Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biol Reprod ; 105(2): 491-502, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-33912929

RESUMEN

Sex determination requires the commitment of bipotential gonads to either a testis or an ovarian fate. Gene deletion of the kinase Map3k4 results in gonadal sex reversal in XY mice, and transgenic re-expression of Map3k4 rescues the sex reversal phenotype. Map3k4 encodes a large, multi-functional protein possessing a kinase domain and several, additional protein-protein interaction domains. Although MAP3K4 plays a critical role in male gonadal sex determination, it is unknown if the kinase activity of MAP3K4 is required. Here, we use mice expressing full-length, kinase-inactive MAP3K4 from the endogenous Map3k4 locus to examine the requirement of MAP3K4 kinase activity in sex determination. Although homozygous kinase-inactivation of MAP3K4 (Map3k4KI/KI) is lethal, a small fraction survive to adulthood. We show Map3k4KI/KI adults exhibit a 4:1 female-biased sex ratio. Many adult Map3k4KI/KI phenotypic females have a Y chromosome. XY Map3k4KI/KI adults with sex reversal display female mating behavior, but do not give rise to offspring. Reproductive organs are overtly female, but there is a broad spectrum of ovarian phenotypes, including ovarian absence, primitive ovaries, reduced ovarian size, and ovaries having follicles in all stages of development. Further, XY Map3k4KI/KI adults are smaller than either male or female Map3k4WT/WT mice. Examination of the critical stage of gonadal sex determination at E11.5 shows that loss of MAP3K4 kinase activity results in the loss of Sry expression in XY Map3k4KI/KI embryos, indicating embryonic male gonadal sex reversal. Together, these findings demonstrate the essential role for kinase activity of MAP3K4 in male gonadal sex determination.


Asunto(s)
MAP Quinasa Quinasa Quinasa 4/genética , Ratones/genética , Ovario/embriología , Procesos de Determinación del Sexo/genética , Testículo/embriología , Animales , Femenino , MAP Quinasa Quinasa Quinasa 4/metabolismo , Masculino , Ratones/embriología
2.
Mol Med Rep ; 22(2): 1195-1204, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32468015

RESUMEN

Interleukin (IL)­1ß is a key promotor in the pathogenesis of temporomandibular joint osteoarthritis. Differentiation of stem cells to cartilage is a crucial repair mechanism of articular cartilage damage, and IL­1ß has been reported to impede the differentiation by upregulating the secretion of IL­6, an important inflammatory factor. Long non­coding RNAs (lncRNAs) regulate a number of physiological and pathological processes, but whether lncRNA AK094629 contributes to the IL­1ß mediated induction of inflammation remains unclear. Therefore, the aim of the present study was to investigate the effect of AK094629 on IL­1ß­induced IL­6 expression in synovial­derived mesenchymal stem cells (SMSCs) of the temporomandibular joints. The results of the present study demonstrated that the expression of AK094629 in the synovial tissue of patients with osteoarthritis was positively correlated with IL­1ß. In addition, IL­1ß upregulated the expression of AK094629 in the SMSCs in vitro, and AK094629 knockdown inhibited the IL­1ß mediated upregulation of IL­6. The present study also demonstrated that AK094629 knockdown downregulated the expression of the mitogen­activated protein kinase kinase kinase 4 (MAP3K4), which is upregulated by IL­1ß, whereas knockdown of MAP3K4 did not affect the expression of AK094629, but reversed the upregulation of IL­6 in SMSCs. In conclusion, AK094629 knockdown attenuated the expression of IL­1ß­regulated IL­6 in the SMSCs of the temporomandibular joint by inhibiting MAP3K4. Therefore, AK094629 may be a potential novel therapeutic target for the treatment of temporomandibular joint osteoarthritis.


Asunto(s)
Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Células Madre Mesenquimatosas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Membrana Sinovial/metabolismo , Articulación Temporomandibular/metabolismo , Células Cultivadas , Técnicas de Silenciamiento del Gen , Humanos , Interleucina-6/genética , MAP Quinasa Quinasa Quinasa 4/genética , MAP Quinasa Quinasa Quinasa 4/metabolismo , Células Madre Mesenquimatosas/patología , Osteoartritis/etiología , Osteoartritis/metabolismo , Osteoartritis/patología , Membrana Sinovial/citología , Articulación Temporomandibular/patología , Trastornos de la Articulación Temporomandibular/etiología , Trastornos de la Articulación Temporomandibular/metabolismo , Trastornos de la Articulación Temporomandibular/patología , Activación Transcripcional/genética , Regulación hacia Arriba , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
Oncol Lett ; 17(3): 2923-2930, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30854069

RESUMEN

Long non-coding RNA-oncogene-induced senescence 1 (lncRNA-OIS1) is a novel lncRNA that is involved in oncogene-induced senescence, while its functionality in cervical squamous cell carcinoma is unknown. In the present study, 68 human papillomavirus (HPV)-positive and 22 HPV-negative patients with cervical squamous cell carcinoma were recruited. Additionally, 40 healthy females were employed as healthy controls. Tumor tissues and adjacent healthy tissues were collected from all patients with cervical squamous cell carcinoma, and blood samples were obtained. Expression of OIS1 was detected by reverse transcription-quantitative polymerase chain reaction. Receiver operating characteristic curve analysis was used to evaluate the diagnostic value of OIS1 for cervical squamous cell carcinoma. HPV-positive and HPV-negative cervical squamous cell carcinoma and normal cervical cell lines were used, and the effects of OIS1 or mitogen-activated protein kinase kinase kinase 4, (MTK-1) expression vector transfection on the proliferation of cell lines and MTK-1 expression were detected by CCK-8 assay and western blotting, respectively. It was established that a reduction in OIS1 expression level in tumor tissues was apparent only in HPV-positive patients. Serum levels of OIS1 were lower in HPV-positive patients compared with that in HPV-negative patients and healthy controls, and no significant differences were observed between HPV-negative patients and healthy controls. Serum levels of OIS1 were significantly associated with tumor size, but not distant tumor metastasis. OIS1 expression level was lower in HPV-positive cancer cell lines compared with that in HPV-negative cancer cell lines, while no significant differences were observed between HPV-positive and HPV-negative normal cell lines. OIS1 overexpression inhibited and MTK-1 overexpression promoted the proliferation of HPV-positive, but not HPV-negative cancer or normal cell lines. OIS1 transfection also decreased the expression of MTK-1 in HPV-positive cancer cell lines, but not in any of the other cell lines. Therefore, it was concluded that OIS1 inhibited HPV-positive, but not HPV-negative cervical squamous cell carcinoma by upregulating MTK-1.

4.
Oncol Lett ; 16(3): 3453-3458, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30127948

RESUMEN

Cervical cancer is a common malignancy in females. Diagnosis and treatment of cervical cancer remains a challenge due to difficulties in the presence of tumor metastasis. Increased expression level of Erb-b2 receptor tyrosine kinase 3 (ERBB3) has previously been demonstrated to be associated with the occurrence of cervical cancer; however, the functionality of ERBB3 in the development of cervical cancer remains incompletely understood. In the present study, the expression level of ERBB3 in patients with cervical squamous cell carcinoma and cervical adenocarcinoma was detected by reverse transcription quantitative polymerase chain reaction. The effects of ERBB3 small interfering RNA silencing on cell proliferation, migration and invasion were explored, and the interaction between ERBB3 and mitogen-activated protein kinase kinase kinase 4 (MTK-1) was also investigated. It was identified that the downregulation of ERBB3 significantly decreased the proliferative, migratory and invasive abilities of cervical cancer cells. In addition, the expression level of MTK-1 was also significantly decreased following MTK-1 siRNA silencing. Therefore, we hypothesize that the downregulation of ERBB3 may decrease the proliferative, migratory and invasive abilities of cervical cancer cells by inhibiting the expression of MTK-1.

5.
Cell Signal ; 26(1): 70-82, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24036211

RESUMEN

Human MAP3K4 (MTK1) functions upstream of mitogen activated protein kinases (MAPKs). In this study we show MTK1 is required for human epidermal growth factor receptor 2/3 (HER2/HER3)-heregulin beta1 (HRG) induced cell migration in MCF-7 breast cancer cells. We demonstrate that HRG stimulation leads to association of MTK1 with activated HER3 in MCF-7 and T-47D breast cancer cells. Activated HER3 association with MTK1 is dependent on HER2 activation and is decreased by pre-treatment with the HER2 inhibitor, lapatinib. Moreover, we also identify the actin interacting region (AIR) on MTK1. Disruption of actin cytoskeletal polymerization with cytochalasin D inhibited HRG induced MTK1/HER3 association. Additionally, HRG stimulation leads to extracellular acidification that is independent of cellular proliferation. HRG induced extracellular acidification is significantly inhibited when MTK1 is knocked down in MCF-7 cells. Similarly, pre-treatment with lapatinib significantly decreased HRG induced extracellular acidification. Extracellular acidification is linked with cancer cell migration. We performed scratch assays that show HRG induced cell migration in MCF-7 cells. Knockdown of MTK1 significantly inhibited HRG induced cell migration. Furthermore, pre-treatment with lapatinib also significantly decreased cell migration. Cell migration is required for cancer cell metastasis, which is the major cause of cancer patient mortality. We identify MTK1 in the HER2/HER3-HRG mediated extracellular acidification and cell migration pathway in breast cancer cells.


Asunto(s)
Ácidos/metabolismo , Movimiento Celular , Espacio Extracelular/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Movimiento Celular/efectos de los fármacos , Espacio Extracelular/efectos de los fármacos , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Inmunoprecipitación , MAP Quinasa Quinasa Quinasa 4/química , MAP Quinasa Quinasa Quinasa 4/metabolismo , Células MCF-7 , Datos de Secuencia Molecular , Peso Molecular , Neurregulina-1/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA