppm throughout the duration of our field campaign, with a false response rate of 35 percent.

12.
Sci Total Environ ; 914: 169955, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211858

RESUMEN

Human activity plays a crucial role in influencing PM2.5 concentration and can be assessed through nighttime light remote sensing. Therefore, it is important to investigate whether the nighttime light brightness can enhance the accuracy of PM2.5 simulation in different stages. Utilizing PM2.5 mobile monitoring data, this study introduces nighttime lighting brightness as an additional factor in the PM2.5 simulation model across various time periods. It compares the differences in simulation accuracy, explores the impact of nocturnal human activities on PM2.5 concentrations at different periods of the following day, and analyzes the spatial and temporal pollution pattern of PM2.5 in urban functional areas. The results show that (1) the incorporation of nighttime lighting brightness effectively enhances the model's accuracy (R2), with an improvement ranging from 0.04 to 0.12 for different periods ranges. (2) the model's accuracy improves more prominently during 8:00-12:00 on the following day, and less so during 12:00-18:00, as the PM2.5 from human activities during the night experiences a strong aggregation effect in the morning of the next day, with the effect on PM2.5 concentration declining after diffusion until the afternoon. (3) PM2.5 is primarily concentrated in urban functional areas including construction sites, roads, and industrial areas during each period. But in the period of 8:00-12:00, there is a significant level of PM2.5 pollution observed in commercial and residential areas, due to the human activities that occurred the previous night.

13.
Sci Total Environ ; 914: 169987, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211861

RESUMEN

Mobile monitoring can supplement regulatory measurements, particularly in low-income countries where stationary monitoring is sparse. Here, we report results from a ~ year-long mobile monitoring campaign of on-road concentrations of black carbon (BC), ultrafine particles (UFP), and carbon dioxide (CO2) in Bengaluru, India. The study route included 150 unique kms (average: ~22 repeat measurements per monitored road segment). After cleaning the data for known instrument artifacts and sensitivities, we generated 30 m high-resolution stable 'data only' spatial maps of BC, UFP, and CO2 for the study route. For the urban residential areas, the mean BC levels for residential roads, arterials, and highways were ~ 10, 22, and 56 µg m-3, respectively. A similar pattern (highways being characterized by highest pollution levels) was also observed for UFP and CO2. Using the data from repeat measurements, we carried out a Monte Carlo subsampling analysis to understand the minimum number of repeat measures to generate stable maps of pollution in the city. Leveraging the simultaneous nature of the measurements, we also mapped the quasi-emission factors (QEF) of the pollutants under investigation. The current study is the first multi-season mobile monitoring exercise conducted in a low or middle -income country (LMIC) urban setting that oversampled the study route and investigated the optimum number of repeat rides required to achieve representative pollution spatial patterns characterized with high precision and low bias. Finally, the results are discussed in the context of technical aspects of the campaign, limitations, and their policy relevance for our study location and for other locations. Given the day-to-day variability in the pollution levels, the presence of dynamic and unorganized sources, and active government pollution mitigation policies, multi-year mobile measurement campaigns would help test the long-term representativeness of the current results.

14.
Environ Sci Technol ; 58(1): 480-487, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38104325

RESUMEN

Mobile monitoring provides robust measurements of air pollution. However, resource constraints often limit the number of measurements so that assessments cannot be obtained in all locations of interest. In response, surrogate measurement methodologies, such as videos and images, have been suggested. Previous studies of air pollution and images have used static images (e.g., satellite images or Google Street View images). The current study was designed to develop deep learning methodologies to infer on-road pollutant concentrations from videos acquired with dashboard cameras. Fifty hours of on-road measurements of four pollutants (black carbon, particle number concentration, PM2.5 mass concentration, carbon dioxide) in Bengaluru, India, were analyzed. The analysis of each video frame involved identifying objects and determining motion (by segmentation and optical flow). Based on these visual cues, a regression convolutional neural network (CNN) was used to deduce pollution concentrations. The findings showed that the CNN approach outperformed several other machine learning (ML) techniques and more conventional analyses (e.g., linear regression). The CO2 prediction model achieved a normalized root-mean-square error of 10-13.7% for the different train-validation division methods. The results here thus contribute to the literature by using video and the relative motion of on-screen objects rather than static images and by implementing a rapid-analysis approach enabling analysis of the video in real time. These methods can be applied to other mobile-monitoring campaigns since the only additional equipment they require is an inexpensive dashboard camera.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Monitoreo del Ambiente/métodos , Señales (Psicología) , India , Contaminación del Aire/análisis , Redes Neurales de la Computación , Contaminantes Ambientales/análisis
15.
Huan Jing Ke Xue ; 44(11): 5933-5945, 2023 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-37973078

RESUMEN

To understand the changes in the components of volatile organic compounds(VOCs), the contribution proportion of each component to ozone, and the VOCs sources, we monitored the VOCs for a year in Lishui. The results showed that theρ(TVOC) was 223.46 µg·m-3, ρ(alkanes) was 49.45 µg·m-3(22.3%), ρ(OVOCs) was 50.63 µg·m-3(22.66%), ρ(halogenated hydrocarbons) was 64.73 µg·m-3(28.95%), ρ(aromatic hydrocarbons) was 35.46 µg·m-3(15.87%), ρ(alkenes) was 18.26 µg·m-3(8.19%), and ρ(others) was 4.9 µg·m-3(2.2%). ρ(TVOC) was higher in summer(263.75 µg·m-3) and lower in winter(187.2 µg·m-3), with 246.11 µg·m-3 in spring and 204.77 µg·m-3 in autumn. The daily concentration of VOCs showed two peaks, one from 9:00 to 10:00 and another from 14:00 to 15:00, and the high concentration was mainly found in the urban main road area with dense human activities. The ozone formation potential(OFP) was 278.92 µg·m-3, and those of olefin and aromatic hydrocarbon were 114.47 µg·m-3(41.1%) and 113.49 µg·m-3(40.8%), respectively, contributing over 80%, which was an important precursor of ozone. On the other hand, the ratio of characteristic compounds to toluene/benzene(T/B) was 4.13, which indicated that it was greatly affected by the solvent usage. In the end, the results of positive matrix factorization(PMF) source apportionment showed that VOCs mainly came from solvent usage, industrial production, and traffic emissions. The VOCs pollution had a great influence on ozone, so it was necessary to strengthen the treatment of industrial production, solvent usages, and traffic emissions.

16.
JMIR Cardio ; 7: e50701, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37995111

RESUMEN

BACKGROUND: To date, the 12-lead electrocardiogram (ECG) is the gold standard for cardiological diagnosis in clinical settings. With the advancements in technology, a growing number of smartphone apps and gadgets for recording, visualizing, and evaluating physical performance as well as health data is available. Although this new smart technology is innovative and time- and cost-efficient, less is known about its diagnostic accuracy and reliability. OBJECTIVE: This study aimed to examine the agreement between the mobile single-lead ECG measurements of the Kardia Mobile App and the Apple Watch 4 compared to the 12-lead gold standard ECG in healthy adults under laboratory conditions. Furthermore, it assessed whether the measurement error of the devices increases with an increasing heart rate. METHODS: This study was designed as a prospective quasi-experimental 1-sample measurement, in which no randomization of the sampling was carried out. In total, ECGs at rest from 81 participants (average age 24.89, SD 8.58 years; n=58, 72% male) were recorded and statistically analyzed. Bland-Altman plots were created to graphically illustrate measurement differences. To analyze the agreement between the single-lead ECGs and the 12-lead ECG, Pearson correlation coefficient (r) and Lin concordance correlation coefficient (CCCLin) were calculated. RESULTS: The results showed a higher agreement for the Apple Watch (mean deviation QT: 6.85%; QT interval corrected for heart rate using Fridericia formula [QTcF]: 7.43%) than Kardia Mobile (mean deviation QT: 9.53%; QTcF: 9.78%) even if both tend to underestimate QT and QTcF intervals. For Kardia Mobile, the QT and QTcF intervals correlated significantly with the gold standard (rQT=0.857 and rQTcF=0.727; P<.001). CCCLin corresponded to an almost complete heuristic agreement for the QT interval (0.835), whereas the QTcF interval was in the range of strong agreement (0.682). Further, for the Apple Watch, Pearson correlations were highly significant and in the range of a large effect (rQT=0.793 and rQTcF=0.649; P<.001). CCCLin corresponded to a strong heuristic agreement for both the QT (0.779) and QTcF (0.615) intervals. A small negative correlation between the measurement error and increasing heart rate could be found of each the devices and the reference. CONCLUSIONS: Smart technology seems to be a promising and reliable approach for nonclinical health monitoring. Further research is needed to broaden the evidence regarding its validity and usability in different target groups.

17.
Environ Sci Technol ; 57(41): 15401-15411, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37789620

RESUMEN

Low-cost sensors (LCSs) for measuring air pollution are increasingly being deployed in mobile applications, but questions concerning the quality of the measurements remain unanswered. For example, what is the best way to correct LCS data in a mobile setting? Which factors most significantly contribute to differences between mobile LCS data and those of higher-quality instruments? Can data from LCSs be used to identify hotspots and generate generalizable pollutant concentration maps? To help address these questions, we deployed low-cost PM2.5 sensors (Alphasense OPC-N3) and a research-grade instrument (TSI DustTrak) in a mobile laboratory in Boston, MA, USA. We first collocated these instruments with stationary PM2.5 reference monitors (Teledyne T640) at nearby regulatory sites. Next, using the reference measurements, we developed different models to correct the OPC-N3 and DustTrak measurements and then transferred the corrections to the mobile setting. We observed that more complex correction models appeared to perform better than simpler models in the stationary setting; however, when transferred to the mobile setting, corrected OPC-N3 measurements agreed less well with the corrected DustTrak data. In general, corrections developed by using minute-level collocation measurements transferred better to the mobile setting than corrections developed using hourly-averaged data. Mobile laboratory speed, OPC-N3 orientation relative to the direction of travel, date, hour-of-the-day, and road class together explain a small but significant amount of variation between corrected OPC-N3 and DustTrak measurements during the mobile deployment. Persistent hotspots identified by the OPC-N3s agreed with those identified by the DustTrak. Similarly, maps of PM2.5 distribution produced from the mobile corrected OPC-N3 and DustTrak measurements agreed well. These results suggest that identifying hotspots and developing generalizable maps of PM2.5 are appropriate use-cases for mobile LCS data.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Contaminación del Aire/análisis , Material Particulado/análisis
18.
Environ Int ; 179: 108187, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37699297

RESUMEN

Nature-based solutions (NBS) such as green (vegetation) and blue (waterbodies) infrastructure are being promoted as cost-effective and sustainable strategies for managing the heatwaves risks, but long-term monitoring evidence is needed to support their implementation. This work aims to conduct a comparative assessment of the cooling efficiency of green (woodland and grassland) and blue (waterbody) NBS in contrast to a built-up area. Over a year of continuous fixed monitoring showed that the average daily maximum temperatures at NBS locations were 2-3 °C (up-to 15%) lower than the built-up area. Woodland showed the maximum temperature reduction in almost all seasons, followed by waterbody and grassland. NBS performed the best during the summers, peak sunshine, and heatwave hours (up to âˆ¼ 6 °C cooler than built-up area). Using an e-bike for mobile monitoring, the areas where green-blue NBS were combined showed the highest spatial cooling extent, followed by waterbody, woodland, and grassland areas. The database generated can validate city-scale environmental models and assist city planners to incorporate NBS into urban dwellings based on the opportunity, need and scope, aligning with Sustainable Development Goals 11 (sustainable cities and communities) and 13 (climate action).


Asunto(s)
Clima , Calor , Temperatura , Ciudades , Frío
19.
Environ Sci Technol ; 57(26): 9427-9444, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37343238

RESUMEN

Mobile ambient air quality monitoring is rapidly changing the current paradigm of air quality monitoring and growing as an important tool to address air quality and climate data gaps across the globe. This review seeks to provide a systematic understanding of the current landscape of advances and applications in this field. We observe a rapidly growing number of air quality studies employing mobile monitoring, with low-cost sensor usage drastically increasing in recent years. A prominent research gap was revealed, highlighting the double burden of severe air pollution and poor air quality monitoring in low- and middle-income regions. Experiment-design-wise, the advances in low-cost monitoring technology show great potential in bridging this gap while bringing unique opportunities for real-time personal exposure, large-scale deployment, and diversified monitoring strategies. The median value of unique observations at the same location in spatial regression studies is ten, which can be used as a rule-of-thumb for future experiment design. Data-analysis-wise, even though data mining techniques have been extensively employed in air quality analysis and modeling, future research can benefit from exploring air quality information from nontabular data, such as images and natural language.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Contaminación del Aire/análisis , Material Particulado/análisis
20.
Environ Res ; 229: 115896, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37054832

RESUMEN

Traffic noise, characterized by its highly fluctuating nature, is the second biggest environmental problem in the world. Highly dynamic noise maps are indispensable for managing traffic noise pollution, but two key difficulties exist in generating these maps: the lack of large amounts of fine-scale noise monitoring data and the ability to predict noise levels in the absence of noise monitoring data. This study proposed a new noise monitoring method, the Rotating Mobile Monitoring method, that combines the advantages of stationary and mobile monitoring methods and expands the spatial extent and temporal resolution of noise data. A monitoring campaign was conducted in the Haidian District of Beijing, covering 54.79 km of roads and a total area of 22.15 km2, and gathered 18,213 A-weighted equivalent noise (LAeq) measurements at 1-s intervals from 152 stationary sampling sites. Additionally, street view images, meteorological data and built environment data were collected from all roads and stationary sites. Using computer vision and GIS analysis tools, 49 predictor variables were measured in four categories, including microscopic traffic composition, street form, land use and meteorology. Six machine learning models and linear regression models were trained to predict LAeq, with random forest performing the best (R2 = 0.72, RMSE = 3.28 dB), followed by K-nearest neighbors regression (R2 = 0.66, RMSE = 3.43 dB). The optimal random forest model identified distance to the major road, tree view index, and the maximum field of view index of cars in the last 3 s as the top three contributors. Finally, the model was applied to generate a 9-day traffic noise map of the study area at both the point and street levels. The study is easily replicable and can be extended to a larger spatial scale to obtain highly dynamic noise maps.


Asunto(s)
Monitoreo del Ambiente , Ruido del Transporte , Monitoreo del Ambiente/métodos , Automóviles , Modelos Lineales , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA