Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39074911

RESUMEN

Exploring emerging two-dimensional (2D) van der Waals (vdW) semiconducting materials and precisely tuning their electronic properties at the atomic level have long been recognized as crucial issues for developing their high-end electronic and optoelectronic applications. As a III-VI semiconductor, ultrathin layered hexagonal GaTe (h-GaTe) remains unexplored in terms of its intrinsic electronic properties and band engineering strategies. Herein, we report the successful synthesis of ultrathin h-GaTe layers on a selected graphene/SiC(0001) substrate, via molecular beam epitaxy (MBE). The widely tunable quasiparticle band gaps (∼2.60-1.55 eV), as well as the vdW quantum well states (QWSs) that can be strictly counted by the layer numbers, are well characterized by onsite scanning tunneling microscopy/spectroscopy (STM/STS), and their origins are clearly addressed by density functional theory (DFT) calculations. More intriguingly, distinctive 8|8E and 4|4P (Ga) mirror twin boundaries (MTBs) are identified in the ultrathin h-GaTe flakes, which can induce decreased band gaps and prominent p-doping effects. This work should deepen our understanding on the electronic tunability of 2D III-VI semiconductors by thickness control and line defect engineering, which may hold promise for fabricating atomic-scale vertical and lateral homojunctions toward ultrascaled electronics and optoelectronics.

2.
ACS Nano ; 14(7): 8299-8306, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32579335

RESUMEN

One-dimensional (1D) metallic mirror-twin boundaries (MTBs) in monolayer transition-metal dichalcogenides exhibit a periodic charge modulation and provide an ideal platform for exploring collective electron behavior in the confined system. The underlying mechanism of the charge modulation and how the electrons travel in 1D structures remain controversial. Here, for the first time, we observed atomic-scale structures of the charge distribution within one period in MTB of monolayer MoTe2 by using scanning tunneling microscopy/spectroscopy. The coexisting apparent periodic lattice distortions and U-shaped energy gap clearly demonstrate a Peierls-type charge density wave (CDW). Equidistant quantized energy levels with varied periodicity are further discovered outside the CDW gap along the metallic MTB. Density functional theory calculations are in good agreement with the gapped electronic structures and reveal that they originate mainly from a Mo 4d orbital. Our work presents hallmark evidence of the 1D Peierls-type CDW on the metallic MTBs and offers opportunities to study the underlying physics of 1D charge modulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA