Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36144826

RESUMEN

A series of CrOx-ZrO2-SiO2 (CrZrSi) catalysts was prepared by a "one-pot" template-assisted evaporation-induced self-assembly process. The chromium content varied from 4 to 9 wt.% assuming Cr2O3 stoichiometry. The catalysts were characterized by XRD, SEM-EDX, temperature-programmed reduction (TPR-H2), Raman spectroscopy, and X-ray photoelectron spectroscopy. The catalysts were tested in non-oxidative propane dehydrogenation at 500-600 °C. The evolution of active sites under the reaction conditions was investigated by reductive treatment of the catalysts with H2. The catalyst with the lowest Cr loading initially contained amorphous Cr3+ and dispersed Cr6+ species. The latter reduced under reaction conditions forming Cr3+ oxide species with low activity in propane dehydrogenation. The catalysts with higher Cr loadings initially contained highly dispersed Cr3+ species stable under the reaction conditions and responsible for high catalyst activity. Silica acted both as a textural promoter that increased the specific surface area of the catalysts and as a stabilizer that inhibited crystallization of Cr2O3 and ZrO2 and provided the formation of coordinatively unsaturated Zr4+ centers. The optimal combination of Cr3+ species and coordinatively unsaturated Zr4+ centers was achieved in the catalyst with the highest Cr loading. This catalyst showed the highest efficiency.

2.
Materials (Basel) ; 14(3)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572587

RESUMEN

Flame spray pyrolysis was used to produce nanosized Ni-based catalysts starting from different mixed oxides. LaNiO3 and CeNiO3 were used as base materials and the formulation was varied by mixing them or incorporating variable amounts of ZrO2 or SrO during the synthesis. The catalysts were tested for the steam reforming of glycerol. One of the key problems for this application is the resistance to deactivation by sintering and coking, which may be increased by (1) improving Ni dispersion through the production of a Ni-La or Ni-Ce mixed oxide precursor, and then reduced; (2) using an oxide as ZrO2, which established a strong interaction with Ni and possesses high thermal resistance; (3) decreasing the surface acidity of ZrO2 through a basic promoter/support, such as La2O3; and (4) adding a promoter/support with very high oxygen mobility such as CeO2. A further key feature is the use of a high temperature synthesis, such as flame spray pyrolysis, to improve the overall thermal resistance of the oxides. These strategies proved effective to obtain active and stable catalysts at least for 20 h on stream with very limited coke formation.

3.
ACS Appl Mater Interfaces ; 13(3): 3748-3761, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33442973

RESUMEN

Adoption of proton exchange membrane (PEM) water electrolysis technology on a global level will demand a significant reduction of today's iridium loadings in the anode catalyst layers of PEM electrolyzers. However, new catalyst and electrode designs with reduced Ir content have been suffering from limited stability caused by (electro)chemical degradation. This has remained a serious impediment to a wider commercialization of larger-scale PEM electrolysis technology. In this combined DFT computational and experimental study, we investigate a novel family of iridium-niobium mixed metal oxide thin-film catalysts for the oxygen evolution reaction (OER), some of which exhibit greatly enhanced stability, such as minimized voltage degradation and reduced Ir dissolution with respect to the industry benchmark IrOx catalyst. More specifically, we report an unusually durable IrNbOx electrocatalyst with improved catalytic performance compared to an IrOx benchmark catalyst prepared in-house and a commercial benchmark catalyst (Umicore Elyst Ir75 0480) at significantly reduced Ir catalyst cost. Catalyst stability was assessed by conventional and newly developed accelerated degradation tests, and the mechanistic origins were analyzed and are discussed. To achieve this, the IrNbOx mixed metal oxide catalyst and its water splitting kinetics were investigated by a host of techniques such as synchrotron-based NEXAFS analysis and XPS, electrochemistry, and ab initio DFT calculations as well as STEM-EDX cross-sectional analysis. These analyses highlight a number of important structural differences to other recently reported bimetallic OER catalysts in the literature. On the methodological side, we introduce, validate, and utilize a new, nondestructive XRF-based catalyst stability monitoring technique that will benefit future catalyst development. Furthermore, the present study identifies new specific catalysts and experimental strategies for stepwise reducing the Ir demand of PEM water electrolyzers on their long way toward adoption at a larger scale.

4.
Environ Technol ; 39(15): 2004-2016, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28643556

RESUMEN

This paper is focused on development of the metal monolithic structure for total oxidation of toluene at low temperature. The well-adhered catalyst, based on the mixed oxides of manganese and nickel, is washcoated on the Al/Al2O3 plates as metallic support. For the comparison purposes, results observed for the manganese-nickel mixed oxide supported on the metallic monolith are compared with those obtained using powder type of the same catalyst. Prepared manganese-nickel mixed oxides in both configurations show remarkable low-temperature activity for the toluene oxidation. The reaction temperature T50 corresponding to 50% of the toluene conversion is observed at temperatures of ca. 400-430 K for the powder catalyst and at ca. 450-490 K for the monolith configuration. The appropriate mathematical models, such as one-dimensional (1D) pseudo-homogeneous model of the fixed bed reactor and the 1D heterogeneous model of the metal monolith reactor, are applied to describe and compare catalytic performances of both reactors. Validation of the applied models is performed by comparing experimental data with theoretical predictions. The obtained results confirmed that the reaction over the monolithic structure is kinetically controlled, while in the case of the powder catalyst the reaction rate is influenced by the intraphase diffusion.


Asunto(s)
Manganeso/química , Níquel/química , Tolueno/química , Catálisis , Oxidación-Reducción , Óxidos
5.
Nanoscale Res Lett ; 11(1): 278, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27255898

RESUMEN

A set of ceria, ceria-zirconia (Ce 80 at.%, Zr 20 at.%), ceria-praseodymia (Ce 80 at.%, Pr 20 at.%) and ceria-zirconia-praseodymia (Ce 80 at.%, Zr 10 at.% and Pr 10 at.%) catalysts has been prepared by the solution combustion synthesis (SCS). The effects of Zr and Pr as dopants on ceria have been studied in CO and soot oxidation reactions. All the prepared catalysts have been characterized by complementary techniques, including XRD, FESEM, N2 physisorption at -196 °C, H2-temperature-programmed reduction, and X-ray photoelectron spectroscopy to investigate the relationships between the structure and composition of materials and their catalytic performance. Better results for CO oxidation have been obtained with mixed oxides (performance scale, Ce80Zr10Pr10 > Ce80Zr20 > Ce80Pr20) rather than pure ceria, thus confirming the beneficial role of multicomponent catalysts for this prototypical reaction. Since CO oxidation occurs via a Mars-van Krevelen (MvK)-type mechanism over ceria-based catalysts, it appears that the presence of both Zr and Pr species into the ceria framework improves the oxidation activity, via collective properties, such as electrical conductivity and surface or bulk oxygen anion mobility. On the other hand, this positive effect becomes less prominent in soot oxidation, since the effect of catalyst morphology prevails.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA