Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.664
Filtrar
1.
BMC Cardiovasc Disord ; 24(1): 484, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261826

RESUMEN

OBJECTIVES: The purpose of this study was to demonstrate the discriminating predictive indicators in peripheral blood and left atrium blood for predicting the risk of left atrial spontaneous echo contrast (LASEC) in atrial fibrillation patients underwent catheter ablation. METHODS: A total of 108 consecutive AF patients treated with radiofrequency ablation between July 2022 and July 2023 were enrolled and divided into two groups based on preprocedural transesophageal echocardiography: the non LASEC group (n = 71) and the LASEC group (n = 37). Circulating platelet and endothelial- derived MPs (PMPs and EMPs) in peripheral blood and left atrial blood were detected. Plasma soluble P-selectin (sP-selectin) and von Willebrand factor (vWF) were observed. Diagnostic efficiency was measured using receiver operating characteristic (ROC) curve. RESULTS: Peripheral sP-selectin, vWF and EMPs expressions elevated in all subjects when compared to those in left atrium blood. Levels of sP-selectin and vWF were significantly higher in peripheral blood of LASEC group than those of non LASEC group (p = 0.0018,p = 0.0271). Significant accumulations of peripheral PMPs and EMPs were documented in LASEC group by comparison with non LASEC group (p = 0.0395,p = 0.018). The area under curve(AUC) of combined PMPs and sP-selectin in predicting LASEC was 0.769 (95%CI: 0.678-0.845, sensitivity: 86.49%, specificity: 59.15%), significantly larger than PMPs or sP-selectin alone. CONCLUSIONS: Expressions of PMPs, sP-selectin, EMPs and vWF Increased in NVAF patients with LASEC and that might be potential biomarkers for LASEC prediction.


Asunto(s)
Fibrilación Atrial , Biomarcadores , Ablación por Catéter , Ecocardiografía Transesofágica , Atrios Cardíacos , Selectina-P , Valor Predictivo de las Pruebas , Factor de von Willebrand , Humanos , Fibrilación Atrial/sangre , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/cirugía , Masculino , Femenino , Persona de Mediana Edad , Atrios Cardíacos/diagnóstico por imagen , Selectina-P/sangre , Factor de von Willebrand/metabolismo , Factor de von Willebrand/análisis , Biomarcadores/sangre , Anciano , Resultado del Tratamiento , Función del Atrio Izquierdo , Factores de Riesgo , Medición de Riesgo
2.
J Adv Pharm Technol Res ; 15(3): 231-236, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290542

RESUMEN

Lime (Citrus aurantifolia) juice was reported to contain ascorbic acid (AA) and flavonoids, which has bioactivity as antioxidants. To develop an antioxidant product, improving its stability is necessary due to the perishable characteristics of compounds in lime. Therefore, the formulation of polyelectrolyte microparticles using chitosan and alginate was conducted to overcome the weaknesses. This study aims to evaluate the effect of various chitosan, alginate, and lime juice powder (LJP) concentrations on the physical characteristics and antioxidant activity of LJP encapsulated in chitosan-alginate microparticles (CALM). Microparticles with various concentrations of chitosan and alginate were prepared by ionic gelation method using CaCl2 as a crosslinker. The microparticles were evaluated for its physical properties and its antioxidant activity using 2-2-diphenyl-1-picrylhydrazyl reagent. A one-way ANOVA test and Tukey's honest significant difference post hoc were used to determine the effect of LJP amount on the antioxidant activity. The highest AA content in CALM was 0.14 mg/100 mg, with a % encapsulation efficiency of 18.38% ± 0.02%. Antioxidant activity tests revealed that LJP possessed the strong antioxidant activity with an IC50 value of 32.59 µg/mL, whereas IC50 values of the microparticles ranged from 24.79 ± 0.03 µg/mL to 39.96 ± 0.07 µg/mL. During storage, the IC50 of LJP decreased from 32.59 ± 0.13 µg/mL to 65.53 ± 0.03 µg/mL, whereas the IC50 of microparticles remained stable. This study concluded that the chitosan-alginate polyelectrolyte microparticle formulation can improve and protect LJP's antioxidant activity.

3.
Polymers (Basel) ; 16(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39274163

RESUMEN

Edible films based on biopolymers are used to protect food from adverse environmental factors. However, their ample use may be hindered by some challenges to their mechanical and antimicrobial properties. Despite this, in most cases, increasing their mechanical properties and antibacterial activity remains a relevant challenge. To solve this problem, a possible option is to fill the biopolymer matrix of films with a functional filler that combines high reinforcing and antibacterial properties. In this work, biocomposite films based on a mixture of chitosan and cassava starch were filled with a hybrid filler in the form of bentonite clay particles loaded with ginger essential oil (GEO) in their structure with varied concentrations. For this purpose, GEO components were intercalated into bentonite clay interlayer space using a mechanical capture approach without using surface-active and toxic agents. The structure and loading efficiency of the essential oil in the obtained hybrid filler were analyzed by lyophilization and laser analysis of dispersions, ATR-FTIR spectroscopy, thermogravimetry, and X-ray diffraction analysis. The filled biocomposite films were analyzed using ATR-FTIR spectroscopy, optical and scanning electron spectroscopy, energy dispersive spectroscopy, mechanical analysis under tension, and the disk diffusion method for antibacterial activity. The results demonstrated that the tensile strength, Young's modulus, elongation at the break, and the antibacterial effect of the films increased by 40%, 19%, 44%, and 23%, respectively, compared to unfilled film when the filler concentration was 0.5-1 wt.%.

4.
Materials (Basel) ; 17(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274617

RESUMEN

Cannabigerol's (CBG) therapeutic effects are limited by its poor water solubility and low dissolution rate. To improve these properties, supercritical CO2-assisted atomization (SAA) was applied to produce coprecipitates, i.e., CBG nanoparticles coprecipitated in polyvinylpyrrolidone (PVP) microparticles. The experiments were performed by varying the CBG/PVP mass ratio (R) and the overall concentration of solutes CBG+PVP to study the influence of these parameters on particle morphology, particle size, and size distribution. Periodic dynamic light scattering (DLS) analysis was performed at regular time intervals to measure the size of CBG nanoparticles in PVP microparticles. It showed that CBG nanoparticles down to 105 nm were successfully produced through SAA. Dissolution tests were used to verify that a reduction of CBG particle size significantly increased its dissolution rate. In the liquid medium adopted, untreated CBG powder was released in 210 min, whereas CBG nanoparticles of 105 nm were completely dissolved in only 15 min.

5.
Front Med (Lausanne) ; 11: 1394300, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253540

RESUMEN

Background: Periodontitis is a chronic inflammatory condition that affects the supporting tissues of the teeth, and can lead to serious complications such as tooth loss and systemic health problems, including diabetes, which have a bidirectional relationship with periodontitis. Circulating microparticles originate from different cell types after stimuli such as activation or apoptosis. Interleukins are related to processes in the regulation of the immune response, inflammation, and cell growth. This study aimed to evaluate circulating microparticles as well as interleukins in the plasma, at baseline and 1 month after the end of the non-surgical periodontal treatment. Methods: Samples were collected from 45 patients, with moderate to severe periodontitis with diabetes (N = 25) and without diabetes (N = 20). Microparticles were evaluated in the platelet-poor plasma by flow cytometer. Cytokine levels were evaluated by the enzyme immunoabsorption assay (ELISA). Results: Higher levels of the pro-inflammatory cytokines were found in the group with diabetes compared to the non-diabetic group both at baseline and 1 month after the end of the treatment. A higher IL-6/IL-10 ratio was found in patients with diabetes compared to the group without diabetes at T0 and T1, whereas an increased IFN-γ/IL-10 ratio was only found at T1 in patients with diabetes in comparison to the group without diabetes. In the group with diabetes, it was verified positive correlations between IL-10 and IL-6 or IFN-γ and a negative correlation between IL-6 and PMP, at T0; in contrast, in the T1, negative correlations were found between TNF-α and IL-10 or PMP. Besides, at T0, it was evidenced positive correlations both between circulating TNF-α and IL-6, and IL-10 and EMP, as well as a negative correlation between IL-10 and PMP in the group with diabetes. In addition, it was observed in T1 positive correlations between levels of TNF-α and IL-6, IFN-γ, or IL-10, and between PMP and IFN-γ, and between EMP and IL-6, TNF-α and IFN-γ in this group. Conclusion: The results suggest a modulatory effect of the periodontitis associated with diabetes, as well as the periodontal treatment, in the systemic inflammatory status of the participants of the study.

6.
Ann Hepatol ; : 101563, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270982

RESUMEN

Mammalian cells release several membrane-enclosed vesicles called extracellular vesicles. Those vesicles can contain several molecules such as proteins, DNA and various RNA. Therefore, extracellular vesicles can act as a target delivery system and exert multiple biological effects. Several works demonstrated that extracellular vesicles are increased or dysregulated in patients with cirrhosis, and they can be predictive of disease progression, complications and mortality. This review aims to summarize and highlight the role of extracellular vesicles in the cirrhotic patient and how they correlate with the degree of disease and with complications, particularly with the development of portal thrombosis and hepatocellular carcinoma.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39271662

RESUMEN

Sulfonamide antibiotics were the first synthetic antibiotics on the market and still have a broad field of application. Their extensive usage, wrong disposal, and limited degradation technologies in wastewater treatment plants lead to high concentrations in the environment, resulting in a negative impact on ecosystems and an acceleration of antibiotic resistance. Although lab-based analytical methods allow for sulfonamide detection, comprehensive monitoring is hampered by the nonavailability of on-site, inexpensive sensing technologies. In this work, we exploit functionalized elastic hydrogel microparticles and their ability to easily deform upon specific binding with enzyme-coated surfaces to establish the groundwork of a biosensing assay for the fast and straightforward detection of sulfonamide antibiotics. The detection assay is based on sulfamethoxazole-functionalized hydrogel microparticles as sensor probes and the biomimetic interaction of sulfonamide analytes with their natural target enzyme, dihydropteroate synthase (DHPS). DHPS from S. pneumoniae was recombinantly produced by E. coli and covalently coupled on a glass biochip using a reactive maleic anhydride copolymer coating. Monodisperse poly(ethylene glycol) hydrogel microparticles of 50 µm in diameter were synthesized within a microfluidic setup, followed by the oriented coupling of a sulfamethoxazole derivative to the microparticle surface. In proof-of-concept experiments, sulfamethoxazole, as the most used sulfonamide antibiotic in medical applications, was demonstrated to be specifically detectable above a concentration of 10 µM. With its straightforward detection principle, this assay has the potential to be used for point-of-use monitoring of sulfonamide antibiotic contaminants in the environment.

8.
Adv Colloid Interface Sci ; 333: 103297, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39226799

RESUMEN

Microalgae are microorganisms that are rich in bioactive compounds, including pigments, proteins, lipids, and polysaccharides. These compounds can be utilized for a number of biomedical purposes, including drug delivery, wound healing, and tissue engineering. Nevertheless, encapsulating microalgae cells and microalgae bioactive metabolites is vital to protect them and prevent premature degradation. This also enables the development of intelligent controlled release strategies for the bioactive compounds. This review outlines the most employed encapsulation techniques for microalgae, with a particular focus on their biomedical applications. These include ionic gelation, oil-in-water emulsions, and spray drying. Such techniques have been widely explored, due to their ability to protect sensitive compounds from degradation, enhance their stability, extend their shelf life, mask undesirable tastes or odours, control the release of bioactive compounds, and enable targeted delivery to specific sites within the body or environment. Moreover, a patent landscape analysis is also provided, allowing an overview of the microalgae encapsulation technology development applied to a variety of fields, including pharmaceuticals, cosmetics, food, and agriculture.

9.
Sci Rep ; 14(1): 20676, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237578

RESUMEN

In these decades, considerable attention has focused on supramolecular polymers due to their unique structures and properties. More recently, macroscopic supramolecular polymers have attracted increasing interest from not only biologists but also materials scientists inspired by the sophisticated structures and functions of living organisms. Since the functions of supramolecular polymers are strongly dependent on their shape, control of the shape is an important issue in controlling the functions of supramolecular polymers. However, the control of shape in macroscopic supramolecular assemblies has not yet been sufficiently investigated. Previously, we studied the macroscopic self-assembly behavior of super absorbent polymer (SAP) microparticles modified with ß-cyclodextrin (ßCD) and adamantane (Ad) residues (ßCD(x)-SAP and Ad(y)-SAP microparticles, where x and y are the mol% contents of ßCD and Ad residues, respectively). More elongated assemblies were formed at higher y, indicating that the shape of assemblies can be controlled by varying the interaction strength. The noteworthy is that 1-adamantanamine hydrochloride (AdNH3Cl) assisted the formation of assemblies from ßCD(x)-SAP and Ad(y)-SAP microparticles, indicating that AdNH3Cl acts as a chemical stimulus for macroscopic assemblies of ßCD(x)-SAP and Ad(y)-SAP microparticles. In this study, we have thus studied the assembling behavior of ßCD(x)-SAP microparticles with Ad(y)-SAP microparticles and unmodified SAP microparticles assisted by AdNH3Cl, as well as the shape of the resulting macroscopic assemblies. AdNH3Cl assisted the formation of assemblies from ßCD(16.2)-SAP and Ad(15.1)-SAP microparticles, in which AdNH3Cl crosslinked the SAP microparticles through the formation of inclusion complexes of ßCD residues with the Ad residue and the electrostatic interaction of ammonium and carboxylate residues. Assemblies of ßCD(26.7)-SAP and unmodified SAP microparticles were formed at the concentrations of AdNH3Cl ([AdNH3Cl]0) higher than a certain level (ca. 0.05 mM). The aspect ratio (a/b) of assemblies showed a maximum at [AdNH3Cl]0 ~ 0.10 mM, indicating that the chemical stimulus, i.e., addition of AdNH3Cl, controls the shape of assemblies formed from ßCD(26.7)-SAP and unmodified SAP microparticles. This study suggests that other stimuli, e.g., heat, pH, light, redox, and force, can be utilized to control the shape of macroscopic assemblies based on supramolecular interactions.

10.
Electrophoresis ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223919

RESUMEN

The frequency dependence of electrokinetic particle trapping using large-area (>mm2) conductive carbon nanofiber (CNF) mat electrodes is investigated. The fibers provide nanoscale geometric features for the generation of high electric field gradients, which is necessary for particle trapping via dielectrophoresis (DEP). A device was fabricated with an array of microfluidic wells for repeated experiments; each well included a CNF mat electrode opposing an aluminum electrode. Fluorescent microspheres (1 µm) were trapped at various electric field frequencies between 30 kHz and 1 MHz. Digital images of each well were analyzed to quantify particle trapping. DEP trapping by the CNF mats was greater at all tested frequencies than that of the control of no applied field, and the greatest trapping was observed at a frequency of 600 kHz, where electrothermal flow is more significantly weakened than DEP. Theoretical analysis and measured impedance spectra indicate that this result was due to a combination of the frequency dependence of DEP and capacitive behavior of the well-based device.

11.
Immun Inflamm Dis ; 12(9): e70007, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39222024

RESUMEN

BACKGROUND: Myeloid-derived suppressor cells (MDSCs) play a pivotal role in immunosuppression and tumor progression in hepatocellular carcinoma (HCC). While various treatments like surgical resection, ablation, and radiotherapy have been studied for their effects on circulating MDSC frequencies in HCC patients, the findings remain inconclusive. Transarterial Chemoembolization (TACE) stands as the standard care for unresectable HCC, with Microparticle TACE (mTACE) gaining prominence for its capacity to induce significant tumor necrosis. However, the immunological ramifications of such pathological outcomes are scarcely reported. METHODS AND RESULTS: This study aims to elucidate the alterations in MDSC subtypes, specifically monocytic MDSCs (mMDSCs) and early-stage MDSCs (eMDSCs), post-mTACE and to investigate their clinical correlations in HCC patients. A cohort comprising 75 HCC patients, 16 liver cirrhosis patients, and 20 healthy controls (HC) was studied. Peripheral blood samples were collected and analyzed for MDSC subtypes. The study also explored the associations between MDSC frequencies and various clinical parameters in HCC patients. The frequency of mMDSCs was significantly elevated in the HCC group compared to liver cirrhosis and HC. Importantly, mMDSC levels were strongly correlated with aggressive clinical features of HCC, including tumor size, vascular invasion, and distant metastasis. Post-mTACE, a marked reduction in mMDSC frequencies was observed, while eMDSC levels remained stable. CONCLUSIONS: Our findings underscore the critical role of mMDSCs in HCC pathogenesis and their potential as a therapeutic target. The study also highlights the efficacy of mTACE in modulating the immunosuppressive tumor microenvironment, thereby opening new avenues for combinatorial immunotherapeutic strategies in HCC management.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Células Supresoras de Origen Mieloide , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Células Supresoras de Origen Mieloide/inmunología , Quimioembolización Terapéutica/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Micropartículas Derivadas de Células/inmunología , Micropartículas Derivadas de Células/metabolismo , Adulto , Microambiente Tumoral/inmunología
12.
Heliyon ; 10(16): e36038, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224339

RESUMEN

Addressing the growing challenges of periodontal and peri-implant diseases, this study first reports a promising advancement in precision dentistry: an intricately formulated biopolymer spray designed for precise, localized drug delivery during tailored dental procedures. Poly (lactic-co-glycolic acid) (PLGA), recognized for its controlled release, biodegradability, and FDA-approved biocompatibility, forms the core of this formulation. Utilizing the double emulsion method, PLGA microparticles (PLGA-MPs) were loaded with dental antibiotics: sodium amoxicillin (AMX-Na), trihydrate amoxicillin (AMX-Tri), and metronidazole (Met). This antibiotic combination was thoughtfully selected to meet the distinctive requirements of the most impacting dental treatments. The newly developed biopolymer spray underwent thorough in-vitro analysis, revealing an optimized release curve for antibiotics over time, guaranteeing sustained therapeutic efficacy, and dose-dependent efficacy, accommodating personalized treatment approaches. The positive outcomes position the novel biopolymer spray formulation the leaders in advancing localized drug delivery during dental procedures. Moreover, the precise application and the tunable formulation meets the concept of precision medicine: in detail, this formulation represents a significant stride in dental therapeutics, significantly contributing to the predictability of dental implantology.

13.
Carbohydr Polym ; 346: 122647, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245532

RESUMEN

Incorporating 5-aminosalicylic acid (5-ASA) into a colon-specific carrier is crucial for treating inflammatory bowel diseases (IBD), as it enhances therapeutic efficacy, targets the affected regions directly, and minimizes side effects. This study evaluated the impact of incorporating cellulose nanofibers (CNF) on the in vitro and in vivo biological performance of retrograded starch/pectin (RS/P) microparticles (MPs) containing 5-ASA. Using Fourier Transform Infrared (FTIR) Spectroscopy, shifts in the spectra of retrograded samples containing CNF were observed with increasing CNF proportions, suggesting the establishment of new supramolecular interactions. Liquid absorption exhibited pH-dependent behaviors, with reduced absorption in simulated gastric fluid (∼269 %) and increased absorption in simulated colonic fluid (∼662 %). Increasing CNF concentrations enhanced mucoadhesion in porcine colonic sections, with a maximum force of 3.4 N at 50 % CNF. Caco-2 cell viability tests showed biocompatibility across all tested concentrations (0.0625-2.0000 mg/mL). Evaluation of intestinal permeability in Caco-2 cell monolayers demonstrated up to a tenfold increase in 5-ASA permeation, ranging from 29 % to 48 %. An in vivo study using Galleria mellonella larvae, with inflammation induced by LPS, showed reduction of inflammation. Given the scalability of spray-drying, these findings suggest the potential of CNF-incorporated RS/P microparticles for targeted 5-ASA delivery in IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Mesalamina , Nanofibras , Pectinas , Almidón , Mesalamina/química , Mesalamina/farmacología , Mesalamina/administración & dosificación , Animales , Células CACO-2 , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Nanofibras/química , Nanofibras/toxicidad , Porcinos , Pectinas/química , Almidón/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Supervivencia Celular/efectos de los fármacos , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/administración & dosificación
14.
J Control Release ; 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39251139

RESUMEN

In addition to residual tumor cells, surgery-induced inflammation significantly contributes to tumor recurrence and metastasis by recruiting polymorphonuclear neutrophils (PMNs) and promoting their involvement in tumor cell proliferation, invasion and immune evasion. Efficiently eliminating residual tumor cells while concurrently intervening in PMN function represents a promising approach for enhanced postoperative cancer treatment. Here, a chitosan/polyethylene oxide electrospun fibrous scaffold co-delivering celecoxib (CEL) and doxorubicin-loaded tumor cell-derived microparticles (DOX-MPs) is developed for postoperative in-situ treatment in breast cancer. This implant (CEL/DOX-MPs@CP) ensures prolonged drug retention and sustained release within the surgical tumor cavity. The released DOX-MPs effectively eliminate residual tumor cells, while the released CEL inhibits the function of inflammatory PMNs, suppressing their promotion of residual tumor cell proliferation, migration and invasion, as well as remodeling the tumor immune microenvironment. Importantly, the strategy is closely associated with interference in neutrophil extracellular trap (NET) released from inflammatory PMNs, leading to a substantial reduction in postoperative tumor recurrence and metastasis. Our results demonstrate that CEL/DOX-MPs@CP holds great promise as an implant to enhance the prognosis of breast cancer patients following surgery.

15.
J Sci Food Agric ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264031

RESUMEN

BACKGROUND: A colorimetric method for the quantification of hydrogen sulfide (H2S) produced in microbial fermentations was developed using lead gelled alginate microparticles packed in glass columns. The formation of a lead sulfide complex, between H2S and lead ion (Pb2+) immobilized on the microparticles, allowed simple and accurate quantification by colorimetry. RESULTS: The microparticle-loaded columns were calibrated and showed significant analytical sensitivity. The calibration curve of the system showed a correlation coefficient (r2) of 0.995 and a detection limit of 1.29 ± 0.02 µg L-1. The application of the columns in laboratory wine fermentations was able to detect variations in H2S production from 10.6 to 23.5 µg L-1 by increasing the sugar content in the medium, and from 10.6 to 3.2 µg L-1 with decreasing nitrogen content in the medium. CONCLUSION: Validation of the proposed method was carried out by determining H2S in a vinic fermentation model, the results of which were compared with those obtained using a reference chemical method. The data obtained showed no statistically significant differences between the two methods, confirming the reliability and accuracy of the developed system. © 2024 Society of Chemical Industry.

16.
Bull Exp Biol Med ; 177(2): 238-242, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39090460

RESUMEN

Interaction of microbiota with hybrid vaterite-pectin microparticles as an attractive multifunctional vehicle for mucosal delivery should not provoke inflammation. Our purpose was to study the reaction of bacteria E. coli strain Mg1655 and isolate SharL from a patient with Crohn disease on the cultivation with hybrid microparticles and vaterite, and the subsequent activation of neutrophils. Vaterite-pectin microparticles enhanced leakage of ATP from bacteria. For E. coli Mg1655, the concentration of DNA decreased, while intracellular ATP increased. For E. coli SharL, the intracellular ATP decreased with simultaneous growth of DNA. Bacteria and microparticles together did not enhance activation of neutrophils in comparison with the particles per se in the medium without serum and in comparison with bacteria in the medium supplemented with serum; microparticles did not reduce functional activity of neutrophils.


Asunto(s)
Escherichia coli , Neutrófilos , Pectinas , Humanos , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Escherichia coli/efectos de los fármacos , Pectinas/farmacología , Adenosina Trifosfato/metabolismo , Carbonato de Calcio/farmacología , Carbonato de Calcio/química , Enfermedad de Crohn/microbiología , Enfermedad de Crohn/patología , Activación Neutrófila/efectos de los fármacos
17.
JACC Basic Transl Sci ; 9(7): 845-864, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39170957

RESUMEN

Pathological tissues release a variety of factors, including extracellular vesicles (EVs) shed by activated or apoptotic cells. EVs trapped within the native pathological valves may act as key mediators of valve thrombosis. Human aortic stenosis EVs promote activation of valvular endothelial cells, leading to endothelial dysfunction, and proadhesive and procoagulant responses.

18.
Expert Opin Drug Deliv ; : 1-17, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39141571

RESUMEN

BACKGROUND: Oral delivery of small interfering RNAs (siRNAs) draws significant attention, but the gastrointestinal tract (GIT) has many biological barriers that limit the drugs' bioavailability. The aim of this work was to investigate the potential of micro- and nano-sized CaCO3 and PLA carriers for oral delivery of siRNA and reveal a relationship between the physicochemical features of these carriers and their biodistribution. RESEARCH DESIGN AND METHODS: In vitro stability of carriers was investigated in simulated gastric and intestinal fluids. Toxicity and cellular uptake were investigated on Caco-2 cells. The biodistribution profiles of the developed CaCO3 and PLA carriers were examined using different visualization methods, including SPECT, fluorescence imaging, radiometry, and histological analysis. The delivery efficiency of siRNA loaded carriers was investigated both in vitro and in vivo. RESULTS: Micro-sized carriers were accumulated in the stomach and later localized in the colon tissues. The nanoscale particles (100-250 nm) were distributed in the colon tissues. nPLA was also detected in small intestine. The developed carriers can prevent siRNA from premature degradation in GIT media. CONCLUSION: Our results reveal how the physicochemical properties of the particles, including their size and material type can affect their biodistribution profile and oral delivery of siRNA.

19.
Adv Mater ; : e2311841, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39091048

RESUMEN

Despite the substantial advancement in developing various hydrogel microparticle (HMP) synthesis methods, emulsification through porous medium to synthesize functional hybrid protein-polymer HMPs has yet to be addressed. Here, the aided porous medium emulsification for hydrogel microparticle synthesis (APME-HMS) system, an innovative approach drawing inspiration from porous medium emulsification is introduced. This method capitalizes on emulsifying immiscible phases within a 3D porous structure for optimal HMP production. Using the APME-HMS system, synthesized responsive bovine serum albumin (BSA) and polyethylene glycol diacrylate (PEGDA) HMPs of various sizes are successfully synthesized. Preserving protein structural integrity and functionality enable the formation of cytochrome c (cyt c) - PEGDA HMPs for hydrogen peroxide (H2O2) detection at various concentrations. The flexibility of the APME-HMS system is demonstrated by its ability to efficiently synthesize HMPs using low volumes (≈50 µL) and concentrations (100 µm) of proteins within minutes while preserving proteins' structural and functional properties. Additionally, the capability of the APME-HMS method to produce a diverse array of HMP types enriches the palette of HMP fabrication techniques, presenting it as a cost-effective, biocompatible, and scalable alternative for various biomedical applications, such as controlled drug delivery, 3D printing bio-inks, biosensing devices, with potential implications even in culinary applications.

20.
Gels ; 10(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39195014

RESUMEN

Melanoma is one of the most aggressive forms of skin cancer, which is characterized by metastasis and poor prognosis due to the limited effectiveness of current therapies and the toxicity of conventional drugs. For this reason and in recent years, one of the most promising strategies in the treatment of this form of cancer is the use of drug delivery systems as carriers capable of conveying the therapeutic agent into the tumor microenvironment, thus preventing its degradation and improving its safety and effectiveness profiles. In the present work, microparticles based on silk fibroin and epifibroin 0039, silk-derived proteins loaded with idebenone, were created, which act as therapeutic carriers for topical use in the treatment of melanoma. The resulting particles have a spherical shape, good loading efficiency, and release capacity of idebenone. Efficacy studies have demonstrated a reduction in the proliferation of COLO-38, melanoma tumor cells, while safety tests have demonstrated that the microparticles are not cytotoxic and do not possess prosensitizing activity. Notably, transdermal release studies revealed that all particles released idebenone over more days. The analysis of the stimulatory markers of the proinflammatory process, CD54 and CD86, did not show any increase in expression, thus confirming the absence of potential prosesensitization effects of the silk fibroin-based particles. The research, therefore, found that idebenone-loaded silk protein microparticles could effectively reduce the proliferation of melanoma cells without cytotoxicity. This indicates the promise of a safe and effective treatment of melanoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA