RESUMEN
At the molecular scale, bone is mainly constituted of type-I collagen, hydroxyapatite, and water. Different fractions of these constituents compose different composite materials that exhibit different mechanical properties at the nanoscale, where the bone is characterized as a fiber, i.e., a bundle of mineralized collagen fibrils surrounded by water and hydroxyapatite in the extra-fibrillar volume. The literature presents only models that resemble mineralized collagen fibrils, including hydroxyapatite in the intra-fibrillar volume only, and lacks a detailed prescription on how to devise such models. Here, we present all-atom bone molecular models at the nanoscale, which, differently from previous bone models, include hydroxyapatite both in the intra-fibrillar volume and in the extra-fibrillar volume, resembling fibers in bones. Our main goal is to provide a detailed prescription on how to devise such models with different fractions of the constituents, and for that reason, we have made step-by-step scripts and files for reproducing these models available. To validate the models, we assessed their elastic properties by performing molecular dynamics simulations that resemble tensile tests, and compared the computed values against the literature (both experimental and computational results). Our results corroborate previous findings, as Young's Modulus values increase with higher fractions of hydroxyapatite, revealing all-atom bone models that include hydroxyapatite in both the intra-fibrillar volume and in the extra-fibrillar volume as a path towards realistic bone modeling at the nanoscale.
RESUMEN
To develop an orthopedic material for bone substitution, the substitute material must mimic living tissue from an anatomical and physiological point of view. The high wear and impact resistance besides the low friction coefficient, make ultra-high molecular weight polyethylene (UHMWPE) a suitable material to be used in orthopedic applications. However, UHMWPE is a bioinert material, not providing a proper interaction with the bone tissue surrounding to the implant. One way to mitigate this issue is improving UHMWPE bioactivity. This can be done by adding bioactive fillers in the polymeric matrix. In this work, UHMWPE composites were prepared by twin-screw extrusion. The fillers used were carbonated hydroxyapatite (CHA) and hybrids formed by precipitating CHA in collagens (hydrolyzed and type II). The results show that the fillers used caused a slight reduction in UHMWPE crystallinity degree, while both crystallization and melting temperatures remained almost unchanged. Dynamic-mechanical thermal analysis indicated a weak adhesion between filler and polymeric matrix, which is good from the biological point of view since the bioactive filler surface will be available to apatite deposition. The obtained materials exhibited good mechanical properties and in vitro bioactivity assay showed that all of the prepared materials are bioactive.