Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Genomics ; 2024: 7518528, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156922

RESUMEN

Background: Progressive myoclonus epilepsy (PME) is a neurodegenerative disorder marked by recurrent seizures and progressive myoclonus. To date, based on the phenotypes and causal genes, more than 40 subtypes of PMEs have been identified, and more remain to be characterized. Our study is aimed at identifying the aberrant gene(s) possibly associated with PMEs in two siblings born to asymptomatic parents, in the absence of known genetic mutations. Methods: Clinical assessments and molecular analyses, such as the repeat expansion test for CSTB; SCA1, 2, 3, 6, and 7; whole exome sequencing (WES); and mitochondrial genome sequencing coupled with computational analysis, were performed. Results: A family-based segregation analysis of WES data was performed to identify novel genes associated with PMEs. The potassium channel, KCNH8 [c.298T>C; (p.Tyr100His)], a DNA repair gene, regulator of telomere elongation helicase 1 (RTEL1) [c.691G>T; (p.Asp231Tyr)] and long noncoding RNA, RTEL1-TNFRSF6B [chr20:62298898_G>T; NR_037882.1, hg19] were among the candidate genes that were found to be associated with PMEs. These homozygous variations in siblings belong to genes with a loss-of-function intolerant (pLI) score of ≤ 0.86, expected to be detrimental by multiple computational analyses, and were heterozygous in parents. Additionally, computational analysis and the expression of RTEL1 and RTEL1-TNFRSF6B revealed that RTEL1-TNFRSF6B may modulate RTEL1 via hsa-miR-3529-3p. In the patient with the severe phenotype, a further deleterious mutation in SLC22A17 was identified. No de novo variants specific to these probands were identified in the mitochondrial genome. Conclusions: Our study is the first to report variants in KCNH8, RTEL1, and RTEL1-TNFRSF6B among PME cases. These genes when characterized fully may shed light on pathogenicity and have the potential to be used in the diagnosis of PME.

2.
PeerJ ; 10: e13265, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35441061

RESUMEN

Cardiomyopathy (CMP) constitutes a diverse group of myocardium diseases affecting the pumping ability of the heart. Genetic predisposition is among the major factors affecting the development of CMP. Globally, there are over 100 genes in autosomal and mitochondrial DNA (mtDNA) that have been reported to be associated with the pathogenesis of CMP. However, most of the genetic studies have been conducted in Western countries, with limited data being available for the Asian population. Therefore, this study aims to investigate the mutation spectrum in the mitochondrial genome of 145 CMP patients in Malaysia. Long-range PCR was employed to amplify the entire mtDNA, and whole mitochondrial genome sequencing was conducted on the MiSeq platform. Raw data was quality checked, mapped, and aligned to the revised Cambridge Reference Sequence (rCRS). Variants were named, annotated, and filtered. The sequencing revealed 1,077 variants, including 18 novel and 17 CMP and/or mitochondrial disease-associated variants after filtering. In-silico predictions suggested that three of the novel variants (m.8573G>C, m.11916T>A and m.11918T>G) in this study are potentially pathogenic. Two confirmed pathogenic variants (m.1555A>G and m.11778G>A) were also found in the CMP patients. The findings of this study shed light on the distribution of mitochondrial mutations in Malaysian CMP patients. Further functional studies are required to elucidate the role of these variants in the development of CMP.


Asunto(s)
Cardiomiopatías , Genoma Mitocondrial , Humanos , Genoma Mitocondrial/genética , Mitocondrias/genética , Mutación/genética , ADN Mitocondrial/genética , Cardiomiopatías/genética
3.
Hum Reprod ; 37(1): 66-79, 2021 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-34755183

RESUMEN

STUDY QUESTION: Are relative mitochondrial DNA (mtDNA) content and mitochondrial genome (mtGenome) variants in human cumulus cells (CCs) associated with oocyte reproductive potential and assisted reproductive technology (ART) outcomes? SUMMARY ANSWER: Neither the CC mtDNA quantity nor the presence of specific mtDNA genetic variants was associated with ART outcomes, although associations with patient body mass index (BMI) were detected, and the total number of oocytes retrieved differed between major mitochondrial haplogroups. WHAT IS KNOWN ALREADY: CCs fulfil a vital role in the support of oocyte developmental competence. As with other cell types, appropriate cellular function is likely to rely upon adequate energy production, which in turn depends on the quantity and genetic competence of the mitochondria. mtDNA mutations can be inherited or they can accumulate in somatic cells over time, potentially contributing to aging. Such mutations may be homoplasmic (affecting all mtDNA in a cell) or they may display varying levels of heteroplasmy (affecting a proportion of the mtDNA). Currently, little is known concerning variation in CC mitochondrial genetics and how this might influence the reproductive potential of the associated oocyte. STUDY DESIGN, SIZE, DURATION: This was a prospective observational study involving human CCs collected with 541 oocytes from 177 IVF patients. mtDNA quantity was measured in all the samples with a validated quantitative PCR method and the entire mtGenome was sequenced in a subset of 138 samples using a high-depth massively parallel sequencing approach. Associations between relative mtDNA quantity and mtGenome variants in CCs and patient age, BMI (kg/m2), infertility diagnosis and ART outcomes were investigated. PARTICIPANTS/MATERIALS, SETTING, METHODS: Massively parallel sequencing permitted not only the accurate detection of mutations but also the precise quantification of levels of mutations in cases of heteroplasmy. Sequence variants in the mtDNA were evaluated using Mitomaster and HmtVar to predict their potential impact. MAIN RESULTS AND THE ROLE OF CHANCE: The relative mtDNA CC content was significantly associated with BMI. No significant associations were observed between CC mtDNA quantity and patient age, female infertility diagnosis or any ART outcome variable. mtGenome sequencing revealed 4181 genetic variants with respect to a reference genome. The COXI locus contained the least number of coding sequence variants, whereas ATPase8 had the most. The number of variants predicted to affect the ATP production differed significantly between mitochondrial macrohaplogroups. The total number of retrieved oocytes was different between the H-V and J-T as well as the U-K and J-T macrohaplogroups. There was a non-significant increase in mtDNA levels in CCs with heteroplasmic mitochondrial mutations. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Although a large number of samples were analysed in this study, it was not possible to analyse all the CCs from every patient. Also, the results obtained with respect to specific clinical outcomes and macrohaplogroups should be interpreted with caution due to the smaller sample sizes when subdividing the dataset. WIDER IMPLICATIONS OF THE FINDINGS: These findings suggest that the analysis of mtDNA in CCs is unlikely to provide an advantage in terms of improved embryo selection during assisted reproduction cycles. Nonetheless, our data raise interesting biological questions, particularly regarding the interplay of metabolism and BMI and the association of mtDNA haplogroup with oocyte yield in ovarian stimulation cycles. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by National Institutes of Health grant 5R01HD092550-02. D.J.N. and C.R. co-hold patent US20150346100A1 and D.J.N. holds US20170039415A1, both for metabolic imaging methods. D.W. receives support from the NIHR Oxford Biomedical Research Centre. The remaining authors have no conflicts of interest to declare.


Asunto(s)
Células del Cúmulo , ADN Mitocondrial , Células del Cúmulo/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Femenino , Humanos , Mitocondrias/metabolismo , Oocitos/metabolismo , Reproducción
4.
BMC Evol Biol ; 17(1): 233, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29183283

RESUMEN

BACKGROUND: Debilitating skin infestations caused by the mite, Sarcoptes scabiei, have a profound impact on human and animal health globally. In Australia, this impact is evident across different segments of Australian society, with a growing recognition that it can contribute to rapid declines of native Australian marsupials. Cross-host transmission has been suggested to play a significant role in the epidemiology and origin of mite infestations in different species but a chronic lack of genetic resources has made further inferences difficult. To investigate the origins and molecular epidemiology of S. scabiei in Australian wildlife, we sequenced the mitochondrial genomes of S. scabiei from diseased wombats (Vombatus ursinus) and koalas (Phascolarctos cinereus) spanning New South Wales, Victoria and Tasmania, and compared them with the recently sequenced mitochondrial genome sequences of S. scabiei from humans. RESULTS: We found unique S. scabiei haplotypes among individual wombat and koala hosts with high sequence similarity (99.1% - 100%). Phylogenetic analysis of near full-length mitochondrial genomes revealed three clades of S. scabiei (one human and two marsupial), with no apparent geographic or host species pattern, suggestive of multiple introductions. The availability of additional mitochondrial gene sequences also enabled a re-evaluation of a range of putative molecular markers of S. scabiei, revealing that cox1 is the most informative gene for molecular epidemiological investigations. Utilising this gene target, we provide additional evidence to support cross-host transmission between different animal hosts. CONCLUSIONS: Our results suggest a history of parasite invasion through colonisation of Australia from hosts across the globe and the potential for cross-host transmission being a common feature of the epidemiology of this neglected pathogen. If this is the case, comparable patterns may exist elsewhere in the 'New World'. This work provides a basis for expanded molecular studies into mange epidemiology in humans and animals in Australia and other geographic regions.


Asunto(s)
Genoma Mitocondrial , Marsupiales/parasitología , Sarcoptes scabiei/genética , Escabiosis/parasitología , Análisis de Secuencia de ADN , Animales , Animales Salvajes/genética , Australia/epidemiología , Composición de Base/genética , Secuencia de Bases , Complejo IV de Transporte de Electrones/genética , Genes Mitocondriales , Tamaño del Genoma , Haplotipos/genética , Humanos , Anotación de Secuencia Molecular , Filogenia , Escabiosis/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA