Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 147: 617-629, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003076

RESUMEN

The manganese-cobalt mixed oxide nanorods were fabricated using a hydrothermal method with different metal precursors (KMnO4 and MnSO4·H2O for MnOx and Co(NO3)2⋅6H2O and CoCl2⋅6H2O for Co3O4). Bamboo-like MnO2⋅Co3O4 (B-MnO2⋅Co3O4 (S)) was derived from repeated hydrothermal treatments with Co3O4@MnO2 and MnSO4⋅H2O, whereas Co3O4@MnO2 nanorods were derived from hydrothermal treatment with Co3O4 nanorods and KMnO4. The study shows that manganese oxide was tetragonal, while the cobalt oxide was found to be cubic in the crystalline arrangement. Mn surface ions were present in multiple oxidation states (e.g., Mn4+ and Mn3+) and surface oxygen deficiencies. The content of adsorbed oxygen species and reducibility at low temperature declined in the sequence of B-MnO2⋅Co3O4 (S) > Co3O4@MnO2 > MnO2 > Co3O4, matching the changing trend in activity. Among all the samples, B-MnO2⋅Co3O4 (S) showed the preeminent catalytic performance for the oxidation of toluene (T10% = 187°C, T50% = 276°C, and T90% = 339°C). In addition, the B-MnO2⋅Co3O4 (S) sample also exhibited good H2O-, CO2-, and SO2-resistant performance. The good catalytic performance of B-MnO2⋅Co3O4 (S) is due to the high concentration of adsorbed oxygen species and good reducibility at low temperature. Toluene oxidation over B-MnO2⋅Co3O4 (S) proceeds through the adsorption of O2 and toluene to form O*, OH*, and H2C(C6H5)* species, which then react to produce benzyl alcohol, benzoic acid, and benzaldehyde, ultimately converting to CO2 and H2O. The findings suggest that B-MnO2⋅Co3O4 (S) has promising potential for use as an effective catalyst in practical applications.


Asunto(s)
Cobalto , Compuestos de Manganeso , Oxidación-Reducción , Óxidos , Tolueno , Óxidos/química , Compuestos de Manganeso/química , Catálisis , Cobalto/química , Tolueno/química , Contaminantes Atmosféricos/química
2.
Nanomaterials (Basel) ; 14(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38921928

RESUMEN

TiO2-based mixed oxide-carbon composite support for Pt electrocatalysts provides higher stability and CO tolerance under the working conditions of polymer electrolyte membrane fuel cells compared to traditional carbon supports. Non-traditional carbon materials like graphene nanoplatelets and graphite oxide used as the carbonaceous component of the composite can contribute to its affordability and/or functionality. Ti(1-x)MoxO2-C composites involving these carbon materials were prepared through a sol-gel route; the effect of the extension of the procedure through a solvothermal treatment step was assessed. Both supports and supported Pt catalysts were characterized by physicochemical methods. Electrochemical behavior of the catalysts in terms of stability, activity, and CO tolerance was studied. Solvothermal treatment decreased the fracture of graphite oxide plates and enhanced the formation of a reduced graphene oxide-like structure, resulting in an electrically more conductive and more stable catalyst. In parallel, solvothermal treatment enhanced the growth of mixed oxide crystallites, decreasing the chance of formation of Pt-oxide-carbon triple junctions, resulting in somewhat less CO tolerance. The electrocatalyst containing graphene nanoplatelets, along with good stability, has the highest activity in oxygen reduction reaction compared to the other composite-supported catalysts.

3.
Molecules ; 29(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38893456

RESUMEN

In this study, vermiculite was explored as a support material for nickel catalysts in two key processes in syngas production: dry reforming of methane with CO2 and steam reforming of ethanol. The vermiculite underwent acid or base treatment, followed by the preparation of Ni catalysts through incipient wetness impregnation. Characterization was conducted using various techniques, including X-ray diffraction (XRD), SEM-EDS, FTIR, and temperature-programmed reduction (H2-TPR). TG-TD analyses were performed to assess the formation of carbon deposits on spent catalysts. The Ni-based catalysts were used in reaction tests without a reduction pre-treatment. Initially, raw vermiculite-supported nickel showed limited catalytic activity in the dry reforming of methane. After acid (Ni/VTA) or base (Ni/VTB) treatment, vermiculite proved to be an effective support for nickel catalysts that displayed outstanding performance, achieving high methane conversion and hydrogen yield. The acidic treatment improved the reduction of nickel species and reduced carbon deposition, outperforming the Ni over alkali treated support. The prepared catalysts were also evaluated in ethanol steam reforming under various conditions including temperature, water/ethanol ratio, and space velocity, with acid-treated catalysts confirming the best performance.

4.
Int J Biol Macromol ; 263(Pt 2): 129989, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354916

RESUMEN

In this study, the synthesis and experimental theoretical evaluation of a new chitosan/alginate/hydrozyapatite nanocomposite doped with Mn2 and Fe2O3 for Cr removal was reported. The physicochemical properties of the obtained materials were analyzed using the following methods: SEM-EDX, XRD, FTIR, XPS, pH drift measurements, and thermal analysis. The adsorption properties were estimated based on equilibrium and adsorption kinetics measurements. The Langmuir, Freundlich and Temkin isotherms were applied to analyze the equilibrium data. The thermodynamic analysis of adsorption isotherms was performed. A number of equations and kinetic models were used to describe the adsorption rate data, including pseudo-first (PFOE) and pseudo-second (PSOE) order kinetic equations. The obtained test results show that the synthesized biomaterial, compared to pure chitosan, is characterized by greater resistance to high temperatures. Moreover, this biomaterial had excellent adsorption properties. For the adsorption of Cr (VI), the equilibrium state was reached after 120 min, and the sorption capacity was 455.9 mg/g. In addition, DFT calculations and NCI analyses were performed to get more light on the adsorption mechanism of Cr (VI) on the prepared biocomposite.


Asunto(s)
Quitosano , Nanocompuestos , Contaminantes Químicos del Agua , Purificación del Agua , Óxidos , Aguas Residuales , Quitosano/química , Cromo/química , Adsorción , Alginatos/química , Compuestos Férricos/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Cinética , Materiales Biocompatibles , Nanocompuestos/química , Concentración de Iones de Hidrógeno
5.
Environ Technol ; : 1-14, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37675519

RESUMEN

Herein, three g-C3N4(MCN/TCN/UCN), obtained by the direct pyrolysis of melamine/urea/thiourea respectively, were introduced as supports to optimize the NH3-SCR activity of Ce-W-Ti catalyst. Compared to CWT-400-Air, CWT@g-C3N4(2)-300-N2 exhibits lower crystalline anatase TiO2 and larger specific surface area, which improves the dispersion of Ce/W/Ti species on catalysts surface. Furthermore, the introduction of g-C3N4 as supports also contributes to doping C/N elements into Ce-W-Ti catalyst and increases the Ce3+/(Ce3++Ce4+) and Oα/(Oα+Oß) molar ratios on catalyst surface. These all are advantageous to the NH3-SCR activity. However, UCN shows better promotional effect than MCN and TCN. This might be mainly attributed to the loose and porous stacked layered fold structure of UCN, the larger BET surface area, higher dispersion of Ce/W/Ti species and moderate weak/medium-strong acid sites of CWT@UCN(2)-300-N2. At the same time, the influence of carbon nitride amount, calcination atmosphere and calcination temperature on the NH3-SCR activity of CWT@g-C3N4 catalyst were also investigated.

6.
Chem Asian J ; 18(21): e202300727, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37752095

RESUMEN

A highly dispersed carbonate-intercalated Cu2+ -Al3+ layered double hydroxide (CuAl LDH) was created on an unreactive α-Al2 O3 surface (CuAl LDH@α-Al2 O3 ) via a simple coprecipitation method of Cu2+ and Al3+ under alkaline conditions in the presence of α-Al2 O3 . A highly reducible CuO nanoparticles was generated, accompanied by the formation of CuAl2 O4 on the surface of α-Al2 O3 (CuAlO@α-Al2 O3 ) after calcination at 1073 K in air, as confirmed by powder X-ray diffraction (XRD) and Cu K-edge X-ray absorption near edge structure (XANES). The structural changes during the progressive heating process were monitored by using in-situ temperature-programmed synchrotron XRD (tp-SXRD). The layered structure of CuAl LDH@α-Al2 O3 completely disappeared at 473 K, and CuO or CuAl2 O4 phases began to appear at 823 K or 1023 K, respectively. Our synthesised CuAlO@α-Al2 O3 catalyst was highly active for the acceptorless dehydrogenation of benzylic, aliphatic, or cyclic aliphatic alcohols; the TON based on the amount of Cu increased to 163 from 3.3 of unsupported CuAlO catalyst in 1-phenylethanol dehydrogenation. The results suggested that Cu0 was obtained from the reduction of CuO in the catalyst matrix during the reaction without separate reduction procedure and acted as a catalytically active species.

7.
Nanomaterials (Basel) ; 13(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37570561

RESUMEN

The composites of transition metal-doped titania and carbon have emerged as promising supports for Pt electrocatalysts in PEM fuel cells. In these multifunctional supports, the oxide component stabilizes the Pt particles, while the dopant provides a co-catalytic function. Among other elements, Sn is a valuable additive. Stong metal-support interaction (SMSI), i.e., the migration of a partially reduced oxide species from the support to the surface of Pt during reductive treatment is a general feature of TiO2-supported Pt catalysts. In order to explore the influence of SMSI on the stability and performance of Pt/Ti0.8Sn0.2O2-C catalysts, the structural and catalytic properties of the as prepared samples measured using XRD, TEM, XPS and electrochemical investigations were compared to those obtained from catalysts reduced in hydrogen at elevated temperatures. According to the observations, the uniform oxide coverage of the carbon backbone facilitated the formation of Pt-oxide-C triple junctions at a high density. The electrocatalytic behavior of the as prepared catalysts was determined by the atomic closeness of Sn to Pt, while even a low temperature reductive treatment resulted in Sn-Pt alloying. The segregation of tin oxide on the surface of the alloy particles, a characteristic material transport process in Sn-Pt alloys after oxygen exposure, contributed to a better stability of the reduced catalysts.

8.
Molecules ; 28(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175198

RESUMEN

Catalytic conversion of ethanol to 1-butanol was studied over MgO-Al2O3 mixed oxide-based catalysts. Relationships between acid-base and catalytic properties and the effect of active metal on the hydrogen transfer reaction steps were investigated. The acid-base properties were studied by temperature-programmed desorption of CO2 and NH3 and by the FT-IR spectroscopic examination of adsorbed pyridine. Dispersion of the metal promoter (Pd, Pt, Ru, Ni) was determined by CO pulse chemisorption. The ethanol coupling reaction was studied using a flow-through microreactor system, He or H2 carrier gas, WHSV = 1 gEtOH·gcat.-1·h-1, at 21 bar, and 200-350 °C. Formation and transformation of surface species under catalytic conditions were studied by DRIFT spectroscopy. The highest butanol selectivity and yield was observed when the MgO-Al2O3 catalyst contained a relatively high amount of strong-base and medium-strong Lewis acid sites. The presence of metal improved the activity both in He and H2; however, the butanol selectivity significantly decreased at temperatures ≥ 300 °C due to acceleration of undesired side reactions. DRIFT spectroscopic results showed that the active metal promoted H-transfer from H2 over the narrow temperature range of 200-250 °C, where the equilibrium allowed significant concentrations of both dehydrogenated and hydrogenated products.

9.
Int J Mol Sci ; 24(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240266

RESUMEN

Designing appropriate materials destined for the removal of dyes from waste waters represents a great challenge for achieving a sustainable society. Three partnerships were set up to obtain novel adsorbents with tailored optoelectronic properties using silica matrices, Zn3Nb2O8 oxide doped with Eu3+, and a symmetrical amino-substituted porphyrin. The pseudo-binary oxide with the formula Zn3Nb2O8 was obtained by the solid-state method. The doping of Zn3Nb2O8 with Eu3+ ions was intended in order to amplify the optical properties of the mixed oxide that are highly influenced by the coordination environment of Eu3+ ions, as confirmed by density functional theory (DFT) calculations. The first proposed silica material, based solely on tetraethyl orthosilicate (TEOS) with high specific surface areas of 518-726 m2/g, offered better performance as an adsorbent than the second one, which also contained 3-aminopropyltrimethoxysilane (APTMOS). The contribution of amino-substituted porphyrin incorporated into silica matrices resides both in providing anchoring groups for the methyl red dye and in increasing the optical properties of the whole nanomaterial. Two different types of methyl red adsorption mechanisms can be reported: one based on surface absorbance and one based on the dye entering the pores of the adsorbents due to their open groove shape network.


Asunto(s)
Nanoestructuras , Dióxido de Silicio , Niobio , Óxidos , Colorantes , Adsorción , Zinc
10.
Nanomaterials (Basel) ; 13(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37049242

RESUMEN

The application-attractive form of TiO2, CeO2 and CuO-based open-cell foam supported catalysts was designed to investigate their catalytic performance in oxidation of two model volatile organic compounds-methanol and dichloromethane. TiO2-CeO2, TiO2-CuO and TiO2-CeO2-CuO catalysts as thin films were deposited on VUKOPOR®A ceramic foam using a reverse micelles-controlled sol-gel method, dip-coating and calcination. Three prepared catalytic foams were investigated via light-off tests in methanol and dichloromethane oxidation in the temperature range of 45-400 °C and 100-500 °C, respectively, at GHSV of 11, 600 h-1, which fits to semi-pilot/industrial conditions. TiO2-CuO@VUKOPOR®A foam showed the best catalytic activity and CO2 yield in methanol oxidation due to its low weak Lewis acidity, high weak basicity and easily reducible CuO species and proved good catalytic stability within 20 h test. TiO2-CeO2-CuO@VUKOPOR®A foam was the best in dichloromethane oxidation. Despite of its lower catalytic activity compared to TiO2-CeO2@VUKOPOR®A foam, its highly-reducible -O-Cu-Ce-O- active surface sites led to the highest CO2 yield and the highest weak Lewis acidity contributed to the highest HCl yield. This foam also showed the lowest amount of chlorine deposits.

11.
J Colloid Interface Sci ; 641: 289-298, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36934576

RESUMEN

Bimetallic oxide is a potential catalyst for oxidative desulfurization of fuel. Thus, an appropriate method is needed to improve its catalytic performance. Manufacturing defect is an effective means. In this contribution, an oxygen vacancies (OVs) regulation strategy for enhancing the catalytic activity of bimetallic oxide is proposed. Density functional theory (DFT) calculations show that the crystal phase has a huge influence on the generation energy of oxygen vacancies, so a series of V-Nb mixed oxide with different crystal phases are synthesized. Detailed characterizations show that the as-prepared tetragonal V-Nb mixed oxide (T-VNbOx) has lower OVs formation energy and larger OVs concentration (compared to orthorhombic V-Nb mixed oxides, O-VNbOx). Owing to the activation of OVs, the catalytic activity of T-VNbOx was significantly enhanced to form ultra-deep oxidative desulfurization. In addition, T-VNbOx can be cycled eight times without significantly degrading the desulfurization performance.

12.
Chemosphere ; 316: 137797, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36634713

RESUMEN

Transition metal doped WO3 mixed oxides (named as W-M-O, M = Nb, Fe, Cr, Cu, Ti or Sn, respectively) with high structure stability were synthesized by modified sol-gel method using citric acid as organic crosslinking agent, and were evaluated for catalytic elimination of low-concentration toluene, monochlorobenzene and 1,2-dichloroethance with high toxicity and relatively stable molecule structure, as the typical examples for the pollutants of various volatile organic compounds (VOCs). Results of the structure-property-performance relationship research showed that mesoporous structure and nanocrystalline/amorphous state were formed, and binary metal components were dispersed into each other, which contributed to promoting the metal/metal electron interaction and adjusting the physicochemical properties of mixed metal oxides. The sequence of apparent catalytic activity for toluene degradation was: W-Nb-O>W-Fe-O>W-Cr-O, W-Cu-O>W-Ti-O>W-Sn-O>WO3, and the sequence for monochlorobenzene degradation was: W-Nb-O>W-Fe-O>W-Cr-O, W-Ti-O>W-Cu-O>W-Sn-O>WO3. There existed cooperative catalytic effect: mesopore and surface acid sites of catalysts facilitated adsorption, activation and breakage of the C-X bond, and then redox sites of catalysts promoted deep oxidation of a series of reaction intermediates to transform into CO2 and H2O. Especially, the optimized W-Nb-O catalyst deserved more attention, since it represented remarkable catalytic activity, selectivity and durability for three typical VOCs degradation along with good resistance to water vapor and corrosion of HCl.


Asunto(s)
Contaminantes Ambientales , Elementos de Transición , Óxidos/química , Clorobencenos , Oxidación-Reducción , Metales/química , Catálisis , Tolueno/química
13.
Sci Total Environ ; 860: 160480, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36435262

RESUMEN

Water scarcity and the consequent increase of freshwater prices are a cause for concern in regions where shale gas is being extracted via hydraulic fracturing. Wastewater treatment methods aimed at reuse/recycle of fracking wastewater can help reduce water stress of the fracking process. Accordingly, this study assessed the catalytic performance and life cycle environmental impacts of cerium-based mixed oxide catalysts for catalytic wet oxidation (CWO) of organic contaminants, in order to investigate their potential as catalysts for fracking wastewater treatment. For these purposes, MnCeOx and CuCeOx were tested for phenol removal in the presence of concentrated NaCl (200 g L-1), which represented a synthetic fracking wastewater. Removal of phenol in pure ("phenolic") water without NaCl was also considered for comparison. Complete (100 %) phenol and a 94 % total organic carbon (TOC) removal were achieved in both the phenolic and fracking wastewaters by utilising MnCeOx (5 g L-1) and insignificant metal leaching was observed. However, a much lower activity was observed when the same amount of CuCeOx was utilised: 23.3 % and 20.5 % for phenol and TOC removals, respectively, in the phenolic, and 69.1 % and 63 % in the fracking wastewater. Furthermore, severe copper leaching from CuCeOx was observed during stability tests conducted in the fracking wastewater. A life cycle assessment (LCA) study carried out as part of this work showed that the production of MnCeOx had 12-98 % lower impacts than CuCeOx due to the higher impacts of copper than manganese precursors. Furthermore, the environmental impacts of CWO were found to be 94-99 % lower than those of ozonation due to lower energy and material requirements. Overall, the results of this study suggest that the adoption of catalytic treatment would improve both the efficiency and the environmental sustainability of both the fracking wastewater treatment and the fracking process as a whole.


Asunto(s)
Cerio , Fracking Hidráulico , Contaminantes Químicos del Agua , Animales , Aguas Residuales , Óxidos , Cobre , Cloruro de Sodio , Ambiente , Fenol , Estadios del Ciclo de Vida , Contaminantes Químicos del Agua/análisis , Catálisis
14.
ACS Appl Mater Interfaces ; 14(47): 53165-53173, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36383750

RESUMEN

The identification of new colloidal sol-gel routes for the preparation of actinide oxides, which have a homogeneous and accessible porosity that can easily be impregnated by any concentrated actinide solution, opens new perspectives for the preparation of homogeneous nuclear fuel for minor actinide transmutation. This homogeneity allows us to avoid "hot spot" formation due to the local accumulation of more fissile elements. Here, we report the preparation of macro-microporous ThO2 materials by a colloidal sol-gel route. Using a thorium salt with 6-aminocaproic acid as a complexing agent at a controlled pH, we were able to pilot the condensation of thorium hydroxo species forming colloids of tuned nanometric size and thus the sol stability. After a freeze-drying process to concentrate colloids and a thermal treatment allowing complexing agent removal and macroporosity formation by a brutal gas release during combustion, a loose packing of ThO2 nanoparticles with an ordered distribution of interparticular porosity and a fraction of nanometric crystallites, whose size depends on the initial colloidal size, were obtained. The sols, pastes, and final materials were characterized by small- and wide-angle X-ray scattering to determine the colloidal size and the final structure of the materials, which was also confirmed by transmission electron microscopy. The most promising material was finally successfully impregnated by a simulating minor actinide solution and thermally treated to prepare a mixed actinide oxide material. This safe technology, relying on the colloidal sol-gel process and the formulation of complex fluids forming tunable precursors, opens new perspectives for the reuse of nuclear waste solutions as new fuel.

15.
Materials (Basel) ; 15(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36363080

RESUMEN

Growing thin layers of mixed-metal oxides on titanium supports allows for the preparation of versatile electrodes that can be used in many applications. In this work, electrodes coated with thin films of ruthenium (RuOx) and manganese oxide (MnOx) were fabricated via thermal decomposition of a precursor solution deposited on a titanium substrate by spin coating. In particular, we combined different Ru and Mn precursors, either organic or inorganic, and investigated their influence on the morphology and electrochemical properties of the materials. The tested salts were: Ruthenium(III) acetylacetonate (Ru(acac)3), Ruthenium(III) chloride (RuCl3·xH2O), Manganese(II) nitrate (Mn(NO3)2·4H2O), and Manganese(III) acetylacetonate (Mn(acac)3). After fabrication, the films were subjected to different characterization techniques, including scanning electron microscopy (SEM), polarization analysis, open-circuit potential (OCP) measurements, electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV), cyclic voltammetry (CV), and galvanostatic charge-discharge (GCD) experiments. The results indicate that compared to the others, the combination of RuCl3 and Mn(acac) produces fewer compact films, which are more susceptible to corrosion, but have outstanding capacitive properties. In particular, this sample exhibits a capacitance of 8.3 mF cm-2 and a coulombic efficiency of higher than 90% in the entire range of investigated current densities.

16.
Nanomaterials (Basel) ; 12(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36234572

RESUMEN

The utilization of CO2 attracts much research attention because of global warming. The CO2/epoxide cycloaddition reaction is one technique of CO2 utilization. However, homogeneous catalysts with both Lewis acidic and basic and toxic solvents, such as DMF, are needed in the CO2/epoxide cycloaddition reaction. As a result, this study focuses on the development of heterogeneous catalysts with both Lewis acidic and basic sites for the CO2 utilization of the CO2/epoxide cycloaddition reactions without the addition of a DMF toxic solvent. For the first time, the Zr-Mg mixed oxide aerogels with Lewis acidic and basic sites are synthesized for the CO2/propylene oxide (PO) cycloaddition reactions. To further increase the basic sites, 3-Aminopropyl trimethoxysilane (APTMS) with -NH2 functional group is successfully grafted on the Zr-Mg mixed oxide aerogels. The results indicate that the highest yield of propylene carbonate (PC) is 93.1% using the as-developed APTMS-modified Zr-Mg mixed oxide aerogels. The as-prepared APTMS-modified Zr-Mg mixed oxide aerogels are great potential in industrial plants for CO2 reduction in the future.

17.
Molecules ; 27(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36144826

RESUMEN

A series of CrOx-ZrO2-SiO2 (CrZrSi) catalysts was prepared by a "one-pot" template-assisted evaporation-induced self-assembly process. The chromium content varied from 4 to 9 wt.% assuming Cr2O3 stoichiometry. The catalysts were characterized by XRD, SEM-EDX, temperature-programmed reduction (TPR-H2), Raman spectroscopy, and X-ray photoelectron spectroscopy. The catalysts were tested in non-oxidative propane dehydrogenation at 500-600 °C. The evolution of active sites under the reaction conditions was investigated by reductive treatment of the catalysts with H2. The catalyst with the lowest Cr loading initially contained amorphous Cr3+ and dispersed Cr6+ species. The latter reduced under reaction conditions forming Cr3+ oxide species with low activity in propane dehydrogenation. The catalysts with higher Cr loadings initially contained highly dispersed Cr3+ species stable under the reaction conditions and responsible for high catalyst activity. Silica acted both as a textural promoter that increased the specific surface area of the catalysts and as a stabilizer that inhibited crystallization of Cr2O3 and ZrO2 and provided the formation of coordinatively unsaturated Zr4+ centers. The optimal combination of Cr3+ species and coordinatively unsaturated Zr4+ centers was achieved in the catalyst with the highest Cr loading. This catalyst showed the highest efficiency.

18.
Molecules ; 27(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35956809

RESUMEN

CeO2 nanoparticle-loaded MnO2 nanoflowers, prepared by a hydrothermal method followed by an adsorption-calcination technique, were utilized for selective catalytic reduction (SCR) of NOx with NH3 at low temperatures. The effects of Ce/Mn ratio and thermal calcination temperature on the NH3-SCR activity of the CeO2-MnO2 nanocomposites were studied comprehensively. The as-prepared CeO2-MnO2 catalysts show high NOx reduction efficiency in the temperature range of 150-300 °C, with a complete NOx conversion at 200 °C for the optimal sample. The excellent NH3-SCR performance could be ascribed to high surface area, intimate contact, and strong synergistic interaction between CeO2 nanoparticles and MnO2 nanoflowers of the well-designed composite catalyst. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) characterizations evidence that the SCR reaction on the surface of the CeO2-MnO2 nanocomposites mainly follows the Langmuir-Hinshelwood (L-H) mechanism. Our work provides useful guidance for the development of composite oxide-based low temperature NH3-SCR catalysts.

19.
Mikrochim Acta ; 189(8): 307, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35917034

RESUMEN

The study aimed to develop an electrochemical sensor based on glassy carbon, mixed oxide (SiO2/TiO2/Sb2O5), and carbon black. The material was synthesized, characterized, and used to determine thiamethoxam in raw honey and water. The morphologic structure and electrochemical performance of the sensor was characterized by scanning electron microscopy and cyclic voltammetry. Differential pulse voltammetry with a concentration of 0.1 mol L-1 of Britton-Robinson buffer at pH 7.0 allowed the generation of a method to determine thiamethoxam in a linear range of 0.25 to 100.5 µmol L-1 and with a limit of detection of 0.012 µmol L-1. The system efficiently quantified traces of thiamethoxam in raw honey and tap water samples. The modified sensor did not present interferences of K+, Na+, Ca2+, Mg2+, glyphosate, imidacloprid, and carbendazim. In addition, the device showed good recovery values for thiamethoxam when applied directly to honey and water samples without any treatment, presenting an electrochemical sensor to monitor real-time hazardous substances in environmental and food matrices.


Asunto(s)
Miel , Óxidos , Técnicas Electroquímicas/métodos , Electrodos , Límite de Detección , Óxidos/química , Dióxido de Silicio , Hollín , Tiametoxam , Titanio , Agua
20.
Front Chem ; 10: 961355, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991607

RESUMEN

The rapid economic and societal development have led to unprecedented energy demand and consumption resulting in the harmful emission of pollutants. Hence, the conversion of greenhouse gases into valuable chemicals and fuels has become an urgent challenge for the scientific community. In recent decades, perovskite-type mixed oxide-based catalysts have attracted significant attention as efficient CO2 conversion catalysts due to the characteristics of both reversible oxygen storage capacity and stable structure compared to traditional oxide-supported catalysts. In this review, we hand over a comprehensive overview of the research for CO2 conversion by these emerging perovskite-type mixed oxide-based catalysts. Three main CO2 conversions, namely reverse water gas shift reaction, CO2 methanation, and CO2 reforming of methane have been introduced over perovskite-type mixed oxide-based catalysts and their reaction mechanisms. Different approaches for promoting activity and resisting carbon deposition have also been discussed, involving increased oxygen vacancies, enhanced dispersion of active metal, and fine-tuning strong metal-support interactions. Finally, the current challenges are mooted, and we have proposed future research prospects in this field to inspire more sensational breakthroughs in the material and environment fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA