Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Foods Hum Nutr ; 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39243313

RESUMEN

Common buckwheat (Fagopyrum esculentum Moench) is a gluten-free underutilized pseudocereal with excellent therapeutic and nutraceutical potential. Sprouts and microgreens produced from this plant species can be consumed regularly owing to a rich nutritional profile that can be improved by regulating the abiotic factors during their growth. Therefore, this study explores the responses of common buckwheat sprouts and microgreens in terms of growth and phytochemicals accumulation under temperature (16, and 25 ºC) and photoperiodic (16/8 h and 20/4 h, light/dark intervals) variations. Some analyses were also performed at 4 and 8 ºC. The findings highlight the beneficial effects of mild stress induced by extended photoperiod and moderate temperature like enhanced yield and phytochemical content. Extending the photoperiodic duration from 16/8 h to 20/4 h significantly triggered the biosynthesis of pigments such as carotenoids and chlorophyll in 12-day-old microgreen leaves. Likewise, a moderate temperature i.e., 16 ºC was proved more effective in inducing the accumulation of secondary metabolites including phenolics and flavonoids. However, extreme cold conditions hindered the sprouting and growth rate underscoring common buckwheat sensitivity to low temperature. These findings are crucial for refining the production strategies, ensuring the nutritional values, and optimizing the potential of common buckwheat sprouts and microgreens as "superfoods".

2.
Food Res Int ; 193: 114812, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39160037

RESUMEN

Microgreens, also called superfoods, emerge because of their high levels of nutrients, diverse flavour profiles, and sustainable cultivation methods, which make them culinary delights and valuable to a healthy and flavorful diet. The present study investigated Brassicaceae family microgreens, proposing a novel system (quality indices) that allows scoring among them. Fourteen Brassica microgreen species were morphological, phytochemical, and sensorial investigated. The morphological assessment revealed that radish microgreens exhibited the highest leaf area (p < 0.05), while red mizuna demonstrated superior yield. Cauliflower microgreens contained the highest concentrations of ascorbic acid (HPLC-DAD) and total phenolic content (p < 0.05). Phytochemical analysis using HPLC-MS/MS identified over 18 glucosinolates and phenolic compounds. Red mustard and red cabbage showed the highest glucosinolate content (p < 0.05). Watercress exhibited the highest phenolic compound content (p < 0.05), primarily flavonoids, while broccoli and radish contained the highest isothiocyanate levels. Cauliflower microgreens resulted in the most consumer-accepted variety. Appling quality indices scoring system identified radish, cauliflower, and broccoli microgreens as the most promising species. This study underscores the potential of Brassica microgreens as an excellent source of health-promoting phytochemicals with favorable market acceptance, providing valuable insights for both nutritional research and commercial applications.


Asunto(s)
Brassicaceae , Glucosinolatos , Fenoles , Fitoquímicos , Gusto , Fitoquímicos/análisis , Glucosinolatos/análisis , Fenoles/análisis , Brassicaceae/química , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Humanos , Ácido Ascórbico/análisis , Flavonoides/análisis , Brassica/química , Hojas de la Planta/química , Isotiocianatos/análisis , Raphanus/química
3.
Plants (Basel) ; 13(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39204749

RESUMEN

Considering the current global climate and demographic conditions, combined with the growing demand for food diversification, the need for innovative functional foods that adhere to the principles of the circular economy is becoming clear. Therefore, this research aims to identify an appropriate cultivation system and growth substrate to maintain a high germination rate and produce basil aromatic microplants with superior quality traits that are entirely edible, together with the substrate. Microplants were grown in both aseptic (AS) and non-aseptic (NAS) systems. Both AS and NAS experiments were conducted in vitro using eco-innovative production technology. Moreover, various growth substrates were tested, such as perlite, agar, banana peel, peat, and their combinations. The analyses focused on the germination capacity, morphometric measurements, and biochemical analyses of the microplants. The results showed that the edible agar-based substrate, used in both AS and NAS, increased the germination capacity up to 95.00 ± 0.30%, while peat provided a germination capacity of only 12.07 ± 1.27% under AS conditions and 6.07 ± 0.35% under NAS conditions. Most biochemical analyses indicated that AS conditions are more suitable for basil microplant production, increasing the dry matter content, total phenolic content, total flavonoid content, and total antioxidant capacity compared to NAS conditions. These findings support the adoption of a new eco-innovative technology that provides organic basil microplants, which are fully usable along with the edible agar substrate.

4.
Food Chem X ; 23: 101527, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38974201

RESUMEN

Green leafy vegetables, especially microgreens are gaining popularity due to their high nutritional profiles, rich phytochemical content, and intense flavors. This review explores the growing commercial market for microgreens, especially in upscale dining and premium grocery outlets, highlighting consumer perceptions and their effect on market dynamics. Apart from these, the effect of modern agricultural methods that maximize the growth of microgreens is also examined. The value is anticipated to increase significantly, according to market predictions, from $1.7 billion in 2022 to $2.61 billion by 2029. Positive consumer views on microgreens health benefits drive this growth, although challenges such as varying levels of consumer awareness and income disparities affect sales. The review underscores the need for targeted research and strategic initiatives to enhance consumer understanding and improve cultivation methods to support market expansion in upcoming years.

5.
J Pharm Biomed Anal ; 245: 116181, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38723555

RESUMEN

Hemp-sprouts are emerging as a new class of attractive functional food due to their numerous health benefits when compared to other sprout species. Indeed, the high content of beneficial components including polyphenols and flavonoids makes this type of food a promising and successful market. However, the available literature on this topic is limited and often conflicting as regards to the content of phytocannabinoids. High-performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC-HRMS) was applied in an untargeted metabolomics fashion to extracts of hemp seeds, sprouts and microgreens of nine different genotypes. Both unsupervised and supervised multivariate statistical analysis was performed to reveal variety-specific profiles of phytocannabinoids with surprisingly remarkable levels of phytocannabinoids even in chemotype V samples. Furthermore, a targeted HPLC-HRMS analysis was carried out for the quantitative determination of the major phytocannabinoids including CBDA, CBD, CBGA, CBG, CBCA, CBC, THCA, and trans-Δ9-THC. The last part of the study was focused on the evaluation of the enantiomeric composition of CBCA in hemp seeds, sprouts and microgreens in the different varieties by HPLC-CD (HPLC with online circular dichroism). Chiral analysis of CBCA showed a wide variability of its enantiomeric composition in the different varieties, thus contributing to the understanding of the intriguing stereochemical behavior of this compound in an early growth stage. However, further investigation is needed to determine the genetic factors responsible for the low enantiopurity of this compound.


Asunto(s)
Cannabis , Semillas , Cannabis/química , Cannabis/crecimiento & desarrollo , Semillas/química , Cromatografía Líquida de Alta Presión/métodos , Cannabinoides/análisis , Cannabinoides/química , Extractos Vegetales/química , Extractos Vegetales/análisis , Espectrometría de Masas/métodos , Metabolómica/métodos , Estereoisomerismo , Dicroismo Circular/métodos
6.
J Agric Food Chem ; 72(20): 11438-11451, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728027

RESUMEN

The spreading awareness of the health benefits associated with the consumption of plant-based foods is fueling the market of innovative vegetable products, including microgreens, recognized as a promising source of bioactive compounds. To evaluate the potential of oleaginous plant microgreens as a source of bioactive fatty acids, gas chromatography-mass spectrometry was exploited to characterize the total fatty acid content of five microgreens, namely, chia, flax, soy, sunflower, and rapeseed (canola). Chia and flax microgreens appeared as interesting sources of α-linolenic acid (ALA), with total concentrations of 2.6 and 2.9 g/100 g of dried weight (DW), respectively. Based on these amounts, approximately 15% of the ALA daily intake recommended by the European Food Safety Authority can be provided by 100 g of the corresponding fresh products. Flow injection analysis with high-resolution Fourier transform single and tandem mass spectrometry enabled a semi-quantitative profiling of triacylglycerols (TGs) and sterol esters (SEs) in the examined microgreen crops, confirming their role as additional sources of fatty acids like ALA and linoleic acid (LA), along with glycerophospholipids. The highest amounts of TGs and SEs were observed in rapeseed and sunflower microgreens (ca. 50 and 4-5 µmol/g of DW, respectively), followed by flax (ca. 20 and 3 µmol/g DW). TG 54:9, 54:8, and 54:7 prevailed in the case of flax and chia, whereas TG 54:3, 54:4, and 54:5 were the most abundant TGs in the case of rapeseed. ß-Sitosteryl linoleate and linolenate were generally prevailing in the SE profiles, although campesteryl oleate, linoleate, and linolenate exhibited a comparable amount in the case of rapeseed microgreens.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Lipidómica , Cromatografía de Gases y Espectrometría de Masas/métodos , Lipidómica/métodos , Lípidos/análisis , Lípidos/química , Ácidos Grasos/análisis , Ácidos Grasos/química , Lino/química , Verduras/química , Espectrometría de Masas/métodos , Triglicéridos/análisis , Triglicéridos/química
7.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612494

RESUMEN

Climate change causes shifts in temperature patterns, and plants adapt their chemical content in order to survive. We compared the effect of low (LT) and high (HT) growing temperatures on the phytochemical content of broccoli (Brassica oleracea L. convar. botrytis (L.) Alef. var. cymosa Duch.) microgreens and the bioactivity of their extracts. Using different spectrophotometric, LC-MS/MS, GC-MS, and statistical methods, we found that LT increased the total phenolics and tannins in broccoli. The total glucosinolates were also increased by LT; however, they were decreased by HT. Soluble sugars, known osmoprotectants, were increased by both types of stress, considerably more by HT than LT, suggesting that HT causes a more intense osmotic imbalance. Both temperatures were detrimental for chlorophyll, with HT being more impactful than LT. HT increased hormone indole-3-acetic acid, implying an important role in broccoli's defense. Ferulic and sinapic acid showed a trade-off scheme: HT increased ferulic while LT increased sinapic acid. Both stresses decreased the potential of broccoli to act against H2O2 damage in mouse embryonal fibroblasts (MEF), human keratinocytes, and liver cancer cells. Among the tested cell types treated by H2O2, the most significant reduction in ROS (36.61%) was recorded in MEF cells treated with RT extracts. The potential of broccoli extracts to inhibit α-amylase increased following both temperature stresses; however, the inhibition of pancreatic lipase was increased by LT only. From the perspective of nutritional value, and based on the obtained results, we conclude that LT conditions result in more nutritious broccoli microgreens than HT.


Asunto(s)
Brassica , Ácidos Cumáricos , Humanos , Animales , Ratones , Temperatura , Cromatografía Liquida , Peróxido de Hidrógeno , Espectrometría de Masas en Tándem
8.
Food Sci Biotechnol ; 33(7): 1541-1557, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38623424

RESUMEN

There are a number of cutting-edge techniques implemented in the germination process, including high pressure processing, ultrasonic, ultraviolet, light, non-thermal plasma, magnetic field, microwave radiation, electrolyzed oxidizing water, and plasma activated water. The influence of these technological advances on seed germination procedure is addressed in this review. The use of these technologies has several benefits, including the enhancement of plant growth rate and the modulation of bioactive chemicals like ABA, protein, and peroxidase concentrations, as well as the suppression of microbial development. Microgreens' positive health effects, such as their antioxidant, anticancer, antiproliferative/pro-oxidant, anti-obesity, and anti-inflammatory properties are extensively reviewed. The phytochemical and bioactive components of microgreens were investigated, including the concentrations of vitamin K, vitamin C, vitamin E, micro and macro nutrients, pro-vitamin A, polyphenols, and glucosinolates. Furthermore, the potential commercial uses of microgreens, as well as the current market transformation and prospects for the future are explored.

9.
J Agric Food Chem ; 72(17): 9587-9598, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588384

RESUMEN

Far-red (FR) light influences plant development significantly through shade avoidance response and photosynthetic modulation, but there is limited knowledge on how FR treatments influence the growth and nutrition of vegetables at different maturity stages in controlled environment agriculture (CEA). Here, we comprehensively investigated the impacts of FR on the yield, morphology, and phytonutrients of ruby streaks mustard (RS) at microgreen, baby leaf, and flowering stages. Treatments including white control, white with supplementary FR, white followed by singularly applied FR, and enhanced white (WE) matching the extended daily light integral (eDLI) of FR were designed for separating the effects of light intensity and quality. Results showed that singular and supplemental FR affected plant development and nutrition similarly throughout the growth cycle, with light intensity and quality playing varying roles at different stages. Specifically, FR did not affect the fresh and dry weight of microgreens but increased those values for baby leaves, although not as effectively as WE. Meanwhile, FR caused significant morphological change and accelerated the development of leaves, flowers, and seedpods more dramatically than WE. With regard to phytonutrients, light treatments affected the metabolomic profiles for baby leaves more dramatically than microgreens and flowers. FR decreased the glucosinolate and anthocyanin contents in microgreens and baby leaves, while WE increased the contents of those compounds in baby leaves. This study illustrates the complex impacts of FR on RS and provides valuable information for selecting optimal lighting conditions in CEA.


Asunto(s)
Biomasa , Flores , Planta de la Mostaza , Fitoquímicos , Hojas de la Planta , Luz Roja , Antocianinas/análisis , Flores/química , Flores/crecimiento & desarrollo , Flores/efectos de la radiación , Planta de la Mostaza/química , Planta de la Mostaza/crecimiento & desarrollo , Planta de la Mostaza/efectos de la radiación , Fotosíntesis/efectos de la radiación , Fitoquímicos/química , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación
10.
Carbohydr Polym ; 336: 122091, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670765

RESUMEN

In this study, konjac glucomannan (KG) was incorporated in high acyl gellan (HAG) and low acyl gellan (LAG) hydrogels in different ratios. The addition of KG increased pseudoplasticity and thermal hysteresis values of the hydrogels. Improvement in elasticity and water holding capacity (WHC) was observed in KG-LAG hydrogels. The highest WHC (98.5 %) was observed for 1K1H (KG:HAG = 1:1) and 3K7L (KG:LAG = 3:7) hydrogels. The crystallinity of the composite hydrogels was lower than hydrogels prepared from individual biopolymers. The hydrogels exhibited a rough surface with minute pores in the cross-section, due to the aggregation of glucomannan on the gellan network in the composite hydrogels. While HAG and 1K1H hydrogels exhibited greater swelling at low pH (3.0), LAG and 3K7L exhibited greater swelling at high pH (11.0). At pH 7.0, the hydrogels exhibited swelling indices >300 %. Incorporation of 1K1H hydrogel at 10 % (w/w) in sandy loamy soil under semi-arid conditions increased the germination of fenugreek microgreens from 60 % to 80 % on the 15th day. Furthermore, the moisture evaporation rate of the soil reduced from 35 % to <15 %, positively impacting the physicochemical properties of the microgreens. The composite hydrogels were successful in achieving a controlled release of phosphate fertilizer.

11.
Foods ; 13(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38472870

RESUMEN

The aim of this study was to analyze in detail the phytochemical composition of amaranth (AMJ), red beet (RBJ), and broccoli (BCJ) microgreens and cold-pressed juices and to evaluate the antioxidant and sensory properties of the juices. The results showed the presence of various phenolic compounds in all samples, namely betalains in amaranth and red beet microgreens, while glucosinolates were only detected in broccoli microgreens. Phenolic acids and derivatives dominated in amaranth and broccoli microgreens, while apigenin C-glycosides were most abundant in red beet microgreens. Cold-pressing of microgreens into juice significantly altered the profiles of bioactive compounds. Various isothiocyanates were detected in BCJ, while more phenolic acid aglycones and their derivatives with organic acids (quinic acid and malic acid) were identified in all juices. Microgreen juices exhibited good antioxidant properties, especially ABTS•+ scavenging activity and ferric reducing antioxidant power. Microgreen juices had mild acidity, low sugar content, and good sensory acceptability and quality with the typical flavors of the respective microgreen species. Cold-pressed microgreen juices from AMJ, RBJ, and BCJ represent a rich source of bioactive compounds and can be characterized as novel functional products.

12.
Foods ; 13(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38472902

RESUMEN

This study investigated the impact of Methyl Jasmonate (MeJA) application on the nutritional content and yield of five different colored radish microgreens. Microgreens were produced without substrate and subjected to 0.5 mM and 1.0 mM MeJA treatments on the 7th day, three days before harvest. The parameters measured included yield, dry matter, minerals, amino acids, secondary metabolites such as chlorophylls (Chls), anthocyanins, flavonoids, phenolics, glucosinolates (GSLs), vitamin C, and antioxidant capacity. MeJA at 1.0 mM generally improved yield and dry weight across cultivars, and all microgreens exhibited rich mineral and amino acid composition, with the influence of cultivar being more significant than MeJA treatment. However, MeJA enhanced all cultivars' anthocyanins, GSLs, phenolics, flavonoids, and antioxidant activities. Generally, as the antioxidant capacity is the primary factor influencing the nutritional quality of microgreens, MeJA-treated microgreens, especially with selected superior cultivars such as 'Asia purple' and 'Koregon red', could offer a potential for cultivation of value-added, eco-friendly microgreens with substrate-free cultivation.

13.
J Sci Food Agric ; 104(10): 5921-5929, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38450779

RESUMEN

BACKGROUND: Microgreens constitute dietary sources of bioactive compounds imparting numerous health benefits and enhancing sensory experience. They can be successfully cultivated in soilless systems where biostimulants can be easily integrated as seed-priming and post-germination agents improving the sustainability of a crop's final production. Compared to an untreated control, three priming agents (a commercial legume-derived protein hydrolysate (A250), a novel protein hydrolysate derived from peanut biomass (H250) and hydropriming (H2O)) were applied to Komatsuna and Mibuna seeds grown as microgreens and compared for their effects on yield parameters, mineral composition, ABTS and FRAP antioxidant capacity, carotenoid concentration and phenolic compounds. RESULTS: Significant effects of the main experimental factors and their interactions were identified on antioxidant capacity. Compared to the control and hydropriming, the highest ABTS and FRAP values were observed in Mibuna with the A250 and H250 treatments, respectively. Additionally, the H250 treatment increased the total concentrations of phenolic acid derivatives and flavonoid derivatives in Mibuna and Komatsuna, in tune with the levels of total flavonoids. Concerning mineral composition, the highest concentrations in both species were those of phosphorus and nitrate. CONCLUSION: These results highlight the potential of select plant-based biostimulants as priming agents to enhance the antioxidant capacity, nutrient content and bioactive compound content, thus further increasing their functional and nutritive quality. In the light of this, the possibility of reducing the application of fertilizers by promoting a green transition for the intensive production of microgreens could subsequently be evaluated. © 2024 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Valor Nutritivo , Fenoles , Semillas , Antioxidantes/química , Antioxidantes/análisis , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Fenoles/química , Fenoles/análisis , Arachis/química , Flavonoides/análisis , Flavonoides/química , Hidrolisados de Proteína/química , Carotenoides/análisis , Carotenoides/química , Proteínas de Plantas/metabolismo
14.
J Agric Food Chem ; 72(9): 4947-4957, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38393752

RESUMEN

The impact of selenium (Se) enrichment on bioactive compounds and sugars and Se speciation was assessed on different microgreens (green pea, red radish, and alfalfa). Sodium selenite and sodium selenate at a total concentration of 20 µM (1:1) lead to a noticeable Se biofortification (40-90 mg Se kg-1 DW). In green pea and alfalfa, Se did not negatively impact phenolics and antioxidant capacity, while in red radish, a significant decrease was found. Regarding photosynthetic parameters, Se notably increased the level of chlorophylls and carotenoids in green pea, decreased chlorophyll levels in alfalfa, and had no effect on red radish. Se treatment significantly increased sugar levels in green pea and alfalfa but not in red radish. Red radish had the highest Se amino acid content (59%), followed by alfalfa (34%) and green pea (28%). These findings suggest that Se-biofortified microgreens have the potential as functional foods to improve Se intake in humans.


Asunto(s)
Raphanus , Selenio , Humanos , Selenio/metabolismo , Raphanus/química , Pisum sativum , Medicago sativa/metabolismo , Clorofila , Fitoquímicos
15.
J Sci Food Agric ; 104(7): 4286-4295, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308402

RESUMEN

BACKGROUND: Muffins are delightful baked food products that have earned a prominent place in the daily diet of a majority of people around the world. The incorporation of microgreens juice powder (MJP) into muffins boosts their nutritional value. The influence of the incorporation of wheatgrass, fenugreek and basil MJP at 1.5% and 3.0% levels on the nutritional composition, physical properties, pasting, sensory, textural and phenolic profile of functional muffins was evaluated. RESULTS: The results indicated a significant increase in the protein content, ash content, dietary fiber and total phenolic content of MJP incorporated muffins. The incorporation of MJP to the muffins led to a gradual reduction in the L*, a* and b* values. Baking characteristic such as bake loss decreased significantly as a result of MJP incorporation. Furthermore, the incorporation of various MJPs resulted in a significant decrease in the peak viscosity of the flour-MJP blends. Regarding texture, the hardness and chewiness of the muffins increased progressively with an increase in the level of MJP incorporation. The highest hardness (10.15 N) and chewiness (24.45 mJ) were noted for 3% fenugreek MJP incorporated muffins (FK 3.0). The sensory score of MJP incorporated muffins was acceptable and satisfactory. Additionally, 3% basil MJP incorporated muffins (BL 3.0) marked the dominant presence of majority of the detected phenolic acids such as ferulic acid, sinapic acid, chlorogenic acid, caffeic acid, quercetin, cinnamic acid, isothymosin and rosamarinic acid. The highest concentration of p-coumaric acid (11.95 mg kg-1), vanillic acid (26.07 mg kg-1) and kaempferol (8.04 mg kg-1) was recorded for FK 3.0 muffin. CONCLUSION: MJP incorporated muffins revealed the pool of phenolic acids and the reduced bake loss is of industrial interest. The present study concludes that wheatgrass, fenugreek and basil MJP can be incorporated by up to 3% into baked products as a source of functional ingredients for health benefits. © 2024 Society of Chemical Industry.


Asunto(s)
Lactonas , Ocimum basilicum , Trigonella , Humanos , Polvos , Fenoles
16.
Heliyon ; 10(4): e25870, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38390124

RESUMEN

Escalating public health concerns necessitate innovative approaches to food sources. Microgreens, nutrient-rich seedlings of vegetables and herbs, have gained recognition as functional foods. This review explores the evolution of microgreens, cultivation methods, biochemical changes during germination, nutritional content, health benefits, and commercial significance. Comprehensive studies have demonstrated that microgreens have an elevated level of various nutrients. Further, in vitro and in vivo research validated their antioxidant, anticancer, antibacterial, anti-inflammatory, anti-obesity, and antidiabetic properties. Microgreens, termed "desert food," show promise for sustainable food production in climate-vulnerable regions. This paper synthesizes recent research on microgreens, addressing challenges and gaps in understanding their nutritional content and health benefits. It contributes valuable insights for future research, fostering sustainable agriculture and enhancing understanding of microgreens in human health and nutrition.

17.
Food Res Int ; 179: 114028, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342546

RESUMEN

Washing and sanitation are vital steps during the postharvest processing of fresh produce to reduce the microbial load on the produce surface. Although current process control and validation tools effectively predict sanitizer concentrations in wash water, they have significant limitations in assessing sanitizer effectiveness for reducing microbial counts on produce surfaces. These challenges highlight the urgent need to improve the validation of sanitation processes, especially considering the presence of dynamic organic contaminants and complex surface topographies. This study aims to provide the fresh produce industry with a novel, reliable, and highly accurate method for validating the sanitation efficacy on the produce surface. Our results demonstrate the feasibility of using a food-grade, catalase (CAT)-immobilized biomimetic leaf in combination with vibrational spectroscopy and machine learning to predict microbial inactivation on microgreen surfaces. This was tested using two sanitizers: sodium hypochlorite (NaClO) and hydrogen peroxide (H2O2). The developed CAT-immobilized leaf-replicated PDMS (CAT@L-PDMS) effectively mimics the microscale topographies and bacterial distribution on the leaf surface. Alterations in the FTIR spectra of CAT@L-PDMS, following simulated sanitation processes, indicate chemical changes due to CAT oxidation induced by NaClO or H2O2 treatments, facilitating the subsequent machine learning modeling. Among the five algorithms tested, the competitive adaptive reweighted sampling partial least squares discriminant analysis (CARS-PLSDA) algorithm was the most effective for classifying the inactivation efficacy of E. coli on microgreen leaf surfaces. It predicted bacterial reduction on microgreen surfaces with 100% accuracy in both training and prediction sets for NaClO, and 95% in the training set and 86% in the prediction set for H2O2. This approach can improve the validation of fresh produce sanitation processes and pave the way for future research.


Asunto(s)
Desinfectantes , Desinfectantes/farmacología , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Escherichia coli , Peróxido de Hidrógeno/análisis , Saneamiento/métodos , Catalasa , Biomimética , Manipulación de Alimentos/métodos , Bacterias
18.
Food Res Int ; 176: 113834, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163730

RESUMEN

Trigonella foenum-graecum L. (Fenugreek) is an annual herb that belongs to Fabaceae family. The compositional make-up of microgreens depends on prevailing environmental conditions. So, Trigonella microgreens were cultivated under different photoperiod and temperature conditions and evaluated for plant height, total chlorophyll content (TCC), targeted compound analysis and non-targeted UHPLC-QTOF-IMS based metabolomic profile. The plant height and TCC of Trigonella microgreens increased by approximately 22 % and 20 %, respectively under T1 conditions (longer photoperiod of 22 h with 22 °C in light and 17 °C in dark). The targeted phenolic profile analysis revealed the dominant presence of gallic acid, p-coumaric acid and apigenin in Trigonella microgreens. Also, the concentration of p-coumaric acid concentration raised from 3.51 mg/g to 5.83 mg/g as a response of T1 conditions. The sugar profile revealed augmented concentration of myo-inositol, glucose, fructose, xylose, maltose, and sucrose in longer photoperiod with T1 conditions. The microgreens were also rich in amino acids like aspartic acid, glutamic acid, leucine, isoleucine, and phenylalanine. Notably, the concentration of proline increased from 10.40 mg/g to 16.92 mg/g as a response to T1 growth conditions. The concentration of these metabolites varied significantly under different photoperiod and temperature conditions. The comprehensive non-targeted UHPLC-QTOF-IMS analysis of microgreens revealed different class of metabolites like organic compounds, alkaloids, coumarin-derivatives, phenolic and flavonoid derivatives, terpenoids, sugars, amino acids and few nucleic acid derivatives. The multivariate PLS-DA explained different expression level of metabolites under different growing conditions. The T1 growing condition resulted in the increased biosynthesis of phenolic compounds and various metabolites. The expression level of terpenoid derivatives specifically of Trigonelloside C and Trigoneoside XIIa/b increased under T1 conditions. The substantial alteration in the metabolites due to growing conditions may alter the microgreen's dietary benefits. So, additional research may be warranted.


Asunto(s)
Trigonella , Temperatura , Fotoperiodo , Cromatografía Líquida de Alta Presión/métodos , Fenoles/análisis
19.
Food Chem ; 441: 138282, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38199108

RESUMEN

This study has redirected focus towards the untapped potential of millets, exploring their utilization as small-scale vegetables like sprouts and microgreens. This study assessed the metabolite profiles and therapeutic efficacy of barnyard millets as sprouts and microgreens for antioxidant, anti-diabetic, and bioaccessibility properties. Based on the study, sprouts contained 456.52 mg GE/g of starch and microgreens contained 470.04 mg GE/g of carbohydrates, whereas the gastric phase of microgreens showed 426.85 mg BSAE/g, 397.6 mg LE/g, 348.19 g RE/g, and 307.40 g AAE/g of proteins, amino acids, vitamin A and vitamin C respectively. Secondary metabolites were significantly concentrated in the microgreen stage which is responsible for their increased antioxidant and antidiabetic potential than sprouts. This study validated the therapeutic and nutritional value of millet sprouts and microgreens by demonstrating their significant nutritional composition.


Asunto(s)
Antioxidantes , Echinochloa , Antioxidantes/metabolismo , Echinochloa/química , Hipoglucemiantes , Vitaminas , Proteínas
20.
Plants (Basel) ; 13(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38202432

RESUMEN

Light is a critical component of indoor plant cultivation, as different wavelengths can influence both the physiology and morphology of plants. Furthermore, fertilization and seeding density can also potentially interact with the light recipe to affect production outcomes. However, maximizing production is an ongoing research topic, and it is often divested from resource use efficiencies. In this study, three species of microgreens-kohlrabi; mustard; and radish-were grown under five light recipes; with and without fertilizer; and at two seeding densities. We found that the different light recipes had significant effects on biomass accumulation. More specifically, we found that Far-Red light was significantly positively associated with biomass accumulation, as well as improvements in height, leaf area, and leaf weight. We also found a less strong but positive correlation with increasing amounts of Green light and biomass. Red light was negatively associated with biomass accumulation, and Blue light showed a concave downward response. We found that fertilizer improved biomass by a factor of 1.60 across species and that using a high seeding density was 37% more spatially productive. Overall, we found that it was primarily the main effects that explained microgreen production variation, and there were very few instances of significant interactions between light recipe, fertilization, and seeding density. To contextualize the cost of producing these microgreens, we also measured resource use efficiencies and found that the cheaper 24-volt LEDs at a high seeding density with fertilizer were the most efficient production environment for biomass. Therefore, this study has shown that, even with a short growing period of only four days, there was a significant influence of light recipe, fertilization, and seeding density that can change morphology, biomass accumulation, and resource input costs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA