Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 949: 175248, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39098407

RESUMEN

Aerosol-cloud interactions play a vital role in climate change. This study leverages observations from the King-350 aircraft over the North China Plain on November 29, 2019, to examine aerosol and cloud microphysical characteristics of mixed-phase clouds. Through detailed vertical and spectral distributions, we investigate aerosol, cloud droplet, and ice crystal distributions in seeded clouds (SC) and natural precipitating clouds (NPC) within the same cloud system. From the vertical profile, SC and NPC have similar vertical distributions of aerosol and cloud droplets, with over 95 % of aerosols concentrated below 1600 m near the ground. Cloud droplets are more evenly distributed within the two clouds, cloud droplet number concentrations (Nc) in SC were three orders of magnitude higher than in NPC. Ice water content (IWC) and ice crystal number concentration (Ni) show distinct layer preferences-accumulating predominantly in SC's top layer and NPC's middle layer. From spectral distribution, a smaller proportion of cloud droplets (40-50 µm in diameter, the same hereafter) in SC compared to NPC. Rimed ice crystals and globular graupel (1325-1550 µm in diameter) were in SC, while plate and irregular ice crystals (300-450 µm) were in NPC with an order of magnitude higher than in SC. These microphysical differences highlight the complexity of cloud seeding efficacy, which varies based on cloud conditions and microphysical properties. In the first seeding, Ni increased by 1-2 orders of magnitude (125-300 µm) in the high Nc (Nc > 1.11 × 105 L-1) region. Seeding in low Nc (Nc < 1.11 × 105 L-1) regions was hard to be effective, especially in low Nc and low liquid water content (LWC) (LWC < 0.122 g/m3) regions. In the second seeding, ice crystals (125-250 µm) produced by the first seeding enhance the seeding efficiency. The responded regions were more sensitive to subsequent seeding, resulting in stronger reactions or longer duration.

2.
Geophys Res Lett ; 49(18): e2022GL099578, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36246738

RESUMEN

Mixed-phase clouds are recognized as significant contributors to the modulation of precipitation and radiation transfer on both regional and global scales. This study is focused on the analysis of spatial inhomogeneity of mixed-phase clouds based on an extended data set obtained from airborne in situ observations. The lengths of continuous segments of ice, liquid, and mixed-phase clouds present a cascade of scales varying from 102 km down to a minimum scale of 100 m determined by the spatial resolution of measurements. It was found that the phase composition of mixed-phase clouds is highly intermittent, and the frequency of occurrence of ice, liquid, and mixed-phase regions increases with the decrease of their spatial scales. The distributions of spatial scales have well-distinguished power-law dependencies. The results obtained yield insight into the morphology of mixed-phase clouds and have important implications for improvement in representing subgrid inhomogeneity of mixed-phase clouds in weather and climate models.

3.
Geophys Res Lett ; 49(14): e2022GL098041, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36249281

RESUMEN

Mixed-phase clouds (MPCs), which consist of both supercooled cloud droplets and ice crystals, play an important role in the Earth's radiative energy budget and hydrological cycle. In particular, the fraction of ice crystals in MPCs determines their radiative effects, precipitation formation and lifetime. In order for ice crystals to form in MPCs, ice-nucleating particles (INPs) are required. However, a large-scale relationship between INPs and ice initiation in clouds has yet to be observed. By analyzing satellite observations of the typical transition temperature (T*) where MPCs become more frequent than liquid clouds, we constrain the importance of INPs in MPC formation. We find that over the Arctic and Southern Ocean, snow and sea ice cover significantly reduces T*. This indicates that the availability of INPs is essential in controlling cloud phase evolution and that local sources of INPs in the high-latitudes play a key role in the formation of MPCs.

4.
J Geophys Res Atmos ; 127(6): e2021JD036059, 2022 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-35865411

RESUMEN

The amount of ice versus supercooled water in clouds is important for their radiative properties and role in climate feedbacks. Hence, knowledge of the concentration of ice-nucleating particles (INPs) is needed. Generally, the concentrations of INPs are found to be very low in remote marine locations allowing cloud water to persist in a supercooled state. We had expected the concentrations of INPs at the North Pole to be very low given the distance from open ocean and terrestrial sources coupled with effective wet scavenging processes. Here we show that during summer 2018 (August and September) high concentrations of biological INPs (active at >-20°C) were sporadically present at the North Pole. In fact, INP concentrations were sometimes as high as those recorded at mid-latitude locations strongly impacted by highly active biological INPs, in strong contrast to the Southern Ocean. Furthermore, using a balloon borne sampler we demonstrated that INP concentrations were often different at the surface versus higher in the boundary layer where clouds form. Back trajectory analysis suggests strong sources of INPs near the Russian coast, possibly associated with wind-driven sea spray production, whereas the pack ice, open leads, and the marginal ice zone were not sources of highly active INPs. These findings suggest that primary ice production, and therefore Arctic climate, is sensitive to transport from locations such as the Russian coast that are already experiencing marked climate change.

5.
Proc Natl Acad Sci U S A ; 117(37): 22705-22711, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32839319

RESUMEN

Black carbon (BC) aerosol plays an important role in the Earth's climate system because it absorbs solar radiation and therefore potentially warms the climate; however, BC can also act as a seed for cloud particles, which may offset much of its warming potential. If BC acts as an ice nucleating particle (INP), BC could affect the lifetime, albedo, and radiative properties of clouds containing both supercooled liquid water droplets and ice particles (mixed-phase clouds). Over 40% of global BC emissions are from biomass burning; however, the ability of biomass burning BC to act as an INP in mixed-phase cloud conditions is almost entirely unconstrained. To provide these observational constraints, we measured the contribution of BC to INP concentrations ([INP]) in real-world prescribed burns and wildfires. We found that BC contributes, at most, 10% to [INP] during these burns. From this, we developed a parameterization for biomass burning BC and combined it with a BC parameterization previously used for fossil fuel emissions. Applying these parameterizations to global model output, we find that the contribution of BC to potential [INP] relevant to mixed-phase clouds is ∼5% on a global average.


Asunto(s)
Carbono/química , Cambio Climático , Agua/química , Incendios Forestales , Aerosoles , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/química , Carbono/efectos adversos , Hielo/análisis , Estaciones del Año
6.
J Geophys Res Atmos ; 123(8): 4273-4283, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29938147

RESUMEN

It has been hypothesized that black carbon (BC) influences mixed-phase clouds by acting as an ice-nucleating particle (INP). However, the literature data for ice nucleation by BC immersed in supercooled water are extremely varied, with some studies reporting that BC is very effective at nucleating ice, whereas others report no ice-nucleating ability. Here we present new experimental results for immersion mode ice nucleation by BC from two contrasting fuels (n-decane and eugenol). We observe no significant heterogeneous nucleation by either sample. Using a global aerosol model, we quantify the maximum relative importance of BC for ice nucleation when compared with K-feldspar and marine organic aerosol acting as INP. Based on the upper limit from our laboratory data, we show that BC contributes at least several orders of magnitude less INP than feldspar and marine organic aerosol. Representations of its atmospheric ice-nucleating ability based on older laboratory data produce unrealistic results when compared against ambient observations of INP. Since BC is a complex material, it cannot be unambiguously ruled out as an important INP species in all locations at all times. Therefore, we use our model to estimate a range of values for the density of active sites that BC particles must have to be relevant for ice nucleation in the atmosphere. The estimated values will guide future work on BC, defining the required sensitivity of future experimental studies.

7.
J Geophys Res Atmos ; 121(20): 12343-12362, 2016 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-28066694

RESUMEN

Ice residual (IR) and total aerosol properties were measured in mixed-phase clouds (MPCs) at the high-alpine Jungfraujoch research station. Black carbon (BC) content and coating thickness of BC-containing particles were determined using single-particle soot photometers. The ice activated fraction (IAF), derived from a comparison of IR and total aerosol particle size distributions, showed an enrichment of large particles in the IR, with an increase in the IAF from values on the order of 10-4 to 10-3 for 100 nm (diameter) particles to 0.2 to 0.3 for 1 µm (diameter) particles. Nonetheless, due to the high number fraction of submicrometer particles with respect to total particle number, IR size distributions were still dominated by the submicrometer aerosol. A comparison of simultaneously measured number size distributions of BC-free and BC-containing IR and total aerosol particles showed depletion of BC by number in the IR, suggesting that BC does not play a significant role in ice nucleation in MPCs at the Jungfraujoch. The potential anthropogenic climate impact of BC via the glaciation effect in MPCs is therefore likely to be negligible at this site and in environments with similar meteorological conditions and a similar aerosol population. The IAF of the BC-containing particles also increased with total particle size, in a similar manner as for the BC-free particles, but on a level 1 order of magnitude lower. Furthermore, BC-containing IR were found to have a thicker coating than the BC-containing total aerosol, suggesting the importance of atmospheric aging for ice nucleation.

8.
Geophys Res Lett ; 42(5): 1599-1605, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26074652

RESUMEN

Water droplets in some clouds can supercool to temperatures where homogeneous ice nucleation becomes the dominant freezing mechanism. In many cloud resolving and mesoscale models, it is assumed that homogeneous ice nucleation in water droplets only occurs below some threshold temperature typically set at -40°C. However, laboratory measurements show that there is a finite rate of nucleation at warmer temperatures. In this study we use a parcel model with detailed microphysics to show that cloud properties can be sensitive to homogeneous ice nucleation as warm as -30°C. Thus, homogeneous ice nucleation may be more important for cloud development, precipitation rates, and key cloud radiative parameters than is often assumed. Furthermore, we show that cloud development is particularly sensitive to the temperature dependence of the nucleation rate. In order to better constrain the parameterization of homogeneous ice nucleation laboratory measurements are needed at both high (>-35°C) and low (<-38°C) temperatures. KEY POINTS: Homogeneous freezing may be significant as warm as -30°CHomogeneous freezing should not be represented by a threshold approximationThere is a need for an improved parameterization of homogeneous ice nucleation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA