RESUMEN
In this work, we investigate the influence of curvature on the dynamic susceptibility in FeGe nanowires, both curved and straight, hosting a skyrmionic tube texture under the action of an external bias field, using micromagnetic simulations. Our results demonstrate that both the resonance frequencies and the number of resonant peaks are highly dependent on the curvature of the system. To further understand the nature of the spin wave modes, we analyze the spatial distributions of the resonant mode amplitudes and phases, describing the differences among resonance modes observed. The ability to control the dynamic properties and frequencies of these nanostructures underscores their potential application in frequency-selective magnetic devices.
RESUMEN
This work presents the analysis of the stability of magnetic bimerons in a cylindrical nanotube. Through micromagnetic simulations, we study the influence of magnetic and geometrical parameters on the bimeron existence and size. The obtained results allow us to present diagram states showing the stability region of a bimeron as a function of the nanotube's height and radius for different anisotropy and Dzyaloshinskii-Moriya interaction strengths. We also obtain two other magnetic states in the range of parameters where the bimeron is not stable: helicoidal and saturated states.