Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(6): 7833-7840, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36630085

RESUMEN

Fabrication and application of novel anisotropic microparticles are of wide interest. Herein, a new method for producing novel crater-terrain hydrogel microparticles is presented using a concept of droplet-aerosol impact and regional polymerization. The surface pattern of microparticles is similar to the widespread "crater" texture on the lunar surface and can be regulated by the impact morphology of aerosols on the droplet surface. Methodological applicability was demonstrated by producing ionic-cross-linked (alginate) and photo-cross-linked (poly(ethylene glycol) diacrylate, PEGDA) microparticles. Additionally, the crater-terrain microparticles (CTMs) can induce nonspecific protein absorption on their surface to acquire cell affinity, and they were exploited as cell carriers to load living cells. Cells could adhere and proliferate, and a special cellular adhesion fingerprint was observed on the novel cell carrier. Therefore, the scalable manufacturing method and biological potential make the engineered microparticles promising to open a new avenue for exploring cell-biomaterial crosstalk.


Asunto(s)
Hidrogeles , Microfluídica , Polietilenglicoles , Materiales Biocompatibles
2.
Front Genet ; 12: 734595, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512735

RESUMEN

Late-stage cancer metastasis remains incurable in the clinic and is the major cause death in patients. Circulating tumor cells (CTCs) are thought to be metastatic precursors shed from the primary tumor or metastatic deposits and circulate in the blood. The molecular network regulating CTC survival, extravasation, and colonization in distant metastatic sites is poorly defined, largely due to challenges in isolating rare CTCs. Recent advances in CTC isolation and ex vivo culture techniques facilitates single-cell omics and the development of related animal models to study CTC-mediated metastatic progression. With these powerful tools, CTCs can potentially be used as non-invasive biomarkers predicting therapeutic response. These studies may open a new avenue for CTC-specific drug discoveries. In this short review, we aim to summarize recent progress in the characterization of CTCs and their clinical relevance in various cancers, setting the stage for realizing personalized therapies against metastases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA