Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 430
Filtrar
1.
Sci Total Environ ; 953: 176000, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233080

RESUMEN

Αirborne microplastics (MPs) are considered an important exposure hazard to humans, especially in the indoor environment. Deposition and clearance of MPs in the human respiratory tract (HRT) was investigated using the ExDoM2 dosimetry model, modified to incorporate the deposition and clearance of MPs fibers. Fiber deposition was calculated via the fiber equivalent aerodynamic diameter determined using their properties such as size, density and dynamic shape factor. Scenario simulations were performed for elongated particles of cylindrical (base) diameters 1 µm and 10 µm and aspect ratios (ratio of fiber length to base diameter) 3, 10 and 100. Modelling results showed that the highest fiber deposition occurred in the extra-thoracic region due to large particles (fiber cylindrical diameter dp > 0.1 µm), whereas particle length (via the aspect ratio) had an influence mainly on smaller base-diameter fibers (dp < 0.1 µm) that deposited predominantly in the alveolar region. The ExDoM2 dosimetry model was also used to calculate fiber deposition in the HRT using experimental data for microplastic fiber and fragment concentrations in different microenvironments. The highest deposited number dose (220 fibers) after a 24-hour exposure was calculated in the microenvironment (bus) that had the highest fiber concentration (17.3 ± 2.4 fibers/m3). After clearance, the majority (66.4 %) of the average deposited fiber mass was transferred from the respiratory tract to the esophagus via mucociliary clearance, 32.6 % was retained in the respiratory tract, 1 % passed into the blood, and a very small amount (0.0004 %) was transferred to the lymph nodes.

2.
Chempluschem ; : e202400478, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261401

RESUMEN

The antibacterial properties of modified silk fibroin microfibers (SF MFs) have been widely studied. Among various modifications, integration of silver nanoparticles (Ag NPs) and SF MFs has garnered significant attention due to the broad-spectrum antibacterial activities and long-term antibacterial effect of Ag nanomaterials. However, the traditional introduction of reducing agents or other additives during the synthesis of Ag-SF composite MFs potentially affects their structure and antibacterial properties. Facile, green and effective methods for the preparation of Ag-SF MFs with enhanced antibacterial properties are therefore highly desired. In this study, Ag NPs were uniformly in-situ deposited onto the optimized SF MFs by adjusting the pH and duration conditions under the guidance of green chemistry. The loaded Ag NPs have a good dispersibility and an average size of ~10 nm. The stability of SF MFs after the deposition of Ag NPs and the crystalline features of the loaded Ag NPs have been carefully investigated. Moreover, antibacterial experiments confirmed that Ag-SF MFs exhibited superior antibacterial activities. After co-incubating Ag-SF MFs with L929 cells, the cell viability reached 90%, demonstrating the great biocompatibility of the modified fibers. This green in-situ synthetic method will promote the further medical use of Ag-SF MFs in antibacterial fields.

3.
Sci Total Environ ; 952: 175919, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39226968

RESUMEN

Specific campaigns to detect microplastics (MPs) in the urban water cycle were carried out in three drinking water plants and two wastewater treatment plants. A self-designed sampler for MPs detection in water matrices was in this study preliminary validated and then tested in long term campaigns sampling up to 1000 L. Raw drinking water and wastewater show microplastics (MPs) concentrations of 2-11 and of 480-801 MPs/m3, respectively, and MPs removals of 47-78 % and of 84-98 %, correspondingly. Specific roles of chemical and physical conventional processes in microplastics removals were investigated. Solid-liquid separation, flotation and filtration are the main processes for achieving high microplastics removal. Regarding concentrated matrices, MPs concentrations in sludge samples varied in the range of 5000-500,000 MPs/m3. Finally, shapes, size classes and polymers' typologies were investigated in the extracted MPs. The detected sizes are mainly 0.5-0.1 mm in drinking waters while 5-1 mm in wastewaters. Wastewaters were predominated by synthetic fibers (polyester type), while drinking waters were mainly characterized by fragments and the fibers were mostly of natural origin. Finally, the results of this study supported best practices and guidelines for a representative assessment of MPs in water (sampling methods, extraction procedures, characterization and quantification).


Asunto(s)
Agua Potable , Monitoreo del Ambiente , Microplásticos , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales/química , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Agua Potable/química , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos , Ciudades
4.
Toxics ; 12(8)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39195644

RESUMEN

Microplastic pollution is a pervasive issue, with remarkably high concentrations observed even in the most remote locations such as Arctic sea ice and snow. The reason for such large microplastic abundances in sea ice is still speculative and applies mainly to saline or freshwater conditions. In this study, we investigated seasonal ice core samples collected in March 2021 from the northern Baltic Sea (Gulf of Bothnia) for their microplastic distributions. The Baltic Sea is characterized by low salinity and can be ice-covered for up to six months annually. Microplastics were analyzed in the melted ice samples using an adsorption technique and Raman microscopy to identify their abundances, colors, shapes, and sizes to calculate their masses. Due to the strong dynamic of the ice layer and the repeated melting and freezing processes during the ice formation, no discernible trends in microplastic abundances, masses, or polymer types were observed throughout the ice core length. The average microplastic abundance (±SD) in the Baltic Sea ice was determined to be 22.3 ± 8.6 N L-1, with 64.9% of the particles exhibiting a particulate shape and 35.1% having a fibrous shape. The most prevalent polymer type was polyethylene terephthalate (PET), accounting for 44.4% of all polymers. This is likely due to the high proportion of PET fibers (93.8%). The majority of particle-shaped microplastics were identified as polyethylene (PE; 37.2%), followed by PET (17.2%), polyvinyl chloride (PVC; 15.9%), and polypropylene (PP; 15.9%). No correlations were found between microplastic concentrations and proximity to land, cities, industries, or rivers, except for PP mass concentrations and particle sizes, which correlated with distances to industries in Luleå, Sweden.

5.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125616

RESUMEN

Microplastic (MP) contamination in the aquatic environment is a cause of concern worldwide since MP can be taken up by different organisms, altering different biological functions. In particular, evidence is accumulating that MP can affect the relationship between the host and its associated microbial communities (the microbiome), with potentially negative health consequences. Synthetic microfibers (MFs) represent one of the main MPs in the marine environment, which can be accumulated by filter-feeding invertebrates, such as bivalves, with consequent negative effects and transfer through the food chain. In the mussel Mytilus galloprovincialis, polyethylene terephthalate (PET) MFs, with a size distribution resembling that of an MF released from textile washing, have been previously shown to induce multiple stress responses. In this work, in the same experimental conditions, the effects of exposure to PET-MF (96 h, 10, and 100 µg/L) on mussel hemolymph microbiome were evaluated by 16S rRNA gene amplification and sequencing. The results show that PET-MF affects the composition of bacterial communities at the phylum, family and genus level, with stronger effects at the lowest concentration tested. The relationship between MF-induced changes in hemolymph microbial communities and responses observed at the whole organism level are discussed.


Asunto(s)
Hemolinfa , Microbiota , Mytilus , ARN Ribosómico 16S , Animales , Mytilus/microbiología , Hemolinfa/metabolismo , Hemolinfa/microbiología , ARN Ribosómico 16S/genética , Poliésteres , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Tereftalatos Polietilenos , Bacterias/clasificación , Bacterias/genética
6.
J Hazard Mater ; 477: 135272, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39098199

RESUMEN

Microplastics (MP; 1 µm-5 mm) and microfibers (MF; thin, elongated particles with a high-length-to-width ratio) have become a major global environmental issue due to their ubiquity in the oceans and possess complex physicochemical properties that vary their mobility, bioavailability, and toxicity toward organisms and interactions with their surrounding pollutants. Nonetheless, a reliable methodology that would facilitate and automate the monitoring of MP is still lacking. Intending to select practical and standardized methods and considering the challenges in MPs detection, a new analysis protocol based on optical microscopy for the counting and morphological analysis of the particles has been developed. This method overcomes some issues related to the lack of practicality and standardization of the others currently applied, and does not involve sieving, washing, heating, or density separation and digestion processes. Our method is green and requires a minimum quantity of sediment, i.e., 1.5 g, and shortened timeframes. Future research efforts may need to develop and implement new analytical tools and combinations of technologies to complement respective detection limitations and yield reliable characterization of both MFs and MPs. We tested our protocol to study, for the first time, both marine and land sediment in the Vesuvian area of the Gulf of Naples (Italy).

7.
Pharmaceutics ; 16(8)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39204448

RESUMEN

Fiber-based technologies are widely used in various industries, but their use in pharmaceuticals remains limited. While melt extrusion is a standard method for producing medical fibers such as sutures, it is rarely used for pharmaceutical fiber-based dosage forms. The EsoCap system is a notable exception, using a melt-extruded water-soluble filament as the drug release trigger mechanism. The challenge of producing drug-loaded fibers, particularly due to the use of spinning oils, and the processing of the fibers are addressed in this work using other approaches. The aim of this study was to develop processes for the production and processing of pharmaceutical fibers for targeted drug delivery. Fibers loaded with polyvinyl alcohol and fluorescein sodium as a model drug were successfully prepared by a continuous melt extrusion process and directly spun. These fibers exhibited uniform surface smoothness and consistent tensile strength. In addition, the fibers were further processed into tubular dosage forms using a modified knitting machine and demonstrated rapid drug release in a flow cell.

8.
Biosens Bioelectron ; 264: 116672, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39151263

RESUMEN

Low accuracy of diagnosing prostate cancer (PCa) was easily caused by only assaying single prostate specific antigen (PSA) biomarker. Although conventional reported methods for simultaneous detection of two specific PCa biomarkers could improve the diagnostic efficiency and accuracy, low detection sensitivity restrained their use in extreme early-stage PCa clinical assay applications. In order to overcome above drawbacks, this paper herein proposed a multiplexed dual optical microfibers separately functionalized with gold nanorods (GNRs) and Au nanobipyramids (Au NBPs) nanointerfaces with strong localized surface plasmon resonance (LSPR) effects. The sensors could simultaneously detect PSA protein biomarker and long noncoding RNA prostate cancer antigen 3 (lncRNA PCA3) with ultrahigh sensitivity and remarkable specificity. Consequently, the proposed dual optical microfibers multiplexed biosensors could detect the PSA protein and lncRNA PCA3 with ultra-low limit-of-detections (LODs) of 3.97 × 10-15 mol/L and 1.56 × 10-14 mol/L in pure phosphorus buffer solution (PBS), respectively, in which the obtained LODs were three orders of magnitude lower than existed state-of-the-art PCa assay technologies. Additionally, the sensors could discriminate target components from complicated physiological environment, that showing noticeable biosensing specificity of the sensors. With good performances of the sensors, they could successfully assay PSA and lncRNA PCA3 in undiluted human serum and urine simultaneously, respectively. Consequently, our proposed multiplexed sensors could real-time high-sensitivity simultaneously detect complicated human samples, that providing a novel valuable approach for the high-accurate diagnosis of early-stage PCa individuals.


Asunto(s)
Antígenos de Neoplasias , Técnicas Biosensibles , Oro , Límite de Detección , Nanotubos , Antígeno Prostático Específico , Neoplasias de la Próstata , ARN Largo no Codificante , Resonancia por Plasmón de Superficie , Humanos , Antígeno Prostático Específico/sangre , Masculino , Oro/química , ARN Largo no Codificante/genética , ARN Largo no Codificante/sangre , ARN Largo no Codificante/orina , Antígenos de Neoplasias/orina , Antígenos de Neoplasias/sangre , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/orina , Nanotubos/química , Nanopartículas del Metal/química , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/orina
9.
ACS Appl Bio Mater ; 7(9): 5823-5840, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39145987

RESUMEN

Hydrogel microfibers are hydrogel materials engineered into fiber structures. Techniques such as wet spinning, microfluidic spinning, and 3D bioprinting are often used to prepare microfibers due to their ability to precisely control the size, morphology, and structure of the microfibers. Microfibers with different structural morphologies have different functions; they provide a flow-through culture environment for cells to improve viability, and can also be used to induce the differentiation of cells such as skeletal muscle and cardiac muscle cells to eventually form functional organs in vitro through special morphologies. This Review introduces recent advances in microfluidics, 3D bioprinting, and wet spinning in the preparation of microfibers, focusing on the materials and fabrication methods. The applications of microfibers in tissue engineering are highlighted by summarizing their contributions in engineering biomimetic blood vessels, vascularized tissues, bone, heart, pancreas, kidney, liver, and fat. Furthermore, applications of engineered fibers in tissue repair and drug screening are also discussed.


Asunto(s)
Materiales Biocompatibles , Ingeniería de Tejidos , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Hidrogeles/química , Ensayo de Materiales , Animales , Bioimpresión , Andamios del Tejido/química , Impresión Tridimensional , Tamaño de la Partícula
10.
Environ Sci Technol ; 58(37): 16535-16546, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39215709

RESUMEN

Microplastics, particularly microfibers (MFs), pose a significant threat to the environment. Despite their widespread presence, the photochemical reactivity, weathering products, and environmental fate of MFs remain poorly understood. To address this knowledge gap, photodegradation experiments were conducted on three prevalent MFs: polyester (POL), nylon (NYL), and acrylic (ACR), to elucidate their degradation pathways, changes in surface morphology and polymer structure, and chemical and colloidal characterization of weathering products during photochemical degradation of MFs. The results showed that concentrations of dissolved organic carbon, chromophoric dissolved organic matter (DOM), and fluorescent components consistently increased during weathering, exhibiting a continuous release of DOM. Scanning electron microscopy and Raman spectroscopy revealed changes in the surface morphology and polymer spectra of the MFs. During the weathering experiments, DOM aromaticity (SUVA254) decreased, while spectral slope increased, indicating concurrent DOM release and degradation of aromatic components. The released DOM or nanoplastics were negatively charged with sizes between 128 and 374 nm. The production rate constants of DOM or the photochemical reactivity of MFs followed the order ACR > NYL ≥ POL, consistent with their differences in chemical structures. These findings provide an improved understanding of the photochemical reactivity, degradation pathways, weathering products, and environmental fate of microfibers in the environment.


Asunto(s)
Fotólisis , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Microplásticos/química , Espectrometría Raman
11.
Int J Biol Macromol ; 278(Pt 3): 134936, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39179082

RESUMEN

Hydrogel/fiber composites have received wide attention as tissue engineering scaffolds due to the outstanding properties of fibers and hydrogels. In the current research, a hydrogel/fiber composite scaffold was made based on chitosan-modified polycaprolactone (PCL) microfibers and chitosan hydrogel as a binder. The presence of chitosan as a modifier on the surface of fibers and as a binder between fibers can create scaffolds with excellent structural and mechanical properties. To this end, the three-dimensional microfibers were first functionalized with amine groups. Then, the chitosan chains were attached to the fibers by an aldehyde coupling agent and Schiff base reaction. FTIR and Raman spectroscopies corroborated that chitosan was successfully immobilized on PCL fibers. Chitosan-modified fibers were molded with chitosan solutions of various concentrations and the prepared composite scaffolds were stabilized using ionic crosslinking. The obtained composites represented a porous 3D structure with highly interconnected pores. The compressive modulus increased by 19 and 2.7 folds and the tensile modulus was augmented by 28 and 4 folds, in respective dry and swollen states with increasing hydrogel concentration from 0.1 to 1 %. Hydrogel/fiber composites were able to preserve cell viability, and increasing the hydrogel proportion increased adhesion, proliferation and penetration of cells into the scaffold.


Asunto(s)
Quitosano , Hidrogeles , Poliésteres , Andamios del Tejido , Quitosano/química , Hidrogeles/química , Andamios del Tejido/química , Poliésteres/química , Ingeniería de Tejidos/métodos , Materiales Biomiméticos/química , Supervivencia Celular/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Porosidad , Propiedades de Superficie
12.
Polymers (Basel) ; 16(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125189

RESUMEN

This research aims to explore how functionally active structures affect the physical, mechanical, thermal, and fire-resistant properties of elastomeric compositions using ethylene-propylene-diene rubber as a base. The inclusion of aluminosilicate microspheres, microfibers, and a phosphorus-boron-nitrogen-organic modifier in these structures creates a synergistic effect, enhancing the material's heat-insulating properties by strengthening coke and carbonization processes. This results in a 12-19% increase in heating time for unheated sample surfaces and a 6-17% increase in residual coke compared to existing analogs. Microspheres help counteract the negative impact of microfibers on composition density and thermal conductivity, while the phosphorus-boron-containing modifier allows for controlling the formation of the coke layer.

13.
Micromachines (Basel) ; 15(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39203604

RESUMEN

This paper presents the fabrication and characterization of plane capacitors utilizing magnetodielectric materials composed of magnetizable microfibers dispersed within a silicone oil matrix. The microfibers, with a mean diameter of about 0.94 µm, comprise hematite (α-Fe2O3), maghemite (γ-Fe2O3), and magnetite (Fe3O4). This study investigates the electrical behavior of these capacitors under the influence of an external magnetic field superimposed on a medium-frequency alternating electric field, across four distinct volume concentrations of microfibers. Electrical capacitance and resistance measurements were conducted every second over a 60-s interval, revealing significant dependencies on both the quantity of magnetizable phase and the applied magnetic flux density. Furthermore, the temporal stability of the capacitors' characteristics is demonstrated. The obtained data are analyzed to determine the electrical conductance and susceptance of the capacitors, elucidating their sensitivity to variations in microfiber concentration and magnetic field strength. To provide theoretical insight into the observed phenomena, a model based on dipolar approximations is proposed. This model effectively explains the underlying physical mechanisms governing the electrical properties of the capacitors. These findings offer valuable insights into the design and optimization of magnetodielectric-based capacitors for diverse applications in microelectronics and sensor technologies.

14.
Int J Biol Macromol ; 275(Pt 2): 133629, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964682

RESUMEN

In this study, we investigated the use of deep eutectic solvents (DESs) at different molar ratios and temperatures as a green and efficient approach for microfibers (MFs) extraction. Our approach entailed the utilization of Firmiana simplex bark (FSB) fibers, enabling the production of different dimensions of FSB microfibers (FSBMFs) by combining DES pretreatment and mechanical disintegration technique. The proposed practice demonstrates the simplicity and effectiveness of the method. The morphology of the prepared microfibers was studied using the Scanning electron microscopic (SEM) technique. Additionally, the results revealed that the chemical and mechanical treatments did not significantly alter the well-preserved cellulose structure of microfibers, and a crystallinity index of 56.6 % for FSB fibers and 63.8 % for FSBMFs was observed by X-ray diffraction (XRD) analysis. Furthermore, using the freeze-drying technique, FSBMFs in water solutions produced effective aerogels for air purification application. In comparison to commercial mask (CM), FSBMF aerogels' superior hierarchical cellular architectures allowed them to attain excellent filtration efficiencies of 94.48 % (PM10) and 91.51 % (PM2.5) as well as excellent degradation properties were analyzed. The findings show that FSBMFs can be extracted from Firmiana simplex bark, a natural cellulose-rich material, using DES for environmentally friendly aerogel preparation and applications.


Asunto(s)
Biomasa , Corteza de la Planta , Corteza de la Planta/química , Disolventes Eutécticos Profundos/química , Celulosa/química , Geles/química , Difracción de Rayos X , Solventes/química
15.
Sci Total Environ ; 948: 174698, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38997016

RESUMEN

Microplastics, MPs, plastic fragments with a dimension lower than 5 mm, and microfibers, MFs, synthetic and natural/artificial fibrous fragments with a diameter lower than 50 µm, are ubiquitous pollutants identified in different environmental compartments. In this work the occurrence of MPs and MFs on honeybees, Apis mellifera, and beehive products was evaluated, using Fourier transform infrared microspectroscopy, confirming that MPs and MFs are widely present as air contaminants in all the apiary's areas (high and low urbanized areas) in Southern Italy. Results indicated that independently from the site, both honeybees and honey samples, are contaminated by MFs with non-natural color. The majority of MFs were of natural origin followed by artificial MFs and synthetic MFs. Moreover, the chemical composition of MFs isolated from honeybees reflect that used in synthetic fabrics, leading to the hypothesis that they are released from textile to air where are captured by bees. Results highlight that MFs represent a class of ubiquitous airborne anthropogenic pollutants. The identification of polytetrafluoroethylene, PTFE, MPs in honeybees confirm the recent findings that PTFE MPs are diffuse soil and air contaminants while the identification of polyethylene, PE, based MPs in honey samples, from low density urban sites, could be correlated to the large use of PE in agriculture. In the honey samples, also polycaprolactone, PCL, MPs were identified, mainly in high density urban sites, confirming that biodegradable materials could be further pollutants in the environments. The results indicate that honeybees are contaminated by MPs and MFs during their flights or picking up from the hive components, flowers, from other nest mates, from the clothes of the beekeeper, among others and some of them could be transferred to honey samples that could be also affected by soil contamination.


Asunto(s)
Monitoreo del Ambiente , Miel , Microplásticos , Abejas , Animales , Italia , Microplásticos/análisis , Miel/análisis , Cadena Alimentaria , Agricultura , Contaminantes Atmosféricos/análisis , Textiles
16.
Chemosphere ; 363: 142778, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38971436

RESUMEN

The occurrence of natural/artificial and synthetic microfibers was assessed in three commercial fish species (Engraulis encrasicolus, Mullus barbatus, Merluccius merluccius) from the Tyrrhenian Sea sold for human consumption. The gastrointestinal tracts of n. 150 samples were analyzed, the isolated microfibers were classified applying a morphological approach, based on the analysis of their morphological features, coupled with the identification of the chemical composition of a subsample of microfibers. All the species contained microfibers at levels ranging from 0 to 49 items/individual and the number of ingested microfibers significantly differed between pelagic and demersal fishes. The evaluation of fiber morphologies highlighted that natural/artificial microfibers were the most numerous among the isolated microfibers, while the dominant colors were blue, black, and clear in all the species. Chemical characterization confirmed the morphological identification and indicated cellulose and polyester as the most common polymer types. Considering the analytical issues that may affect the evaluation of microfiber pollution, the results pointed out the importance of an accurate morphological approach that allows the distinction between different fiber types, before the spectroscopic analyses. Moreover, the implementation of fast and accessible methods to identify microfibers in fish species intended for human consumption will be beneficial also to make an adequate risk assessment to consumer health.


Asunto(s)
Peces , Microplásticos , Contaminantes Químicos del Agua , Animales , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Peces/metabolismo , Humanos , Monitoreo del Ambiente/métodos , Alimentos Marinos/análisis , Gadiformes/metabolismo
17.
Mar Environ Res ; 199: 106628, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38968804

RESUMEN

Chemical and microlitter (ML) pollution in three Estonian coastal areas (Baltic Sea) was investigated using mussels (Mytilus trossulus). Polycyclic aromatic hydrocarbons (PAH) in mussel tissues were observed in moderate levels with high bioaccumulation factors for the more hydrophilic and low molecular weight PAH (LMW PAH), namely anthracene and fluorene. Tissue concentrations of polybrominated diphenyl ethers (PBDE) and cadmium within mussel populations exceeded the Good Environmental Status thresholds by more than 200% and 60%, respectively. Multiple contamination at the Muuga Harbour site by tributyltin, high molecular weight PAH, including the highly toxic benzo[c]fluorene and PBDE, coincided with the inhibition of acetylcholinesterase activity and a lower condition index of the mussels. The metabolization and removal of bioaccumulated LMW PAH, reflected in the dominance of oxy-PAH such as anthracene-9,10-dione, is likely associated with the increased activity of glutathione S-transferase in caged mussels. Only a few microplastic particles were observed among the ML in mussel tissues, with coloured cellulose-based microfibers being the most prevalent. The average concentration of ML in mussels was significantly higher at the harbour area than at other sites. The integrated biomarker response index values allowed for the differentiation of pollution levels across studied locations representing high, intermediate, and low pollution levels within the studied area.


Asunto(s)
Monitoreo del Ambiente , Éteres Difenilos Halogenados , Mytilus , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Mytilus/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Monitoreo del Ambiente/métodos , Éteres Difenilos Halogenados/toxicidad , Finlandia , Fluorenos/toxicidad , Antracenos
19.
Polymers (Basel) ; 16(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39000724

RESUMEN

Mixed solutions of PAN with cellulose in N-methylmorpholine-N-oxide (NMMO) were prepared. Systems with a fraction of a dispersed phase of a cellulose solution in NMMO up to 40% are characterized by the formation of fibrillar morphology. The fibrils created as the mixed solution is forced through the capillary take on a more regular order as the cellulose content in the system drops. The systems' morphology is considered to range from a heterogeneous two-phase solution to regular fibrils. The generated morphology, in which the cellulose fibrils are encircled by the PAN, can be fixed by spinning fibers. Cellulose fibrils have a diameter of no more than a few microns. The length of the fibrils is limited by the size of the fiber being formed. The process of selectively removing PAN was used to isolate the cellulose microfibrils. Several techniques were used to evaluate the mechanical properties of isolated cellulose microfibers. Atomic force microscopy allowed for the evaluation of the fiber stiffness and the creation of topographic maps of the fibers. Cellulose microfibers have a higher Young's modulus (more than 30 GPa) than cellulose fibers formed in a comparable method, which affects the mechanical properties of composite fibers.

20.
Environ Pollut ; 356: 124377, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897276

RESUMEN

Wastewater treatment plants play a crucial role in controlling the transport of pollutants to the environment and often discharge persistent contaminants such as synthetic microplastic fibers (MFs) to the ecosystem. In this study, we examined the fate and toxicity of polyethylene terephthalate (PET) MFs fabricated from commercial cloth in post-disinfection secondary effluents by employing conditions that closely mimic disinfection processes applied in wastewater treatment plants. Challenging conventional assumptions, this study illustrated that oxidative treatment by chlorination and ozonation incurred no significant modification to the surface morphology of the MFs. Additionally, experimental results demonstrated that both pristine and oxidized MFs have minimal adsorption potential towards contaminants of emerging concern in both effluents and alkaline water. The limited adsorption was attributed to the inert nature of MFs and low surface area to volume ratio. Slight adsorption was observed for sotalol, sulfamethoxazole, and thiabendazole in alkaline water, where the governing adsorption interactions were suggested to be hydrogen bonding and electrostatic forces. Acute exposure experiments on human cells revealed no immediate toxicity; however, the chronic and long-term consequences of the exposure should be further investigated. Overall, despite the concern associated with MFs pollution, this work demonstrates the overall indifference of MFs in WWTP (i.e., minor effects of disinfection on MFs surface properties and limited adsorption potential toward a mix of trace organic pollutants), which does not change their acute toxicity toward living forms.


Asunto(s)
Microplásticos , Aguas Residuales , Contaminantes Químicos del Agua , Microplásticos/toxicidad , Microplásticos/química , Adsorción , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química , Aguas Residuales/química , Desinfección , Humanos , Eliminación de Residuos Líquidos/métodos , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA