Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 195(4): 496, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36947259

RESUMEN

Understanding the actual distribution of different Legionella species in water networks would help prevent outbreaks. Culture investigations followed by serological agglutination tests, with poly/monovalent antisera, still represent the gold standard for isolation and identification of Legionella strains. However, also MALDI-TOF and mip-gene sequencing are currently used. This study was conducted to genetically correlate strains of Legionella non pneumophila (L-np) isolated during environmental surveillance comparing different molecular techniques. Overall, 346 water samples were collected from the water system of four pavilions located in a hospital of the Apulia Region of Italy. Strains isolated from the samples were then identified by serological tests, MALDI-TOF, and mip-gene sequencing. Overall, 24.9% of water samples were positive for Legionella, among which the majority were Legionella pneumophila (Lpn) 1 (52.3%), followed by Lpn2-15 (20.9%), L-np (17.4%), Lpn1 + Lpn2-15 (7.1%), and L-np + Lpn1 (2.3%). Initially, L-np strains were identified as L. bozemanii by monovalent antiserum, while MALDI-TOF and mip-gene sequencing assigned them to L. anisa. More cold water than hot water samples were contaminated by L. anisa (p < 0.001). PFGE, RAPD, Rep-PCR, and SAU-PCR were performed to correlate L. anisa strains. Eleven out of 14 strains identified in all four pavilions showed 100% of similarity upon PFGE analysis. RAPD, Rep-PCR, and SAU-PCR showed greater discriminative power than PFGE.


Asunto(s)
Monitoreo del Ambiente , Hospitales , Microbiología del Agua , Abastecimiento de Agua , Monitoreo del Ambiente/métodos , Italia , Técnicas Microbiológicas/normas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Legionella/genética , Legionella/aislamiento & purificación , Análisis de Secuencia de ADN
2.
Pathogens ; 10(5)2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-34063633

RESUMEN

Legionella species distribution in the Emilia-Romagna region, involving hospital (H) and community (C) environments, was conducted. Legionella culture, agglutination test, and mip-gene sequencing were applied on 240 isolates. The analysis showed a higher prevalence of non-Legionellapneumophila (n-Lp) species (84.1%) compared with L. pneumophila (Lp) (15.9%), with a higher frequency of n-Lp with respect to Lp species in both environments (77.6% and 96.4%, in H and C, respectively). The Shannon index showed a significant difference in Legionella distribution (p = 0.00017), with a significant abundance of Lp in the H compared with C environment (p = 0.00028). The continuous disinfection treatment in H could contribute to adaptive survival of the Lp species. Phylogenetic analysis revealed a conservative clade distribution between H and C: L. feeleii clade with three subclades in C and the Lp clade with five subclades in H and two in C, respectively. Our findings suggest the importance of Legionella surveillance both in H and C, with a focus on n-Lp species less connected to human disease. The Legionella prevalence and diversity found here indicate that geographical and temporal isolate evolution should be considered during surveillance, particularly in the light of global warming and changes in population risk factors.

3.
Front Microbiol ; 11: 589369, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33384668

RESUMEN

Legionella spp. are widespread bacteria in aquatic environments with a growing impact on human health. Between the 61 species, Legionella pneumophila is the most prevalent in human diseases; on the contrary, Legionella non-pneumophila species are less detected in clinical diagnosis or during environmental surveillance due to their slow growth in culture and the absence of specific and rapid diagnostic/analytical tools. Reliable and rapid isolate identification is essential to estimate the source of infection, to undertake containment measures, and to determine clinical treatment. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), since its introduction into the routine diagnostics of laboratories, represents a widely accepted method for the identification of different bacteria species, described in a few studies on the Legionella clinical and environmental surveillance. The focus of this study was the improvement of MALDI-TOF MS on Legionella non-pneumophila species collected during Legionella nosocomial and community surveillance. Comparative analysis with cultural and mip-gene sequencing results was performed. Moreover, a phylogenetic analysis was carried out to estimate the correlations amongst isolates. MALDI-TOF MS achieved correct species-level identification for 45.0% of the isolates belonging to the Legionella anisa, Legionella rubrilucens, Legionella feeleii, and Legionella jordanis species, displaying a high concordance with the mip-gene sequencing results. In contrast, less reliable identification was found for the remaining 55.0% of the isolates, corresponding to the samples belonging to species not yet included in the database. The phylogenetic analysis showed relevant differences inside the species, regruped in three main clades; among the Legionella anisa clade, a subclade with a divergence of 3.3% from the main clade was observed. Moreover, one isolate, identified as Legionella quinlivanii, displayed a divergence of 3.8% from the corresponding reference strain. However, these findings require supplementary investigation. The results encourage the implementation of MALDI-TOF MS in routine diagnostics and environmental Legionella surveillance, as it displays a reliable and faster identification at the species level, as well as the potential to identify species that are not yet included in the database. Moreover, phylogenetic analysis is a relevant approach to correlate the isolates and to track their spread, especially in unconventional reservoirs, where Legionella prevention is still underestimated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA